Abstract

Laser optical gas sensors are fabricated by using the crystalline silicon carbide polytype 6H-SiC, which is a wide-bandgap semiconductor, and tested at high temperatures up to 650°C. The sensor operates on the principle of semiconductor optics involving both the semiconductor and optical properties of the material. It is fabricated by doping 6H-SiC with an appropriate dopant such that the dopant energy level matches the quantum of energy of the characteristic radiation emitted by the combustion gas of interest. This radiation changes the electron density in the semiconductor by photoexcitation and, thereby, alters the refractive index of the sensor. The variation in the refractive index can be determined from an interference pattern. Such patterns are obtained for the reflected power of a He-Ne laser of wavelength 632.8 nm as a function of temperature. SiC sensors have been fabricated by doping two quadrants of a 6H-SiC chip with Ga and Al of dopant energy levels EV+0.29 eV and EV+0.23 eV, respectively. These doped regions exhibit distinct changes in the refractive index of SiC in the presence of carbon dioxide (CO2) and nitrogen monoxide (NO) gases respectively. Therefore Ga- and Al-doped 6H-SiC can be used for sensing CO2 and NO gases at high temperatures, respectively.

© 2010 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Samman, S. Gebremariam, L. Rimai, X. Zhang, J. Hangas, and G. W. Auner, “Silicon-carbide MOS capacitors with laser-ablated Pt gate as combustible gas sensors,” Sens. Actuators B 63, 91-102 (2000).
  2. C. K. Kim, J. H. Lee, Y. H. Lee, N. I. Cho, and D. J. Kim, “A study on a platinum-silicon carbide Schottky diode as a hydrogen gas sensor,” Sens. Actuators B 66, 116-118 (2000).
  3. K. Nakashima, Y. Okuyama, S. Ando, O. Eryu, K. Abe, H. Yokoi, and T. Oshima, “A new type of SiC gas sensor with a pn-junction structure,” Mater. Sci. Forum 389-393, 1427-1430 (2002).
    [CrossRef]
  4. N. G. Wright and A. B. Horsfall, “SiC sensors: a review,” J. Phys. D 40, 6345-6354 (2007).
  5. K. Matocha, V. Tilak, P. Sandvik, and J. Tucker, “High-temperature SiC MOSFET gas sensors,” Mater. Res. Soc. Symp. Proc. 828, A7.9.1-A7.9.6 (2005).
  6. P. Tobias, B. Golding, and R. Ghosh, “Interface states in high temperature gas sensors based on SiC,” IEEE Sens. J. 3, 543-547 (2003).
    [CrossRef]
  7. P. Tobias, H. Hui, M. Koochesfahani, and R. N. Ghosh, “Millisecond response time measurements of high temperature gas sensors,” in IEEE Sensors 2004 (IEEE, 2004), pp. 24-27.
  8. A. L. Spetz, P. Tobias, L. Uneus, H. Svenningstorp, L. Ekedahl, and I. Lundstrom, “High temperature catalytic metal field effect transistors for industrial applications,” Sens. Actuators B 70, 67-76 (2000).
  9. A. L. Spetz, L. Uneus, H. Svennningstorp, P. Tobias, L. G. Ekedahl, O. Larsson, A. Goras, S. Savage, C. Harris, P. Martensson, R. Wigren, P. Salomonsson, B. Haggendahl, P. Ljung, M. Mattsson, and I. Lundstrom, “SiC based field effect gas sensors for industrial applications,” Phys. Status Solidi A 185, 15-25 (2001).
    [CrossRef]
  10. R. N. Ghosh, R. Loloee, T. Isaacs-Smith, and J. R. Williams, “High temperature reliability of SiC n-MOS devices up to 630°C,” Mater. Sci. Forum 527-529, 1039-1042 (2006).
    [CrossRef]
  11. S. Dakshinamurthy, N. R. Quick, and A. Kar, “Temperature-dependent optical properties of silicon carbide for wireless temperature sensors,” J. Phys. D 40, 353-360 (2007).
  12. S. Dakshinamurthy, N. R. Quick, and A. Kar, “SiC-based optical interferometry at high pressure and temperature for pressure and chemical sensing,” J. App. Phys. 99, 094902(2006).
  13. A. Chakravarty, N. Quick, and A. Kar, “Decoupling of silicon carbide optical sensor response for temperature and pressure measurements,” J. Appl. Phys. 102, 073111 (2007).
    [CrossRef]
  14. E. Hecht, Optics (Pearson Education, 2002), pp. 113-121, 426-427.
  15. A. J. de Castro, J. Meneses, S. Briz, and F. Lopez, “Nondispersive infrared monitoring of NO emissions in exhaust gases of vehicles,” Rev. Sci. Instrum. 70, 3156-3159 (1999).
    [CrossRef]
  16. U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44, 699-710 (2006).
  17. H. Herbin, N. Picque, G. Guelachvili, E. Sorokin, and I. Sorokina, “N2O weak lines observed between 3900 and 4050 cm−1 from long path absorption spectra,” J. Mol. Spectrosc. 238, 256-259 (2006).
    [CrossRef]
  18. A. A. Lebedev, “Deep-level defects in SiC materials and devices,” in Silicon Carbide: Materials, Processing, and Devices, Z. C. Feng and J. H. Zhao, eds. Vol. 20 in series on Optoelectronic Properties of Semiconductors and Superlattices (Taylor & Francis, 2004), Chap. 4, pp. 121-163 .
  19. A. A. Lebedev, “Deep level centers in silicon carbide: a review,” Semiconductors 33, 107-130 (1999).
    [CrossRef]
  20. T. Troffer, G. Pensl, A. Schoner, A. Henry, C. Hallin, O. Kordina, and E. Janzen, “Electrical characterization of gallium acceptor in 6H SiC,” Mater. Sci. Forum 557, 264-268 (1998).
  21. A. Schöner, N. Nordell, K. Rottner, R. Helbig, and G. Pensl, “Dependence of the aluminum ionization energy on doping concentration and compensation in 6H-SiC,” Inst. Phys. Conf. Ser. 142, 493-496 (1996).
  22. S. Bet, N. R. Quick, and A. Kar, “Laser doping of chromium as a double acceptor in silicon carbide with reduced crystalline damage and nearly all dopants in activated state,” Acta Mater. 56, 21611867 (2008).
    [CrossRef]
  23. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge Univ. Press, 1999).
  24. Z. Li and R. C. Bradt, “Thermal expansion and elastic anisotropies of SiC as related to polytype structure,” in Silicon Carbide '87: Proceedings of the Silicon Carbide 1987 Symposium (American Ceramic Society,1989), pp. 313-339.

