Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Dynamic recalibration of scalable fringe-projection systems for large-scale object metrology

Not Accessible

Your library or personal account may give you access

Abstract

Three-dimensional (3D) surface shape measurement is a vital component in many industrial processes. The subject has developed significantly over recent years and a number of mainly noncontact techniques now exist for surface measurement, exhibiting varying levels of maturity. Within the larger group of 3D measurement techniques, one of the most promising approaches is provided by those methods that are based upon fringe analysis. Current techniques mainly focus on the measurement of small and medium-scale objects, while work on the measurement of larger objects is not so well developed. One potential solution for the measurement of large objects that has been proposed by various researchers is the concept of performing multipanel measurement and the system proposed here uses this basic approach, but in a flexible form of a single moveable sensor head that would be cost effective for measuring very large objects. Most practical surface measurement techniques require the inclusion of a calibration stage to ensure accurate measurements. In the case of fringe analysis techniques, phase-to-height calibration is required, which includes the use of phase-to-height models. Most existing models (both analytical and empirical) are intended to be used in a static measurement mode, which means that, typically, a single calibration is performed prior to multiple measurements being made using an unvarying system geometry. However, multipanel measurement strategies do not necessarily keep the measurement system geometry constant and thus require dynamic recalibration. To solve the problem of dynamic recalibration, we propose a class of models called hybrid models. These hybrid models inherit the basic form of analytical models, but their coefficients are obtained in an empirical manner. The paper also discusses issues associated with all phase-to-height models used in fringe analysis that have a quotient form, identifying points of uncertainty and regions of distortion as issues affecting accuracy in phase maps produced in this manner.

© 2010 Optical Society of America

Full Article  |  PDF Article
More Like This
Color fringe-projected technique for measuring dynamic objects based on bidimensional empirical mode decomposition

Hai-hua Zou, Xiang Zhou, Hong Zhao, Tao Yang, Hu-bing Du, Fei-fei Gu, and Zi-xin Zhao
Appl. Opt. 51(16) 3622-3630 (2012)

Snapshot color fringe projection for absolute three-dimensional metrology of video sequences

Zonghua Zhang, David P. Towers, and Catherine E. Towers
Appl. Opt. 49(31) 5947-5953 (2010)

Uneven fringe projection for efficient calibration in high-resolution 3D shape metrology

Zonghua Zhang, Catherine E. Towers, and David P. Towers
Appl. Opt. 46(24) 6113-6119 (2007)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (26)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.