Abstract

Optical emission spectroscopy (OES) and spectroscopic temperature determination were carried out to study C2H4/C2H2/O2 flames used for diamond deposition with and without an excitation by a wavelength-tunable CO2 laser. Strong emissions from C2 and CH radicals were observed in the visible range in all the acquired OES spectra. When the flames were irradiated by using a continuous-wave (CW) CO2 laser at a wavelength of 10.591μm, the emission intensities of the C2 and CH radicals in the flames increased owing to the laser excitation. The CO2 laser was also tuned to a wavelength of 10.532μm to precisely match the resonant frequency of the CH2-wagging vibrational mode of the C2H4 molecules. OES spectroscopy of the C2 and CH radicals were performed at different laser powers. The rotational temperatures of CH radicals in the flames were determined by analyzing the spectra of the R branch of the A2ΔX2Π (0,0) electronic transition near 430nm. The deposited diamond thin-films were characterized by scanning electron microscopy, stylus profilometry, and Raman spectroscopy. The deposition mechanism with and without the CO2 laser excitation was discussed based on the OES spectral results.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. A. Yarbrough and R. Messier, “Current issues and problems in the chemical vapor deposition of diamond,” Science 247, 688-696 (1990).
    [CrossRef]
  2. J. C. Angus and C. C. Hayman, “Low-pressure, metastable growth of diamond and 'diamondlike' phases,” Science 241, 913-921 (1988).
    [CrossRef]
  3. D. Das and R. N. Singh, “A review of nucleation, growth and low temperature synthesis of diamond thin films,” Int. Mater. Rev. 52(1), 29-64 (2007).
    [CrossRef]
  4. Y. Hirose, 1st International Conference on the New Diamond Science and Technology, R. Roy, R. Messier, J. E. Butler, and J. T. Glass, eds. (Materials Research Society, 1988), p 38.
  5. Y. Hirose, S. Amanuma, and K. Komaki, “The synthesis of high-quality diamond in combustion flames,” J. Appl. Phys. 68, 6401-6405 (1990).
    [CrossRef]
  6. K. Tanabe, Y. Nishibayashi, T. Imai., A. Ikegaya, and N. Fujimori, “Deposition of diamond film from the O2--CH4 system,” in Science and Technology of New Diamond, S. Saito, O. Fukunaga, and M. Yoshikawa, eds. (KTK Scientific Publishers/Terra Scientific Publishing Company, 1990), pp. 71-77.
  7. J. S. Kim and M. A. Cappelli, “Temperature measurements in low-pressure, diamond-forming, premixed flames,” J. Appl. Phys. 84, 4595-4602 (1998).
    [CrossRef]
  8. M. D. Welter and K. L. Menningen, “Radical density measurements in an oxyacetylene torch diamond growth flame,” J. Appl. Phys. 82, 1900-1904 (1997).
    [CrossRef]
  9. S. J. Firchow and K. L. Menningen, “Radical density measurements in an atmospheric pressure oxyacetylene torch,” J. Phys. D 32, 937-941 (1999).
  10. S. Roy, J. DuBois, R. P. Lucht, and N. G. Glumac, “Hydroxyl radical concentration measurements near the deposition substrate in low-pressure diamond-forming flames,” Combust. Flame 138, 285-294 (2004).
    [CrossRef]
  11. A. G. Gaydon, The Spectroscopy of Flames (Chapman & Hall, 1957).
  12. S. Pellerin, J. Koulidiati, O. Motret, K. Musiol, M. de Graaf, B. Pokrzwka, and J. Chapelle, “Temperature determination using molecular spectra simulation,” High Temp. Mater. Processes 1, 493-509 (1997).
  13. C. de Izarra, “UV OH spectrum used as a molecular pyrometer,” J. Phys. D 33, 1697-1704 (2000).
  14. S. Pellerin, K. Musiol, O. Motret, B. Pokrzywka, and J. Chapelle, “Application of (0,0) Swan band spectrum of C2 for temperature measurement,” J. Phys. D 29, 2850-2865(1996).
  15. J. S. Kim and M. A. Cappelli, “Diamond film growth in low pressure premixed ethylene-oxygen flames,” Appl. Phys. Lett. 65, 2786 (1994).
    [CrossRef]
  16. J. Asmussen and D. Reinhard, Diamond Film Handbook (Marcel Dekker, Inc., New York, 2002), pp. 303-304.
  17. S. Y. Moon and W. Choe, “A comparative study of rotational temperatures using diatomic OH, O2, and N2+ molecular spectra emitted from atmospheric plasmas,” Spectrochim. Acta Part B 58, 249-257 (2003).
  18. G. Herzberg, Molecular Spectra and Molecular Structure (Litton Educational, 1950), pp. 465-472.
  19. I. Kovacs, Rotational Structure in the Spectra of Diatomic Molecules (American Elsevier, 1969), pp. 115-135.
  20. J. H. Walker, R. D. Saunders, and A. T. Hattenburg, “Spectral radiance calibrations,” NBS Special Publication 250-1(National Bureau of Standards, 1987).
  21. F. Tuinstra and J. L. Koenig, “Raman spectrum of graphite,” J. Chem. Phys. 53, 1126-1130 (1970).
    [CrossRef]
  22. R. J. Nemanich, J. T. Glass, G. Lucovsky, and R. E. Shroder, “Raman scattering characterization of carbon bonding in diamond and diamondlike thin films,” J. Vac. Sci. Technol. A 6, 1783 (1988).
    [CrossRef]
  23. R. E. Shroder, R. J. Nemanich, and J. T. Glass, “Analysis of the composite structures in diamond thin films by Raman spectroscopy,” Phys. Rev. B 41, 3738-3745 (1990).