2008 (1)

S. Bet, N. R. Quick, and A. Kar, “Laser doping of chromium as a double acceptor in silicon carbide with reduced crystalline damage and nearly all dopants in activated state,” Acta Mater. 56, 21611867 (2008).
[CrossRef]

2007 (3)

N. G. Wright and A. B. Horsfall, “SiC sensors: a review,” J. Phys. D 40, 6345-6354 (2007).

S. Dakshinamurthy, N. R. Quick, and A. Kar, “Temperature-dependent optical properties of silicon carbide for wireless temperature sensors,” J. Phys. D 40, 353-360 (2007).

A. Chakravarty, N. Quick, and A. Kar, “Decoupling of silicon carbide optical sensor response for temperature and pressure measurements,” J. Appl. Phys. 102, 073111 (2007).
[CrossRef]

2006 (4)

S. Dakshinamurthy, N. R. Quick, and A. Kar, “SiC-based optical interferometry at high pressure and temperature for pressure and chemical sensing,” J. App. Phys. 99, 094902(2006).

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44, 699-710 (2006).

H. Herbin, N. Picque, G. Guelachvili, E. Sorokin, and I. Sorokina, “N2O weak lines observed between 3900 and 4050 cm−1 from long path absorption spectra,” J. Mol. Spectrosc. 238, 256-259 (2006).
[CrossRef]

R. N. Ghosh, R. Loloee, T. Isaacs-Smith, and J. R. Williams, “High temperature reliability of SiC n-MOS devices up to 630°C,” Mater. Sci. Forum 527-529, 1039-1042 (2006).
[CrossRef]

2005 (1)

K. Matocha, V. Tilak, P. Sandvik, and J. Tucker, “High-temperature SiC MOSFET gas sensors,” Mater. Res. Soc. Symp. Proc. 828, A7.9.1-A7.9.6 (2005).

2003 (1)

P. Tobias, B. Golding, and R. Ghosh, “Interface states in high temperature gas sensors based on SiC,” IEEE Sens. J. 3, 543-547 (2003).
[CrossRef]

2002 (1)

K. Nakashima, Y. Okuyama, S. Ando, O. Eryu, K. Abe, H. Yokoi, and T. Oshima, “A new type of SiC gas sensor with a pn-junction structure,” Mater. Sci. Forum 389-393, 1427-1430 (2002).
[CrossRef]

2001 (1)

A. L. Spetz, L. Uneus, H. Svennningstorp, P. Tobias, L. G. Ekedahl, O. Larsson, A. Goras, S. Savage, C. Harris, P. Martensson, R. Wigren, P. Salomonsson, B. Haggendahl, P. Ljung, M. Mattsson, and I. Lundstrom, “SiC based field effect gas sensors for industrial applications,” Phys. Status Solidi A 185, 15-25 (2001).
[CrossRef]

2000 (3)

A. Samman, S. Gebremariam, L. Rimai, X. Zhang, J. Hangas, and G. W. Auner, “Silicon-carbide MOS capacitors with laser-ablated Pt gate as combustible gas sensors,” Sens. Actuators B 63, 91-102 (2000).

C. K. Kim, J. H. Lee, Y. H. Lee, N. I. Cho, and D. J. Kim, “A study on a platinum-silicon carbide Schottky diode as a hydrogen gas sensor,” Sens. Actuators B 66, 116-118 (2000).

A. L. Spetz, P. Tobias, L. Uneus, H. Svenningstorp, L. Ekedahl, and I. Lundstrom, “High temperature catalytic metal field effect transistors for industrial applications,” Sens. Actuators B 70, 67-76 (2000).

1999 (2)

A. A. Lebedev, “Deep level centers in silicon carbide: a review,” Semiconductors 33, 107-130 (1999).
[CrossRef]

A. J. de Castro, J. Meneses, S. Briz, and F. Lopez, “Nondispersive infrared monitoring of NO emissions in exhaust gases of vehicles,” Rev. Sci. Instrum. 70, 3156-3159 (1999).
[CrossRef]

1998 (1)

T. Troffer, G. Pensl, A. Schoner, A. Henry, C. Hallin, O. Kordina, and E. Janzen, “Electrical characterization of gallium acceptor in 6H SiC,” Mater. Sci. Forum 557, 264-268 (1998).

1996 (1)

A. Schöner, N. Nordell, K. Rottner, R. Helbig, and G. Pensl, “Dependence of the aluminum ionization energy on doping concentration and compensation in 6H-SiC,” Inst. Phys. Conf. Ser. 142, 493-496 (1996).

Abe, K.

