Abstract

We proposed and demonstrated a novel method for the evaluation of optical pulse trains generated by a multifrequency continuous-wave Raman laser operating at a mode separation of 17.6THz. This approach is based on the detection of a nonlinear signal arising from the intensity modulation of a pulse train, which should provide a useful means for measuring the deviation from phase locking of multifrequency lasers. Our results suggest that an optimization of intracavity dispersion allows the generation of phase-locked multifrequency emissions, which leads to optical pulse trains at a repetition rate in excess of 10THz.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Bartels, D. Heinecke, and S. A. Diddams, “Passively mode-locked 10 GHz femtosecond Ti:sapphire laser,” Opt. Lett. 33, 1905-1907 (2008).
    [CrossRef] [PubMed]
  2. A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, “Femtosecond pulse sequences used for optical manipulation of molecular motion,” Science 247, 1317-1319 (1990).
    [CrossRef] [PubMed]
  3. A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78, 035107 (2007).
    [CrossRef] [PubMed]
  4. Y. Sasaki, H. Yokoyama, and H. Ito, “Dual-wavelength optical-pulse source based on diode lasers for high-repetition-rate, narrow-bandwidth terahertz-wave generation,” Opt. Express 12, 3066-3071 (2004).
    [CrossRef] [PubMed]
  5. D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, and J. H. Marsh, “Terahertz repetition frequencies from harmonic mode-locked monolithic compound-cavity laser diodes,” Appl. Phys. Lett. 78, 3571-3573 (2001).
    [CrossRef]
  6. Y. Ozeki, S. Takasaka, J. Hiroishi, R. Suguzaki, T. Yagi, M. Sakano, and S. Namiki, “Generation of 1 THz repetition rate, 97 fs optical pulse train based on comb-like profiled fibre,” Electron. Lett. 41, 1048-1050 (2005).
    [CrossRef]
  7. M. Hyodo, K. S. Abedin, and N. Onodera, “Fourier synthesis of 1.8 THz optical-pulse trains by phase locking of three independent semiconductor lasers,” Opt. Lett. 26, 340-342 (2001).
    [CrossRef]
  8. K. Shinzen, Y. Hirakawa, and T. Imasaka, “Generation of highly repetitive optical pulses based on intracavity four-wave Raman mixing,” Phys. Rev. Lett. 87, 223901 (2001).
    [CrossRef] [PubMed]
  9. D. C. Hanna, D. J. Pointer, and D. J. Pratt, “Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium, and methane,” IEEE J. Quantum Electron. 22, 332-336(1986).
    [CrossRef]
  10. S. Zaitsu, C. Eshima, K. Ihara, and T. Imasaka, “Generation of a continuous-wave pulse train at a repetition rate of 17.6 THz,” J. Opt. Soc. Am. B 24, 1037-1041 (2007).
    [CrossRef]
  11. P. Dubé, L.-S. Ma, J. Ye, P. Jungner, and J. L. Hall, “Thermally induced self-locking of an optical cavity by overtone absorption in acetylene gas,” J. Opt. Soc. Am. B 13, 2041-2054(1996).
    [CrossRef]
  12. C. Spielman, L. Xu, and F. Krausz, “Measurement of interferometric autocorrelations: comment,” Appl. Opt. 36, 2523-2525(1997).
    [CrossRef]
  13. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001), Chap. 10.
  14. E. R. Peck and S. Huang, “Refractivity and dispersion of hydrogen in the visible and near infrared,” J. Opt. Soc. Am. 67, 1550-1554 (1977).
    [CrossRef]
  15. S. Zaitsu, H. Izaki, and T. Imasaka, “Phase-matched Raman-resonant four-wave mixing in a dispersion-compensated high-finesse optical cavity,” Phys. Rev. Lett. 100, 073901 (2008).
    [CrossRef] [PubMed]

2008 (2)

S. Zaitsu, H. Izaki, and T. Imasaka, “Phase-matched Raman-resonant four-wave mixing in a dispersion-compensated high-finesse optical cavity,” Phys. Rev. Lett. 100, 073901 (2008).
[CrossRef] [PubMed]

A. Bartels, D. Heinecke, and S. A. Diddams, “Passively mode-locked 10 GHz femtosecond Ti:sapphire laser,” Opt. Lett. 33, 1905-1907 (2008).
[CrossRef] [PubMed]

2007 (2)

S. Zaitsu, C. Eshima, K. Ihara, and T. Imasaka, “Generation of a continuous-wave pulse train at a repetition rate of 17.6 THz,” J. Opt. Soc. Am. B 24, 1037-1041 (2007).
[CrossRef]