2007 (1)

D. Das and R. N. Singh, “A review of nucleation, growth and low temperature synthesis of diamond thin films,” Int. Mater. Rev. 52(1), 29-64 (2007).
[CrossRef]

2004 (1)

S. Roy, J. DuBois, R. P. Lucht, and N. G. Glumac, “Hydroxyl radical concentration measurements near the deposition substrate in low-pressure diamond-forming flames,” Combust. Flame 138, 285-294 (2004).
[CrossRef]

2003 (1)

S. Y. Moon and W. Choe, “A comparative study of rotational temperatures using diatomic OH, O2, and N2+ molecular spectra emitted from atmospheric plasmas,” Spectrochim. Acta Part B 58, 249-257 (2003).

2000 (1)

C. de Izarra, “UV OH spectrum used as a molecular pyrometer,” J. Phys. D 33, 1697-1704 (2000).

1999 (1)

S. J. Firchow and K. L. Menningen, “Radical density measurements in an atmospheric pressure oxyacetylene torch,” J. Phys. D 32, 937-941 (1999).

1998 (1)

J. S. Kim and M. A. Cappelli, “Temperature measurements in low-pressure, diamond-forming, premixed flames,” J. Appl. Phys. 84, 4595-4602 (1998).
[CrossRef]

1997 (2)

M. D. Welter and K. L. Menningen, “Radical density measurements in an oxyacetylene torch diamond growth flame,” J. Appl. Phys. 82, 1900-1904 (1997).
[CrossRef]

S. Pellerin, J. Koulidiati, O. Motret, K. Musiol, M. de Graaf, B. Pokrzwka, and J. Chapelle, “Temperature determination using molecular spectra simulation,” High Temp. Mater. Processes 1, 493-509 (1997).

1996 (1)

S. Pellerin, K. Musiol, O. Motret, B. Pokrzywka, and J. Chapelle, “Application of (0,0) Swan band spectrum of C2 for temperature measurement,” J. Phys. D 29, 2850-2865(1996).

1994 (1)

J. S. Kim and M. A. Cappelli, “Diamond film growth in low pressure premixed ethylene-oxygen flames,” Appl. Phys. Lett. 65, 2786 (1994).
[CrossRef]

1990 (3)

R. E. Shroder, R. J. Nemanich, and J. T. Glass, “Analysis of the composite structures in diamond thin films by Raman spectroscopy,” Phys. Rev. B 41, 3738-3745 (1990).