K. Nakashima, Y. Okuyama, S. Ando, O. Eryu, K. Abe, H. Yokoi, and T. Oshima, “A new type of SiC gas sensor with a pn-junction structure,” Mater. Sci. Forum 389-393, 1427-1430 (2002).
[CrossRef]

Ando, S.

K. Nakashima, Y. Okuyama, S. Ando, O. Eryu, K. Abe, H. Yokoi, and T. Oshima, “A new type of SiC gas sensor with a pn-junction structure,” Mater. Sci. Forum 389-393, 1427-1430 (2002).
[CrossRef]

Auner, G. W.

A. Samman, S. Gebremariam, L. Rimai, X. Zhang, J. Hangas, and G. W. Auner, “Silicon-carbide MOS capacitors with laser-ablated Pt gate as combustible gas sensors,” Sens. Actuators B 63, 91-102 (2000).

Bet, S.

S. Bet, N. R. Quick, and A. Kar, “Laser doping of chromium as a double acceptor in silicon carbide with reduced crystalline damage and nearly all dopants in activated state,” Acta Mater. 56, 21611867 (2008).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge Univ. Press, 1999).

Bradt, R. C.

Z. Li and R. C. Bradt, “Thermal expansion and elastic anisotropies of SiC as related to polytype structure,” in Silicon Carbide '87: Proceedings of the Silicon Carbide 1987 Symposium (American Ceramic Society,1989), pp. 313-339.

Briz, S.

A. J. de Castro, J. Meneses, S. Briz, and F. Lopez, “Nondispersive infrared monitoring of NO emissions in exhaust gases of vehicles,” Rev. Sci. Instrum. 70, 3156-3159 (1999).
[CrossRef]

Chakravarty, A.

A. Chakravarty, N. Quick, and A. Kar, “Decoupling of silicon carbide optical sensor response for temperature and pressure measurements,” J. Appl. Phys. 102, 073111 (2007).
[CrossRef]

Cho, N. I.

C. K. Kim, J. H. Lee, Y. H. Lee, N. I. Cho, and D. J. Kim, “A study on a platinum-silicon carbide Schottky diode as a hydrogen gas sensor,” Sens. Actuators B 66, 116-118 (2000).

Dakshinamurthy, S.

S. Dakshinamurthy, N. R. Quick, and A. Kar, “Temperature-dependent optical properties of silicon carbide for wireless temperature sensors,” J. Phys. D 40, 353-360 (2007).

S. Dakshinamurthy, N. R. Quick, and A. Kar, “SiC-based optical interferometry at high pressure and temperature for pressure and chemical sensing,” J. App. Phys. 99, 094902(2006).

de Castro, A. J.

A. J. de Castro, J. Meneses, S. Briz, and F. Lopez, “Nondispersive infrared monitoring of NO emissions in exhaust gases of vehicles,” Rev. Sci. Instrum. 70, 3156-3159 (1999).
[CrossRef]

Ekedahl, L.

A. L. Spetz, P. Tobias, L. Uneus, H. Svenningstorp, L. Ekedahl, and I. Lundstrom, “High temperature catalytic metal field effect transistors for industrial applications,” Sens. Actuators B 70, 67-76 (2000).

Ekedahl, L. G.

A. L. Spetz, L. Uneus, H. Svennningstorp, P. Tobias, L. G. Ekedahl, O. Larsson, A. Goras, S. Savage, C. Harris, P. Martensson, R. Wigren, P. Salomonsson, B. Haggendahl, P. Ljung, M. Mattsson, and I. Lundstrom, “SiC based field effect gas sensors for industrial applications,” Phys. Status Solidi A 185, 15-25 (2001).
[CrossRef]

Eryu, O.

K. Nakashima, Y. Okuyama, S. Ando, O. Eryu, K. Abe, H. Yokoi, and T. Oshima, “A new type of SiC gas sensor with a pn-junction structure,” Mater. Sci. Forum 389-393, 1427-1430 (2002).
[CrossRef]

Gebremariam, S.

A. Samman, S. Gebremariam, L. Rimai, X. Zhang, J. Hangas, and G. W. Auner, “Silicon-carbide MOS capacitors with laser-ablated Pt gate as combustible gas sensors,” Sens. Actuators B 63, 91-102 (2000).

Geiser, P.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44, 699-710 (2006).

Ghosh, R.

P. Tobias, B. Golding, and R. Ghosh, “Interface states in high temperature gas sensors based on SiC,” IEEE Sens. J. 3, 543-547 (2003).
[CrossRef]

Ghosh, R. N.

R. N. Ghosh, R. Loloee, T. Isaacs-Smith, and J. R. Williams, “High temperature reliability of SiC n-MOS devices up to 630°C,” Mater. Sci. Forum 527-529, 1039-1042 (2006).
[CrossRef]

P. Tobias, H. Hui, M. Koochesfahani, and R. N. Ghosh, “Millisecond response time measurements of high temperature gas sensors,” in IEEE Sensors 2004 (IEEE, 2004), pp. 24-27.

Golding, B.

P. Tobias, B. Golding, and R. Ghosh, “Interface states in high temperature gas sensors based on SiC,” IEEE Sens. J. 3, 543-547 (2003).
[CrossRef]

Goras, A.

A. L. Spetz, L. Uneus, H. Svennningstorp, P. Tobias, L. G. Ekedahl, O. Larsson, A. Goras, S. Savage, C. Harris, P. Martensson, R. Wigren, P. Salomonsson, B. Haggendahl, P. Ljung, M. Mattsson, and I. Lundstrom, “SiC based field effect gas sensors for industrial applications,” Phys. Status Solidi A 185, 15-25 (2001).
[CrossRef]

Guelachvili, G.