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78, 035107 (2007).
[CrossRef] [PubMed]

2005 (1)

Y. Ozeki, S. Takasaka, J. Hiroishi, R. Suguzaki, T. Yagi, M. Sakano, and S. Namiki, “Generation of 1 THz repetition rate, 97 fs optical pulse train based on comb-like profiled fibre,” Electron. Lett. 41, 1048-1050 (2005).
[CrossRef]

2004 (1)

2001 (3)

M. Hyodo, K. S. Abedin, and N. Onodera, “Fourier synthesis of 1.8 THz optical-pulse trains by phase locking of three independent semiconductor lasers,” Opt. Lett. 26, 340-342 (2001).
[CrossRef]

K. Shinzen, Y. Hirakawa, and T. Imasaka, “Generation of highly repetitive optical pulses based on intracavity four-wave Raman mixing,” Phys. Rev. Lett. 87, 223901 (2001).
[CrossRef] [PubMed]

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, and J. H. Marsh, “Terahertz repetition frequencies from harmonic mode-locked monolithic compound-cavity laser diodes,” Appl. Phys. Lett. 78, 3571-3573 (2001).
[CrossRef]

1997 (1)

1996 (1)

1990 (1)

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, “Femtosecond pulse sequences used for optical manipulation of molecular motion,” Science 247, 1317-1319 (1990).
[CrossRef] [PubMed]

1986 (1)

D. C. Hanna, D. J. Pointer, and D. J. Pratt, “Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium, and methane,” IEEE J. Quantum Electron. 22, 332-336(1986).
[CrossRef]

1977 (1)

Abedin, K. S.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001), Chap. 10.

Bartels, A.

A. Bartels, D. Heinecke, and S. A. Diddams, “Passively mode-locked 10 GHz femtosecond Ti:sapphire laser,” Opt. Lett. 33, 1905-1907 (2008).
[CrossRef] [PubMed]

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78, 035107 (2007).
[CrossRef] [PubMed]

Cerna, R.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78, 035107 (2007).
[CrossRef] [PubMed]

Dekorsy, T.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78, 035107 (2007).
[CrossRef] [PubMed]

Diddams, S. A.

Dubé, P.

Eshima, C.

Hall, J. L.

Hanna, D. C.

D. C. Hanna, D. J. Pointer, and D. J. Pratt, “Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium, and methane,” IEEE J. Quantum Electron. 22, 332-336(1986).
[CrossRef]

Heinecke, D.

Hirakawa, Y.

K. Shinzen, Y. Hirakawa, and T. Imasaka, “Generation of highly repetitive optical pulses based on intracavity four-wave Raman mixing,” Phys. Rev. Lett. 87, 223901 (2001).
[CrossRef] [PubMed]

Hiroishi, J.

Y. Ozeki, S. Takasaka, J. Hiroishi, R. Suguzaki, T. Yagi, M. Sakano, and S. Namiki, “Generation of 1 THz repetition rate, 97 fs optical pulse train based on comb-like profiled fibre,” Electron. Lett. 41, 1048-1050 (2005).
[CrossRef]

Huang, S.

Hudert, F.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78, 035107 (2007).
[CrossRef] [PubMed]

Hyodo, M.

Ihara, K.

Imasaka, T.

S. Zaitsu, H. Izaki, and T. Imasaka, “Phase-matched Raman-resonant four-wave mixing in a dispersion-compensated high-finesse optical cavity,” Phys. Rev. Lett. 100, 073901 (2008).
[CrossRef] [PubMed]

S. Zaitsu, C. Eshima, K. Ihara, and T. Imasaka, “Generation of a continuous-wave pulse train at a repetition rate of 17.6 THz,” J. Opt. Soc. Am. B 24, 1037-1041 (2007).
[CrossRef]

K. Shinzen, Y. Hirakawa, and T. Imasaka, “Generation of highly repetitive optical pulses based on intracavity four-wave Raman mixing,” Phys. Rev. Lett. 87, 223901 (2001).
[CrossRef] [PubMed]

Ito, H.

Izaki, H.

S. Zaitsu, H. Izaki, and T. Imasaka, “Phase-matched Raman-resonant four-wave mixing in a dispersion-compensated high-finesse optical cavity,” Phys. Rev. Lett. 100, 073901 (2008).
[CrossRef] [PubMed]

Janke, C.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78, 035107 (2007).
[CrossRef] [PubMed]

Jungner, P.

Kistner, C.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78, 035107 (2007).
[CrossRef] [PubMed]

Krausz, F.

Leaird, D. E.

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, “Femtosecond pulse sequences used for optical manipulation of molecular motion,” Science 247, 1317-1319 (1990).
[CrossRef] [PubMed]

Ma, L.-S.