Y. Hirose, S. Amanuma, and K. Komaki, “The synthesis of high-quality diamond in combustion flames,” J. Appl. Phys. 68, 6401-6405 (1990).
[CrossRef]

W. A. Yarbrough and R. Messier, “Current issues and problems in the chemical vapor deposition of diamond,” Science 247, 688-696 (1990).
[CrossRef]

1988 (2)

J. C. Angus and C. C. Hayman, “Low-pressure, metastable growth of diamond and 'diamondlike' phases,” Science 241, 913-921 (1988).
[CrossRef]

R. J. Nemanich, J. T. Glass, G. Lucovsky, and R. E. Shroder, “Raman scattering characterization of carbon bonding in diamond and diamondlike thin films,” J. Vac. Sci. Technol. A 6, 1783 (1988).
[CrossRef]

1970 (1)

F. Tuinstra and J. L. Koenig, “Raman spectrum of graphite,” J. Chem. Phys. 53, 1126-1130 (1970).
[CrossRef]

Amanuma, S.

Y. Hirose, S. Amanuma, and K. Komaki, “The synthesis of high-quality diamond in combustion flames,” J. Appl. Phys. 68, 6401-6405 (1990).
[CrossRef]

Angus, J. C.

J. C. Angus and C. C. Hayman, “Low-pressure, metastable growth of diamond and 'diamondlike' phases,” Science 241, 913-921 (1988).
[CrossRef]

Asmussen, J.

J. Asmussen and D. Reinhard, Diamond Film Handbook (Marcel Dekker, Inc., New York, 2002), pp. 303-304.

Cappelli, M. A.

J. S. Kim and M. A. Cappelli, “Temperature measurements in low-pressure, diamond-forming, premixed flames,” J. Appl. Phys. 84, 4595-4602 (1998).
[CrossRef]

J. S. Kim and M. A. Cappelli, “Diamond film growth in low pressure premixed ethylene-oxygen flames,” Appl. Phys. Lett. 65, 2786 (1994).
[CrossRef]

Chapelle, J.

S. Pellerin, J. Koulidiati, O. Motret, K. Musiol, M. de Graaf, B. Pokrzwka, and J. Chapelle, “Temperature determination using molecular spectra simulation,” High Temp. Mater. Processes 1, 493-509 (1997).

S. Pellerin, K. Musiol, O. Motret, B. Pokrzywka, and J. Chapelle, “Application of (0,0) Swan band spectrum of C2 for temperature measurement,” J. Phys. D 29, 2850-2865(1996).

Choe, W.

S. Y. Moon and W. Choe, “A comparative study of rotational temperatures using diatomic OH, O2, and N2+ molecular spectra emitted from atmospheric plasmas,” Spectrochim. Acta Part B 58, 249-257 (2003).

Das, D.

D. Das and R. N. Singh, “A review of nucleation, growth and low temperature synthesis of diamond thin films,” Int. Mater. Rev. 52(1), 29-64 (2007).
[CrossRef]

de Graaf, M.

S. Pellerin, J. Koulidiati, O. Motret, K. Musiol, M. de Graaf, B. Pokrzwka, and J. Chapelle, “Temperature determination using molecular spectra simulation,” High Temp. Mater. Processes 1, 493-509 (1997).

de Izarra, C.

C. de Izarra, “UV OH spectrum used as a molecular pyrometer,” J. Phys. D 33, 1697-1704 (2000).

DuBois, J.

S. Roy, J. DuBois, R. P. Lucht, and N. G. Glumac, “Hydroxyl radical concentration measurements near the deposition substrate in low-pressure diamond-forming flames,” Combust. Flame 138, 285-294 (2004).
[CrossRef]

Firchow, S. J.

S. J. Firchow and K. L. Menningen, “Radical density measurements in an atmospheric pressure oxyacetylene torch,” J. Phys. D 32, 937-941 (1999).

Fujimori, N.

K. Tanabe, Y. Nishibayashi, T. Imai., A. Ikegaya, and N. Fujimori, “Deposition of diamond film from the O2--CH4 system,” in Science and Technology of New Diamond, S. Saito, O. Fukunaga, and M. Yoshikawa, eds. (KTK Scientific Publishers/Terra Scientific Publishing Company, 1990), pp. 71-77.

Gaydon, A. G.

A. G. Gaydon, The Spectroscopy of Flames (Chapman & Hall, 1957).

Glass, J. T.

R. E. Shroder, R. J. Nemanich, and J. T. Glass, “Analysis of the composite structures in diamond thin films by Raman spectroscopy,” Phys. Rev. B 41, 3738-3745 (1990).

R. J. Nemanich, J. T. Glass, G. Lucovsky, and R. E. Shroder, “Raman scattering characterization of carbon bonding in diamond and diamondlike thin films,” J. Vac. Sci. Technol. A 6, 1783 (1988).
[CrossRef]

Glumac, N. G.