H. Herbin, N. Picque, G. Guelachvili, E. Sorokin, and I. Sorokina, “N2O weak lines observed between 3900 and 4050 cm−1 from long path absorption spectra,” J. Mol. Spectrosc. 238, 256-259 (2006).
[CrossRef]

Haggendahl, B.

A. L. Spetz, L. Uneus, H. Svennningstorp, P. Tobias, L. G. Ekedahl, O. Larsson, A. Goras, S. Savage, C. Harris, P. Martensson, R. Wigren, P. Salomonsson, B. Haggendahl, P. Ljung, M. Mattsson, and I. Lundstrom, “SiC based field effect gas sensors for industrial applications,” Phys. Status Solidi A 185, 15-25 (2001).
[CrossRef]

Hallin, C.

T. Troffer, G. Pensl, A. Schoner, A. Henry, C. Hallin, O. Kordina, and E. Janzen, “Electrical characterization of gallium acceptor in 6H SiC,” Mater. Sci. Forum 557, 264-268 (1998).

Hangas, J.

A. Samman, S. Gebremariam, L. Rimai, X. Zhang, J. Hangas, and G. W. Auner, “Silicon-carbide MOS capacitors with laser-ablated Pt gate as combustible gas sensors,” Sens. Actuators B 63, 91-102 (2000).

Harris, C.

A. L. Spetz, L. Uneus, H. Svennningstorp, P. Tobias, L. G. Ekedahl, O. Larsson, A. Goras, S. Savage, C. Harris, P. Martensson, R. Wigren, P. Salomonsson, B. Haggendahl, P. Ljung, M. Mattsson, and I. Lundstrom, “SiC based field effect gas sensors for industrial applications,” Phys. Status Solidi A 185, 15-25 (2001).
[CrossRef]

Hecht, E.

E. Hecht, Optics (Pearson Education, 2002), pp. 113-121, 426-427.

Helbig, R.

A. Schöner, N. Nordell, K. Rottner, R. Helbig, and G. Pensl, “Dependence of the aluminum ionization energy on doping concentration and compensation in 6H-SiC,” Inst. Phys. Conf. Ser. 142, 493-496 (1996).

Henry, A.

T. Troffer, G. Pensl, A. Schoner, A. Henry, C. Hallin, O. Kordina, and E. Janzen, “Electrical characterization of gallium acceptor in 6H SiC,” Mater. Sci. Forum 557, 264-268 (1998).

Herbin, H.

H. Herbin, N. Picque, G. Guelachvili, E. Sorokin, and I. Sorokina, “N2O weak lines observed between 3900 and 4050 cm−1 from long path absorption spectra,” J. Mol. Spectrosc. 238, 256-259 (2006).
[CrossRef]

Horsfall, A. B.

N. G. Wright and A. B. Horsfall, “SiC sensors: a review,” J. Phys. D 40, 6345-6354 (2007).

Hui, H.

P. Tobias, H. Hui, M. Koochesfahani, and R. N. Ghosh, “Millisecond response time measurements of high temperature gas sensors,” in IEEE Sensors 2004 (IEEE, 2004), pp. 24-27.

Isaacs-Smith, T.

R. N. Ghosh, R. Loloee, T. Isaacs-Smith, and J. R. Williams, “High temperature reliability of SiC n-MOS devices up to 630°C,” Mater. Sci. Forum 527-529, 1039-1042 (2006).
[CrossRef]

Janzen, E.

T. Troffer, G. Pensl, A. Schoner, A. Henry, C. Hallin, O. Kordina, and E. Janzen, “Electrical characterization of gallium acceptor in 6H SiC,” Mater. Sci. Forum 557, 264-268 (1998).

Kar, A.

S. Bet, N. R. Quick, and A. Kar, “Laser doping of chromium as a double acceptor in silicon carbide with reduced crystalline damage and nearly all dopants in activated state,” Acta Mater. 56, 21611867 (2008).
[CrossRef]

A. Chakravarty, N. Quick, and A. Kar, “Decoupling of silicon carbide optical sensor response for temperature and pressure measurements,” J. Appl. Phys. 102, 073111 (2007).
[CrossRef]

S. Dakshinamurthy, N. R. Quick, and A. Kar, “Temperature-dependent optical properties of silicon carbide for wireless temperature sensors,” J. Phys. D 40, 353-360 (2007).

S. Dakshinamurthy, N. R. Quick, and A. Kar, “SiC-based optical interferometry at high pressure and temperature for pressure and chemical sensing,” J. App. Phys. 99, 094902(2006).

Khorsandi, A.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44, 699-710 (2006).

Kim, C. K.

C. K. Kim, J. H. Lee, Y. H. Lee, N. I. Cho, and D. J. Kim, “A study on a platinum-silicon carbide Schottky diode as a hydrogen gas sensor,” Sens. Actuators B 66, 116-118 (2000).

Kim, D. J.

C. K. Kim, J. H. Lee, Y. H. Lee, N. I. Cho, and D. J. Kim, “A study on a platinum-silicon carbide Schottky diode as a hydrogen gas sensor,” Sens. Actuators B 66, 116-118 (2000).

Koochesfahani, M.

P. Tobias, H. Hui, M. Koochesfahani, and R. N. Ghosh, “Millisecond response time measurements of high temperature gas sensors,” in IEEE Sensors 2004 (IEEE, 2004), pp. 24-27.

Kordina, O.

T. Troffer, G. Pensl, A. Schoner, A. Henry, C. Hallin, O. Kordina, and E. Janzen, “Electrical characterization of gallium acceptor in 6H SiC,” Mater. Sci. Forum 557, 264-268 (1998).