Marsh, J. H.

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, and J. H. Marsh, “Terahertz repetition frequencies from harmonic mode-locked monolithic compound-cavity laser diodes,” Appl. Phys. Lett. 78, 3571-3573 (2001).
[CrossRef]

McDougall, S. D.

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, and J. H. Marsh, “Terahertz repetition frequencies from harmonic mode-locked monolithic compound-cavity laser diodes,” Appl. Phys. Lett. 78, 3571-3573 (2001).
[CrossRef]

Namiki, S.

Y. Ozeki, S. Takasaka, J. Hiroishi, R. Suguzaki, T. Yagi, M. Sakano, and S. Namiki, “Generation of 1 THz repetition rate, 97 fs optical pulse train based on comb-like profiled fibre,” Electron. Lett. 41, 1048-1050 (2005).
[CrossRef]

Nelson, K. A.

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, “Femtosecond pulse sequences used for optical manipulation of molecular motion,” Science 247, 1317-1319 (1990).
[CrossRef] [PubMed]

Onodera, N.

Ozeki, Y.

Y. Ozeki, S. Takasaka, J. Hiroishi, R. Suguzaki, T. Yagi, M. Sakano, and S. Namiki, “Generation of 1 THz repetition rate, 97 fs optical pulse train based on comb-like profiled fibre,” Electron. Lett. 41, 1048-1050 (2005).
[CrossRef]

Peck, E. R.

Pointer, D. J.

D. C. Hanna, D. J. Pointer, and D. J. Pratt, “Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium, and methane,” IEEE J. Quantum Electron. 22, 332-336(1986).
[CrossRef]

Pratt, D. J.

D. C. Hanna, D. J. Pointer, and D. J. Pratt, “Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium, and methane,” IEEE J. Quantum Electron. 22, 332-336(1986).
[CrossRef]

Sakano, M.

Y. Ozeki, S. Takasaka, J. Hiroishi, R. Suguzaki, T. Yagi, M. Sakano, and S. Namiki, “Generation of 1 THz repetition rate, 97 fs optical pulse train based on comb-like profiled fibre,” Electron. Lett. 41, 1048-1050 (2005).
[CrossRef]

Sasaki, Y.

Shinzen, K.

K. Shinzen, Y. Hirakawa, and T. Imasaka, “Generation of highly repetitive optical pulses based on intracavity four-wave Raman mixing,” Phys. Rev. Lett. 87, 223901 (2001).
[CrossRef] [PubMed]

Spielman, C.

Street, M. W.

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, and J. H. Marsh, “Terahertz repetition frequencies from harmonic mode-locked monolithic compound-cavity laser diodes,” Appl. Phys. Lett. 78, 3571-3573 (2001).
[CrossRef]

Suguzaki, R.

Y. Ozeki, S. Takasaka, J. Hiroishi, R. Suguzaki, T. Yagi, M. Sakano, and S. Namiki, “Generation of 1 THz repetition rate, 97 fs optical pulse train based on comb-like profiled fibre,” Electron. Lett. 41, 1048-1050 (2005).
[CrossRef]

Takasaka, S.

Y. Ozeki, S. Takasaka, J. Hiroishi, R. Suguzaki, T. Yagi, M. Sakano, and S. Namiki, “Generation of 1 THz repetition rate, 97 fs optical pulse train based on comb-like profiled fibre,” Electron. Lett. 41, 1048-1050 (2005).
[CrossRef]

Thayne, I. G.

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, and J. H. Marsh, “Terahertz repetition frequencies from harmonic mode-locked monolithic compound-cavity laser diodes,” Appl. Phys. Lett. 78, 3571-3573 (2001).
[CrossRef]

Thoma, A.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78, 035107 (2007).
[CrossRef] [PubMed]

Weiner, A. M.

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, “Femtosecond pulse sequences used for optical manipulation of molecular motion,” Science 247, 1317-1319 (1990).
[CrossRef] [PubMed]

Wiederrecht, G. P.

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, “Femtosecond pulse sequences used for optical manipulation of molecular motion,” Science 247, 1317-1319 (1990).
[CrossRef] [PubMed]

Xu, L.

Yagi, T.

Y. Ozeki, S. Takasaka, J. Hiroishi, R. Suguzaki, T. Yagi, M. Sakano, and S. Namiki, “Generation of 1 THz repetition rate, 97 fs optical pulse train based on comb-like profiled fibre,” Electron. Lett. 41, 1048-1050 (2005).
[CrossRef]

Yanson, D. A.