S. Roy, J. DuBois, R. P. Lucht, and N. G. Glumac, “Hydroxyl radical concentration measurements near the deposition substrate in low-pressure diamond-forming flames,” Combust. Flame 138, 285-294 (2004).
[CrossRef]

Hattenburg, A. T.

J. H. Walker, R. D. Saunders, and A. T. Hattenburg, “Spectral radiance calibrations,” NBS Special Publication 250-1(National Bureau of Standards, 1987).

Hayman, C. C.

J. C. Angus and C. C. Hayman, “Low-pressure, metastable growth of diamond and 'diamondlike' phases,” Science 241, 913-921 (1988).
[CrossRef]

Herzberg, G.

G. Herzberg, Molecular Spectra and Molecular Structure (Litton Educational, 1950), pp. 465-472.

Hirose, Y.

Y. Hirose, S. Amanuma, and K. Komaki, “The synthesis of high-quality diamond in combustion flames,” J. Appl. Phys. 68, 6401-6405 (1990).
[CrossRef]

Y. Hirose, 1st International Conference on the New Diamond Science and Technology, R. Roy, R. Messier, J. E. Butler, and J. T. Glass, eds. (Materials Research Society, 1988), p 38.

Ikegaya, A.

K. Tanabe, Y. Nishibayashi, T. Imai., A. Ikegaya, and N. Fujimori, “Deposition of diamond film from the O2--CH4 system,” in Science and Technology of New Diamond, S. Saito, O. Fukunaga, and M. Yoshikawa, eds. (KTK Scientific Publishers/Terra Scientific Publishing Company, 1990), pp. 71-77.

Imai., T.

K. Tanabe, Y. Nishibayashi, T. Imai., A. Ikegaya, and N. Fujimori, “Deposition of diamond film from the O2--CH4 system,” in Science and Technology of New Diamond, S. Saito, O. Fukunaga, and M. Yoshikawa, eds. (KTK Scientific Publishers/Terra Scientific Publishing Company, 1990), pp. 71-77.

Kim, J. S.

J. S. Kim and M. A. Cappelli, “Temperature measurements in low-pressure, diamond-forming, premixed flames,” J. Appl. Phys. 84, 4595-4602 (1998).
[CrossRef]

J. S. Kim and M. A. Cappelli, “Diamond film growth in low pressure premixed ethylene-oxygen flames,” Appl. Phys. Lett. 65, 2786 (1994).
[CrossRef]

Koenig, J. L.

F. Tuinstra and J. L. Koenig, “Raman spectrum of graphite,” J. Chem. Phys. 53, 1126-1130 (1970).
[CrossRef]

Komaki, K.

Y. Hirose, S. Amanuma, and K. Komaki, “The synthesis of high-quality diamond in combustion flames,” J. Appl. Phys. 68, 6401-6405 (1990).
[CrossRef]

Koulidiati, J.

S. Pellerin, J. Koulidiati, O. Motret, K. Musiol, M. de Graaf, B. Pokrzwka, and J. Chapelle, “Temperature determination using molecular spectra simulation,” High Temp. Mater. Processes 1, 493-509 (1997).

Kovacs, I.

I. Kovacs, Rotational Structure in the Spectra of Diatomic Molecules (American Elsevier, 1969), pp. 115-135.

Lucht, R. P.

S. Roy, J. DuBois, R. P. Lucht, and N. G. Glumac, “Hydroxyl radical concentration measurements near the deposition substrate in low-pressure diamond-forming flames,” Combust. Flame 138, 285-294 (2004).
[CrossRef]

Lucovsky, G.

R. J. Nemanich, J. T. Glass, G. Lucovsky, and R. E. Shroder, “Raman scattering characterization of carbon bonding in diamond and diamondlike thin films,” J. Vac. Sci. Technol. A 6, 1783 (1988).
[CrossRef]

Menningen, K. L.

S. J. Firchow and K. L. Menningen, “Radical density measurements in an atmospheric pressure oxyacetylene torch,” J. Phys. D 32, 937-941 (1999).

M. D. Welter and K. L. Menningen, “Radical density measurements in an oxyacetylene torch diamond growth flame,” J. Appl. Phys. 82, 1900-1904 (1997).
[CrossRef]

Messier, R.