Larsson, O.

A. L. Spetz, L. Uneus, H. Svennningstorp, P. Tobias, L. G. Ekedahl, O. Larsson, A. Goras, S. Savage, C. Harris, P. Martensson, R. Wigren, P. Salomonsson, B. Haggendahl, P. Ljung, M. Mattsson, and I. Lundstrom, “SiC based field effect gas sensors for industrial applications,” Phys. Status Solidi A 185, 15-25 (2001).
[CrossRef]

Lebedev, A. A.

A. A. Lebedev, “Deep level centers in silicon carbide: a review,” Semiconductors 33, 107-130 (1999).
[CrossRef]

A. A. Lebedev, “Deep-level defects in SiC materials and devices,” in Silicon Carbide: Materials, Processing, and Devices, Z. C. Feng and J. H. Zhao, eds. Vol. 20 in series on Optoelectronic Properties of Semiconductors and Superlattices (Taylor & Francis, 2004), Chap. 4, pp. 121-163 .

Lee, J. H.

C. K. Kim, J. H. Lee, Y. H. Lee, N. I. Cho, and D. J. Kim, “A study on a platinum-silicon carbide Schottky diode as a hydrogen gas sensor,” Sens. Actuators B 66, 116-118 (2000).

Lee, Y. H.

C. K. Kim, J. H. Lee, Y. H. Lee, N. I. Cho, and D. J. Kim, “A study on a platinum-silicon carbide Schottky diode as a hydrogen gas sensor,” Sens. Actuators B 66, 116-118 (2000).

Li, Z.

Z. Li and R. C. Bradt, “Thermal expansion and elastic anisotropies of SiC as related to polytype structure,” in Silicon Carbide '87: Proceedings of the Silicon Carbide 1987 Symposium (American Ceramic Society,1989), pp. 313-339.

Ljung, P.

A. L. Spetz, L. Uneus, H. Svennningstorp, P. Tobias, L. G. Ekedahl, O. Larsson, A. Goras, S. Savage, C. Harris, P. Martensson, R. Wigren, P. Salomonsson, B. Haggendahl, P. Ljung, M. Mattsson, and I. Lundstrom, “SiC based field effect gas sensors for industrial applications,” Phys. Status Solidi A 185, 15-25 (2001).
[CrossRef]

Loloee, R.

R. N. Ghosh, R. Loloee, T. Isaacs-Smith, and J. R. Williams, “High temperature reliability of SiC n-MOS devices up to 630°C,” Mater. Sci. Forum 527-529, 1039-1042 (2006).
[CrossRef]

Lopez, F.

A. J. de Castro, J. Meneses, S. Briz, and F. Lopez, “Nondispersive infrared monitoring of NO emissions in exhaust gases of vehicles,” Rev. Sci. Instrum. 70, 3156-3159 (1999).
[CrossRef]

Lundstrom, I.

A. L. Spetz, L. Uneus, H. Svennningstorp, P. Tobias, L. G. Ekedahl, O. Larsson, A. Goras, S. Savage, C. Harris, P. Martensson, R. Wigren, P. Salomonsson, B. Haggendahl, P. Ljung, M. Mattsson, and I. Lundstrom, “SiC based field effect gas sensors for industrial applications,” Phys. Status Solidi A 185, 15-25 (2001).
[CrossRef]

A. L. Spetz, P. Tobias, L. Uneus, H. Svenningstorp, L. Ekedahl, and I. Lundstrom, “High temperature catalytic metal field effect transistors for industrial applications,” Sens. Actuators B 70, 67-76 (2000).

Martensson, P.

A. L. Spetz, L. Uneus, H. Svennningstorp, P. Tobias, L. G. Ekedahl, O. Larsson, A. Goras, S. Savage, C. Harris, P. Martensson, R. Wigren, P. Salomonsson, B. Haggendahl, P. Ljung, M. Mattsson, and I. Lundstrom, “SiC based field effect gas sensors for industrial applications,” Phys. Status Solidi A 185, 15-25 (2001).
[CrossRef]

Matocha, K.

K. Matocha, V. Tilak, P. Sandvik, and J. Tucker, “High-temperature SiC MOSFET gas sensors,” Mater. Res. Soc. Symp. Proc. 828, A7.9.1-A7.9.6 (2005).

Mattsson, M.

A. L. Spetz, L. Uneus, H. Svennningstorp, P. Tobias, L. G. Ekedahl, O. Larsson, A. Goras, S. Savage, C. Harris, P. Martensson, R. Wigren, P. Salomonsson, B. Haggendahl, P. Ljung, M. Mattsson, and I. Lundstrom, “SiC based field effect gas sensors for industrial applications,” Phys. Status Solidi A 185, 15-25 (2001).
[CrossRef]

Meneses, J.

A. J. de Castro, J. Meneses, S. Briz, and F. Lopez, “Nondispersive infrared monitoring of NO emissions in exhaust gases of vehicles,” Rev. Sci. Instrum. 70, 3156-3159 (1999).
[CrossRef]

Nakashima, K.

K. Nakashima, Y. Okuyama, S. Ando, O. Eryu, K. Abe, H. Yokoi, and T. Oshima, “A new type of SiC gas sensor with a pn-junction structure,” Mater. Sci. Forum 389-393, 1427-1430 (2002).
[CrossRef]

Nordell, N.

A. Schöner, N. Nordell, K. Rottner, R. Helbig, and G. Pensl, “Dependence of the aluminum ionization energy on doping concentration and compensation in 6H-SiC,” Inst. Phys. Conf. Ser. 142, 493-496 (1996).