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, and J. H. Marsh, “Terahertz repetition frequencies from harmonic mode-locked monolithic compound-cavity laser diodes,” Appl. Phys. Lett. 78, 3571-3573 (2001).
[CrossRef]

Ye, J.

Yokoyama, H.

Zaitsu, S.

S. Zaitsu, H. Izaki, and T. Imasaka, “Phase-matched Raman-resonant four-wave mixing in a dispersion-compensated high-finesse optical cavity,” Phys. Rev. Lett. 100, 073901 (2008).
[CrossRef] [PubMed]

S. Zaitsu, C. Eshima, K. Ihara, and T. Imasaka, “Generation of a continuous-wave pulse train at a repetition rate of 17.6 THz,” J. Opt. Soc. Am. B 24, 1037-1041 (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, and J. H. Marsh, “Terahertz repetition frequencies from harmonic mode-locked monolithic compound-cavity laser diodes,” Appl. Phys. Lett. 78, 3571-3573 (2001).
[CrossRef]

Electron. Lett. (1)

Y. Ozeki, S. Takasaka, J. Hiroishi, R. Suguzaki, T. Yagi, M. Sakano, and S. Namiki, “Generation of 1 THz repetition rate, 97 fs optical pulse train based on comb-like profiled fibre,” Electron. Lett. 41, 1048-1050 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. C. Hanna, D. J. Pointer, and D. J. Pratt, “Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium, and methane,” IEEE J. Quantum Electron. 22, 332-336(1986).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. Lett. (2)

S. Zaitsu, H. Izaki, and T. Imasaka, “Phase-matched Raman-resonant four-wave mixing in a dispersion-compensated high-finesse optical cavity,” Phys. Rev. Lett. 100, 073901 (2008).
[CrossRef] [PubMed]

K. Shinzen, Y. Hirakawa, and T. Imasaka, “Generation of highly repetitive optical pulses based on intracavity four-wave Raman mixing,” Phys. Rev. Lett. 87, 223901 (2001).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78, 035107 (2007).
[CrossRef] [PubMed]

Science (1)

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, “Femtosecond pulse sequences used for optical manipulation of molecular motion,” Science 247, 1317-1319 (1990).
[CrossRef] [PubMed]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001), Chap. 10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Three single-frequency longitudinal modes for describing the model discussed in this section. ω N Δ N = ω N Ω and ω N + Δ N = ω N + Ω + Δ Ω . A subscript indicates the number of the mode.

Fig. 2
Fig. 2

(a) Schematics of the experimental setup: the photomultiplier tube (PMT). The compressor consisted of a pair of gratings and a folding mirror. The autocorrelator consisted of a Michelson interferometer and a PMT used as a nonlinear detector. (b) Dependence of the signal intensity from the PMT on the input power of the laser. The n parameter indicates the slope of the fitted line.

Fig. 3
Fig. 3

Spectra (top) and autocorrelation traces (bottom) of the multifrequency continuous-wave Raman laser. (a) The spectrum consisted of two frequency components, the pump P and the first Stokes emission S 1 . (b) The spectrum consisted of three frequency components, P, S 1 , and the second Stokes emission S 2 .

Fig. 4
Fig. 4

Autocorrelation traces obtained by (a) calculation and (b) measurement under assumptions of Δ ϕ = 0 (top) and Δ ϕ = π (bottom).

Fig. 5
Fig. 5

(a) Typical signal of the output beam (hydrogen pressure, 0.4 MPa ). The inset shows the intensity modulation of the output beam. (b) Dependence of Δ Ω on the hydrogen pressure. The points are fitted by Δ Ω = 75 p 7.1 .

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ϕ N ( t ) ϕ N Δ N ( t ) = ϕ N + Δ N ( t ) ϕ N ( t ) .
Δ Ω = Ω Ω = 0.
I 1 ( t ) = E ( t ) E ( t ) * = 3 + 2 cos Ω t + 2 cos ( Ω + Δ Ω ) t + 2 cos ( 2 Ω + Δ Ω ) t .
I 2 ( t ) = [ E ( t ) E ( t ) * ] 2 = 15 + 4 cos Δ Ω t + 16 cos Ω t + 16 cos ( Ω + Δ Ω ) t + .
Ω FSR ( ω ) = c 2 L · n g ( ω ) ,
Δ Ω = Δ Ω medium + Δ Ω mirror .
Δ Ω medium = c 2 L m = 0 Δ N 1 ( 1 n g ( ω N m ) 1 n g ( ω N + m ) ) .
Δ Ω medium c · p 2 L m = 0 Δ N 1 ( α ( ω N m ) α ( ω N + m ) ) .
Δ ϕ = Ω 2 β ,

Metrics