W. A. Yarbrough and R. Messier, “Current issues and problems in the chemical vapor deposition of diamond,” Science 247, 688-696 (1990).
[CrossRef]

Moon, S. Y.

S. Y. Moon and W. Choe, “A comparative study of rotational temperatures using diatomic OH, O2, and N2+ molecular spectra emitted from atmospheric plasmas,” Spectrochim. Acta Part B 58, 249-257 (2003).

Motret, O.

S. Pellerin, J. Koulidiati, O. Motret, K. Musiol, M. de Graaf, B. Pokrzwka, and J. Chapelle, “Temperature determination using molecular spectra simulation,” High Temp. Mater. Processes 1, 493-509 (1997).

S. Pellerin, K. Musiol, O. Motret, B. Pokrzywka, and J. Chapelle, “Application of (0,0) Swan band spectrum of C2 for temperature measurement,” J. Phys. D 29, 2850-2865(1996).

Musiol, K.

S. Pellerin, J. Koulidiati, O. Motret, K. Musiol, M. de Graaf, B. Pokrzwka, and J. Chapelle, “Temperature determination using molecular spectra simulation,” High Temp. Mater. Processes 1, 493-509 (1997).

S. Pellerin, K. Musiol, O. Motret, B. Pokrzywka, and J. Chapelle, “Application of (0,0) Swan band spectrum of C2 for temperature measurement,” J. Phys. D 29, 2850-2865(1996).

Nemanich, R. J.

R. E. Shroder, R. J. Nemanich, and J. T. Glass, “Analysis of the composite structures in diamond thin films by Raman spectroscopy,” Phys. Rev. B 41, 3738-3745 (1990).

R. J. Nemanich, J. T. Glass, G. Lucovsky, and R. E. Shroder, “Raman scattering characterization of carbon bonding in diamond and diamondlike thin films,” J. Vac. Sci. Technol. A 6, 1783 (1988).
[CrossRef]

Nishibayashi, Y.

K. Tanabe, Y. Nishibayashi, T. Imai., A. Ikegaya, and N. Fujimori, “Deposition of diamond film from the O2--CH4 system,” in Science and Technology of New Diamond, S. Saito, O. Fukunaga, and M. Yoshikawa, eds. (KTK Scientific Publishers/Terra Scientific Publishing Company, 1990), pp. 71-77.

Pellerin, S.

S. Pellerin, J. Koulidiati, O. Motret, K. Musiol, M. de Graaf, B. Pokrzwka, and J. Chapelle, “Temperature determination using molecular spectra simulation,” High Temp. Mater. Processes 1, 493-509 (1997).

S. Pellerin, K. Musiol, O. Motret, B. Pokrzywka, and J. Chapelle, “Application of (0,0) Swan band spectrum of C2 for temperature measurement,” J. Phys. D 29, 2850-2865(1996).

Pokrzwka, B.

S. Pellerin, J. Koulidiati, O. Motret, K. Musiol, M. de Graaf, B. Pokrzwka, and J. Chapelle, “Temperature determination using molecular spectra simulation,” High Temp. Mater. Processes 1, 493-509 (1997).

Pokrzywka, B.

S. Pellerin, K. Musiol, O. Motret, B. Pokrzywka, and J. Chapelle, “Application of (0,0) Swan band spectrum of C2 for temperature measurement,” J. Phys. D 29, 2850-2865(1996).

Reinhard, D.

J. Asmussen and D. Reinhard, Diamond Film Handbook (Marcel Dekker, Inc., New York, 2002), pp. 303-304.

Roy, S.

S. Roy, J. DuBois, R. P. Lucht, and N. G. Glumac, “Hydroxyl radical concentration measurements near the deposition substrate in low-pressure diamond-forming flames,” Combust. Flame 138, 285-294 (2004).
[CrossRef]

Saunders, R. D.

J. H. Walker, R. D. Saunders, and A. T. Hattenburg, “Spectral radiance calibrations,” NBS Special Publication 250-1(National Bureau of Standards, 1987).

Shroder, R. E.

R. E. Shroder, R. J. Nemanich, and J. T. Glass, “Analysis of the composite structures in diamond thin films by Raman spectroscopy,” Phys. Rev. B 41, 3738-3745 (1990).

R. J. Nemanich, J. T. Glass, G. Lucovsky, and R. E. Shroder, “Raman scattering characterization of carbon bonding in diamond and diamondlike thin films,” J. Vac. Sci. Technol. A 6, 1783 (1988).
[CrossRef]

Singh, R. N.

D. Das and R. N. Singh, “A review of nucleation, growth and low temperature synthesis of diamond thin films,” Int. Mater. Rev. 52(1), 29-64 (2007).
[CrossRef]

Tanabe, K.

K. Tanabe, Y. Nishibayashi, T. Imai., A. Ikegaya, and N. Fujimori, “Deposition of diamond film from the O2--CH4 system,” in Science and Technology of New Diamond, S. Saito, O. Fukunaga, and M. Yoshikawa, eds. (KTK Scientific Publishers/Terra Scientific Publishing Company, 1990), pp. 71-77.

Tuinstra, F.

F. Tuinstra and J. L. Koenig, “Raman spectrum of graphite,” J. Chem. Phys. 53, 1126-1130 (1970).
[CrossRef]

Walker, J. H.

J. H. Walker, R. D. Saunders, and A. T. Hattenburg, “Spectral radiance calibrations,” NBS Special Publication 250-1(National Bureau of Standards, 1987).

Welter, M. D.

M. D. Welter and K. L. Menningen, “Radical density measurements in an oxyacetylene torch diamond growth flame,” J. Appl. Phys. 82, 1900-1904 (1997).
[CrossRef]

Yarbrough, W. A.

W. A. Yarbrough and R. Messier, “Current issues and problems in the chemical vapor deposition of diamond,” Science 247, 688-696 (1990).
[CrossRef]

Appl. Phys. Lett. (1)

J. S. Kim and M. A. Cappelli, “Diamond film growth in low pressure premixed ethylene-oxygen flames,” Appl. Phys. Lett. 65, 2786 (1994).
[CrossRef]

Combust. Flame (1)

S. Roy, J. DuBois, R. P. Lucht, and N. G. Glumac, “Hydroxyl radical concentration measurements near the deposition substrate in low-pressure diamond-forming flames,” Combust. Flame 138, 285-294 (2004).
[CrossRef]

High Temp. Mater. Processes (1)

S. Pellerin, J. Koulidiati, O. Motret, K. Musiol, M. de Graaf, B. Pokrzwka, and J. Chapelle, “Temperature determination using molecular spectra simulation,” High Temp. Mater. Processes 1, 493-509 (1997).

Int. Mater. Rev. (1)

D. Das and R. N. Singh, “A review of nucleation, growth and low temperature synthesis of diamond thin films,” Int. Mater. Rev. 52(1), 29-64 (2007).
[CrossRef]

J. Appl. Phys. (3)

Y. Hirose, S. Amanuma, and K. Komaki, “The synthesis of high-quality diamond in combustion flames,” J. Appl. Phys. 68, 6401-6405 (1990).
[CrossRef]

J. S. Kim and M. A. Cappelli, “Temperature measurements in low-pressure, diamond-forming, premixed flames,” J. Appl. Phys. 84, 4595-4602 (1998).
[CrossRef]

M. D. Welter and K. L. Menningen, “Radical density measurements in an oxyacetylene torch diamond growth flame,” J. Appl. Phys. 82, 1900-1904 (1997).
[CrossRef]

J. Chem. Phys. (1)

F. Tuinstra and J. L. Koenig, “Raman spectrum of graphite,” J. Chem. Phys. 53, 1126-1130 (1970).
[CrossRef]

J. Phys. D (3)

S. J. Firchow and K. L. Menningen, “Radical density measurements in an atmospheric pressure oxyacetylene torch,” J. Phys. D 32, 937-941 (1999).

C. de Izarra, “UV OH spectrum used as a molecular pyrometer,” J. Phys. D 33, 1697-1704 (2000).

S. Pellerin, K. Musiol, O. Motret, B. Pokrzywka, and J. Chapelle, “Application of (0,0) Swan band spectrum of C2 for temperature measurement,” J. Phys. D 29, 2850-2865(1996).