Okuyama, Y.

K. Nakashima, Y. Okuyama, S. Ando, O. Eryu, K. Abe, H. Yokoi, and T. Oshima, “A new type of SiC gas sensor with a pn-junction structure,” Mater. Sci. Forum 389-393, 1427-1430 (2002).
[CrossRef]

Oshima, T.

K. Nakashima, Y. Okuyama, S. Ando, O. Eryu, K. Abe, H. Yokoi, and T. Oshima, “A new type of SiC gas sensor with a pn-junction structure,” Mater. Sci. Forum 389-393, 1427-1430 (2002).
[CrossRef]

Pensl, G.

T. Troffer, G. Pensl, A. Schoner, A. Henry, C. Hallin, O. Kordina, and E. Janzen, “Electrical characterization of gallium acceptor in 6H SiC,” Mater. Sci. Forum 557, 264-268 (1998).

A. Schöner, N. Nordell, K. Rottner, R. Helbig, and G. Pensl, “Dependence of the aluminum ionization energy on doping concentration and compensation in 6H-SiC,” Inst. Phys. Conf. Ser. 142, 493-496 (1996).

Picque, N.

H. Herbin, N. Picque, G. Guelachvili, E. Sorokin, and I. Sorokina, “N2O weak lines observed between 3900 and 4050 cm−1 from long path absorption spectra,” J. Mol. Spectrosc. 238, 256-259 (2006).
[CrossRef]

Quick, N.

A. Chakravarty, N. Quick, and A. Kar, “Decoupling of silicon carbide optical sensor response for temperature and pressure measurements,” J. Appl. Phys. 102, 073111 (2007).
[CrossRef]

Quick, N. R.

S. Bet, N. R. Quick, and A. Kar, “Laser doping of chromium as a double acceptor in silicon carbide with reduced crystalline damage and nearly all dopants in activated state,” Acta Mater. 56, 21611867 (2008).
[CrossRef]

S. Dakshinamurthy, N. R. Quick, and A. Kar, “Temperature-dependent optical properties of silicon carbide for wireless temperature sensors,” J. Phys. D 40, 353-360 (2007).

S. Dakshinamurthy, N. R. Quick, and A. Kar, “SiC-based optical interferometry at high pressure and temperature for pressure and chemical sensing,” J. App. Phys. 99, 094902(2006).

Rimai, L.

A. Samman, S. Gebremariam, L. Rimai, X. Zhang, J. Hangas, and G. W. Auner, “Silicon-carbide MOS capacitors with laser-ablated Pt gate as combustible gas sensors,” Sens. Actuators B 63, 91-102 (2000).

Rottner, K.

A. Schöner, N. Nordell, K. Rottner, R. Helbig, and G. Pensl, “Dependence of the aluminum ionization energy on doping concentration and compensation in 6H-SiC,” Inst. Phys. Conf. Ser. 142, 493-496 (1996).

Salomonsson, P.

A. L. Spetz, L. Uneus, H. Svennningstorp, P. Tobias, L. G. Ekedahl, O. Larsson, A. Goras, S. Savage, C. Harris, P. Martensson, R. Wigren, P. Salomonsson, B. Haggendahl, P. Ljung, M. Mattsson, and I. Lundstrom, “SiC based field effect gas sensors for industrial applications,” Phys. Status Solidi A 185, 15-25 (2001).
[CrossRef]

Samman, A.

A. Samman, S. Gebremariam, L. Rimai, X. Zhang, J. Hangas, and G. W. Auner, “Silicon-carbide MOS capacitors with laser-ablated Pt gate as combustible gas sensors,” Sens. Actuators B 63, 91-102 (2000).

Sandvik, P.

K. Matocha, V. Tilak, P. Sandvik, and J. Tucker, “High-temperature SiC MOSFET gas sensors,” Mater. Res. Soc. Symp. Proc. 828, A7.9.1-A7.9.6 (2005).

Saraji, M.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44, 699-710 (2006).

Savage, S.

A. L. Spetz, L. Uneus, H. Svennningstorp, P. Tobias, L. G. Ekedahl, O. Larsson, A. Goras, S. Savage, C. Harris, P. Martensson, R. Wigren, P. Salomonsson, B. Haggendahl, P. Ljung, M. Mattsson, and I. Lundstrom, “SiC based field effect gas sensors for industrial applications,” Phys. Status Solidi A 185, 15-25 (2001).
[CrossRef]

Schade, W.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44, 699-710 (2006).

Schoner, A.

T. Troffer, G. Pensl, A. Schoner, A. Henry, C. Hallin, O. Kordina, and E. Janzen, “Electrical characterization of gallium acceptor in 6H SiC,” Mater. Sci. Forum 557, 264-268 (1998).

Schöner, A.

A. Schöner, N. Nordell, K. Rottner, R. Helbig, and G. Pensl, “Dependence of the aluminum ionization energy on doping concentration and compensation in 6H-SiC,” Inst. Phys. Conf. Ser. 142, 493-496 (1996).

Sorokin, E.

H. Herbin, N. Picque, G. Guelachvili, E. Sorokin, and I. Sorokina, “N2O weak lines observed between 3900 and 4050 cm−1 from long path absorption spectra,” J. Mol. Spectrosc. 238, 256-259 (2006).
[CrossRef]

Sorokina, I.

H. Herbin, N. Picque, G. Guelachvili, E. Sorokin, and I. Sorokina, “N2O weak lines observed between 3900 and 4050 cm−1 from long path absorption spectra,” J. Mol. Spectrosc. 238, 256-259 (2006).
[CrossRef]

Spetz, A. L.

A. L. Spetz, L. Uneus, H. Svennningstorp, P. Tobias, L. G. Ekedahl, O. Larsson, A. Goras, S. Savage, C. Harris, P. Martensson, R. Wigren, P. Salomonsson, B. Haggendahl, P. Ljung, M. Mattsson, and I. Lundstrom, “SiC based field effect gas sensors for industrial applications,” Phys. Status Solidi A 185, 15-25 (2001).
[CrossRef]

A. L. Spetz, P. Tobias, L. Uneus, H. Svenningstorp, L. Ekedahl, and I. Lundstrom, “High temperature catalytic metal field effect transistors for industrial applications,” Sens. Actuators B 70, 67-76 (2000).

Svenningstorp, H.

A. L. Spetz, P. Tobias, L. Uneus, H. Svenningstorp, L. Ekedahl, and I. Lundstrom, “High temperature catalytic metal field effect transistors for industrial applications,” Sens. Actuators B 70, 67-76 (2000).

Svennningstorp, H.

A. L. Spetz, L. Uneus, H. Svennningstorp, P. Tobias, L. G. Ekedahl, O. Larsson, A. Goras, S. Savage, C. Harris, P. Martensson, R. Wigren, P. Salomonsson, B. Haggendahl, P. Ljung, M. Mattsson, and I. Lundstrom, “SiC based field effect gas sensors for industrial applications,” Phys. Status Solidi A 185, 15-25 (2001).
[CrossRef]

Tilak, V.

K. Matocha, V. Tilak, P. Sandvik, and J. Tucker, “High-temperature SiC MOSFET gas sensors,” Mater. Res. Soc. Symp. Proc. 828, A7.9.1-A7.9.6 (2005).

Tobias, P.

P. Tobias, B. Golding, and R. Ghosh, “Interface states in high temperature gas sensors based on SiC,” IEEE Sens. J. 3, 543-547 (2003).
[CrossRef]

A. L. Spetz, L. Uneus, H. Svennningstorp, P. Tobias, L. G. Ekedahl, O. Larsson, A. Goras, S. Savage, C. Harris, P. Martensson, R. Wigren, P. Salomonsson, B. Haggendahl, P. Ljung, M. Mattsson, and I. Lundstrom, “SiC based field effect gas sensors for industrial applications,” Phys. Status Solidi A 185, 15-25 (2001).
[CrossRef]

A. L. Spetz, P. Tobias, L. Uneus, H. Svenningstorp, L. Ekedahl, and I. Lundstrom, “High temperature catalytic metal field effect transistors for industrial applications,” Sens. Actuators B 70, 67-76 (2000).

Troffer, T.

T. Troffer, G. Pensl, A. Schoner, A. Henry, C. Hallin, O. Kordina, and E. Janzen, “Electrical characterization of gallium acceptor in 6H SiC,” Mater. Sci. Forum 557, 264-268 (1998).

Tucker, J.

K. Matocha, V. Tilak, P. Sandvik, and J. Tucker, “High-temperature SiC MOSFET gas sensors,” Mater. Res. Soc. Symp. Proc. 828, A7.9.1-A7.9.6 (2005).

Uneus, L.

A. L. Spetz, L. Uneus, H. Svennningstorp, P. Tobias, L. G. Ekedahl, O. Larsson, A. Goras, S. Savage, C. Harris, P. Martensson, R. Wigren, P. Salomonsson, B. Haggendahl, P. Ljung, M. Mattsson, and I. Lundstrom, “SiC based field effect gas sensors for industrial applications,” Phys. Status Solidi A 185, 15-25 (2001).
[CrossRef]

A. L. Spetz, P. Tobias, L. Uneus, H. Svenningstorp, L. Ekedahl, and I. Lundstrom, “High temperature catalytic metal field effect transistors for industrial applications,” Sens. Actuators B 70, 67-76 (2000).

Wigren, R.

A. L. Spetz, L. Uneus, H. Svennningstorp, P. Tobias, L. G. Ekedahl, O. Larsson, A. Goras, S. Savage, C. Harris, P. Martensson, R. Wigren, P. Salomonsson, B. Haggendahl, P. Ljung, M. Mattsson, and I. Lundstrom, “SiC based field effect gas sensors for industrial applications,” Phys. Status Solidi A 185, 15-25 (2001).
[CrossRef]

Willer, U.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44, 699-710 (2006).

Williams, J. R.

R. N. Ghosh, R. Loloee, T. Isaacs-Smith, and J. R. Williams, “High temperature reliability of SiC n-MOS devices up to 630°C,” Mater. Sci. Forum 527-529, 1039-1042 (2006).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge Univ. Press, 1999).

Wright, N. G.

N. G. Wright and A. B. Horsfall, “SiC sensors: a review,” J. Phys. D 40, 6345-6354 (2007).

Yokoi, H.

K. Nakashima, Y. Okuyama, S. Ando, O. Eryu, K. Abe, H. Yokoi, and T. Oshima, “A new type of SiC gas sensor with a pn-junction structure,” Mater. Sci. Forum 389-393, 1427-1430 (2002).
[CrossRef]

Zhang, X.

A. Samman, S. Gebremariam, L. Rimai, X. Zhang, J. Hangas, and G. W. Auner, “Silicon-carbide MOS capacitors with laser-ablated Pt gate as combustible gas sensors,” Sens. Actuators B 63, 91-102 (2000).