J. Vac. Sci. Technol. A (1)

R. J. Nemanich, J. T. Glass, G. Lucovsky, and R. E. Shroder, “Raman scattering characterization of carbon bonding in diamond and diamondlike thin films,” J. Vac. Sci. Technol. A 6, 1783 (1988).
[CrossRef]

Phys. Rev. B (1)

R. E. Shroder, R. J. Nemanich, and J. T. Glass, “Analysis of the composite structures in diamond thin films by Raman spectroscopy,” Phys. Rev. B 41, 3738-3745 (1990).

Science (2)

W. A. Yarbrough and R. Messier, “Current issues and problems in the chemical vapor deposition of diamond,” Science 247, 688-696 (1990).
[CrossRef]

J. C. Angus and C. C. Hayman, “Low-pressure, metastable growth of diamond and 'diamondlike' phases,” Science 241, 913-921 (1988).
[CrossRef]

Spectrochim. Acta Part B (1)

S. Y. Moon and W. Choe, “A comparative study of rotational temperatures using diatomic OH, O2, and N2+ molecular spectra emitted from atmospheric plasmas,” Spectrochim. Acta Part B 58, 249-257 (2003).

Other (7)

G. Herzberg, Molecular Spectra and Molecular Structure (Litton Educational, 1950), pp. 465-472.

I. Kovacs, Rotational Structure in the Spectra of Diatomic Molecules (American Elsevier, 1969), pp. 115-135.

J. H. Walker, R. D. Saunders, and A. T. Hattenburg, “Spectral radiance calibrations,” NBS Special Publication 250-1(National Bureau of Standards, 1987).

A. G. Gaydon, The Spectroscopy of Flames (Chapman & Hall, 1957).

Y. Hirose, 1st International Conference on the New Diamond Science and Technology, R. Roy, R. Messier, J. E. Butler, and J. T. Glass, eds. (Materials Research Society, 1988), p 38.

K. Tanabe, Y. Nishibayashi, T. Imai., A. Ikegaya, and N. Fujimori, “Deposition of diamond film from the O2--CH4 system,” in Science and Technology of New Diamond, S. Saito, O. Fukunaga, and M. Yoshikawa, eds. (KTK Scientific Publishers/Terra Scientific Publishing Company, 1990), pp. 71-77.

J. Asmussen and D. Reinhard, Diamond Film Handbook (Marcel Dekker, Inc., New York, 2002), pp. 303-304.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup for OES measurements. The inset image shows the structure of a flame in its unperturbed state and in the configuration used for diamond deposition. There are three distinct regions in a flame: (1) the inner flame, (2) the feather, and (3) the outer diffusion flame.

Fig. 2
Fig. 2

(a) R branch of the CH band used in calculations; (b) Boltzmann plot to obtain the rotational temperatures.

Fig. 3
Fig. 3

Optical images of the C 2 H 4 / C 2 H 2 / O 2 combustion flame with laser irradiations at (a) 10.591 and (b)  10.532 μm . Yellow bars represent WC substrate positions.

Fig. 4
Fig. 4

SEM microimages of diamond films with (a) no laser excitation, (b)  800 W 10.591 μm CO 2 laser excitation, and (c)  800 W 10.532 μm CO 2 laser excitation.

Fig. 5
Fig. 5

Stylus profiler graphs of deposited diamond films: (a) without CO 2 laser excitation, (b) with 800 W 10.591 μm CO 2 laser excitation, and (c) with 800 W 10.532 μm CO 2 laser excitation.

Fig. 6
Fig. 6

Raman spectra of diamond films with no laser excitation, 10.591 μm CO 2 laser excitation, and 10.532 μm CO 2 laser excitation.

Fig. 7
Fig. 7

Series of optical emission spectra of C 2 H 4 / C 2 H 2 / O 2 combustion-flame excited by 0, 200, 400, 600, 800, and 1000 W CO 2 laser emission at a wavelength of (a) 10.591 and (b)  10.532 μm .

Fig. 8
Fig. 8

(a) CH rotational temperature distributions along the flame feather vertical direction with and without CO 2 laser excitation; (b) optical emission intensity distributions of CH radical (centered at 431 nm ) along the flame feather vertical direction.

Fig. 9
Fig. 9

CH rotational temperatures at different CO 2 laser powers for C 2 H 4 / C 2 H 2 / O 2 combustion flames with (a) 10.591 and (b)  10.532 μm CO 2 laser excitations.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I = C S J J λ 4 exp ( E J k B T r ) .
ln ( I λ 4 / S J J ) = 1 T r E J k B + ln C .

Metrics