Acta Mater. (1)

S. Bet, N. R. Quick, and A. Kar, “Laser doping of chromium as a double acceptor in silicon carbide with reduced crystalline damage and nearly all dopants in activated state,” Acta Mater. 56, 21611867 (2008).
[CrossRef]

IEEE Sens. J. (1)

P. Tobias, B. Golding, and R. Ghosh, “Interface states in high temperature gas sensors based on SiC,” IEEE Sens. J. 3, 543-547 (2003).
[CrossRef]

Inst. Phys. Conf. Ser. (1)

A. Schöner, N. Nordell, K. Rottner, R. Helbig, and G. Pensl, “Dependence of the aluminum ionization energy on doping concentration and compensation in 6H-SiC,” Inst. Phys. Conf. Ser. 142, 493-496 (1996).

J. App. Phys. (1)

S. Dakshinamurthy, N. R. Quick, and A. Kar, “SiC-based optical interferometry at high pressure and temperature for pressure and chemical sensing,” J. App. Phys. 99, 094902(2006).

J. Appl. Phys. (1)

A. Chakravarty, N. Quick, and A. Kar, “Decoupling of silicon carbide optical sensor response for temperature and pressure measurements,” J. Appl. Phys. 102, 073111 (2007).
[CrossRef]

J. Mol. Spectrosc. (1)

H. Herbin, N. Picque, G. Guelachvili, E. Sorokin, and I. Sorokina, “N2O weak lines observed between 3900 and 4050 cm−1 from long path absorption spectra,” J. Mol. Spectrosc. 238, 256-259 (2006).
[CrossRef]

J. Phys. D (2)

S. Dakshinamurthy, N. R. Quick, and A. Kar, “Temperature-dependent optical properties of silicon carbide for wireless temperature sensors,” J. Phys. D 40, 353-360 (2007).

N. G. Wright and A. B. Horsfall, “SiC sensors: a review,” J. Phys. D 40, 6345-6354 (2007).

Mater. Res. Soc. Symp. Proc. (1)

K. Matocha, V. Tilak, P. Sandvik, and J. Tucker, “High-temperature SiC MOSFET gas sensors,” Mater. Res. Soc. Symp. Proc. 828, A7.9.1-A7.9.6 (2005).

Mater. Sci. Forum (3)

K. Nakashima, Y. Okuyama, S. Ando, O. Eryu, K. Abe, H. Yokoi, and T. Oshima, “A new type of SiC gas sensor with a pn-junction structure,” Mater. Sci. Forum 389-393, 1427-1430 (2002).
[CrossRef]

R. N. Ghosh, R. Loloee, T. Isaacs-Smith, and J. R. Williams, “High temperature reliability of SiC n-MOS devices up to 630°C,” Mater. Sci. Forum 527-529, 1039-1042 (2006).
[CrossRef]

T. Troffer, G. Pensl, A. Schoner, A. Henry, C. Hallin, O. Kordina, and E. Janzen, “Electrical characterization of gallium acceptor in 6H SiC,” Mater. Sci. Forum 557, 264-268 (1998).

Opt. Lasers Eng. (1)

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44, 699-710 (2006).

Phys. Status Solidi A (1)

A. L. Spetz, L. Uneus, H. Svennningstorp, P. Tobias, L. G. Ekedahl, O. Larsson, A. Goras, S. Savage, C. Harris, P. Martensson, R. Wigren, P. Salomonsson, B. Haggendahl, P. Ljung, M. Mattsson, and I. Lundstrom, “SiC based field effect gas sensors for industrial applications,” Phys. Status Solidi A 185, 15-25 (2001).
[CrossRef]

Rev. Sci. Instrum. (1)

A. J. de Castro, J. Meneses, S. Briz, and F. Lopez, “Nondispersive infrared monitoring of NO emissions in exhaust gases of vehicles,” Rev. Sci. Instrum. 70, 3156-3159 (1999).
[CrossRef]

Semiconductors (1)

A. A. Lebedev, “Deep level centers in silicon carbide: a review,” Semiconductors 33, 107-130 (1999).
[CrossRef]

Sens. Actuators B (3)

A. L. Spetz, P. Tobias, L. Uneus, H. Svenningstorp, L. Ekedahl, and I. Lundstrom, “High temperature catalytic metal field effect transistors for industrial applications,” Sens. Actuators B 70, 67-76 (2000).

A. Samman, S. Gebremariam, L. Rimai, X. Zhang, J. Hangas, and G. W. Auner, “Silicon-carbide MOS capacitors with laser-ablated Pt gate as combustible gas sensors,” Sens. Actuators B 63, 91-102 (2000).

C. K. Kim, J. H. Lee, Y. H. Lee, N. I. Cho, and D. J. Kim, “A study on a platinum-silicon carbide Schottky diode as a hydrogen gas sensor,” Sens. Actuators B 66, 116-118 (2000).

Other (5)

P. Tobias, H. Hui, M. Koochesfahani, and R. N. Ghosh, “Millisecond response time measurements of high temperature gas sensors,” in IEEE Sensors 2004 (IEEE, 2004), pp. 24-27.

A. A. Lebedev, “Deep-level defects in SiC materials and devices,” in Silicon Carbide: Materials, Processing, and Devices, Z. C. Feng and J. H. Zhao, eds. Vol. 20 in series on Optoelectronic Properties of Semiconductors and Superlattices (Taylor & Francis, 2004), Chap. 4, pp. 121-163 .

E. Hecht, Optics (Pearson Education, 2002), pp. 113-121, 426-427.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge Univ. Press, 1999).

Z. Li and R. C. Bradt, “Thermal expansion and elastic anisotropies of SiC as related to polytype structure,” in Silicon Carbide '87: Proceedings of the Silicon Carbide 1987 Symposium (American Ceramic Society,1989), pp. 313-339.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics