Abstract

We experimentally observe magnetic resonance in the visible frequency region from self-assembled silver nanocluster metamaterials. Extensive numerical modeling studies were conducted to find the optimal nanocluster dimensions. Self-assembly of silver nanoparticles coated with nanoscale silica coating was then performed on polymer templates fabricated by laser interference lithography. The nanoclusters supported magnetic resonance in the visible region, and the extracted effective permeability exhibited Lorentz-like resonance. The experimentally observed lowest value for the real part of permeability was 0.06. The nanocluster metamaterial represents a practical metamaterial architecture that is compatible with the scalable bottom-up manufacturing process.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for review, W. Park and J. Kim, “Negative index materials,” MRS Bull. 33, 907-911 (2008).
  2. R. A. Depine and A. Lakhtakia, “A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity,” Microwave Opt. Technol. Lett. 41, 315-316(2004).
    [CrossRef]
  3. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780-1782 (2006).
    [CrossRef] [PubMed]
  4. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777-1780 (2006).
    [CrossRef] [PubMed]
  5. J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
    [CrossRef] [PubMed]
  6. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568-571(2009).
    [CrossRef]
  7. J. H. Lee, J. Blair, V. A. Tamma, Q. Wu, S. J. Rhee, C. J. Summers, and W. Park, “Direct visualization of optical frequency invisibility cloak based on silicon nanorod array,” Opt. Express 17, 12922-12928 (2009).
    [CrossRef] [PubMed]
  8. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Cloaking at optical frequencies,” Nat. Photon. 3, 461-463(2009).
    [CrossRef]
  9. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
    [CrossRef] [PubMed]
  10. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404(2005).
    [CrossRef] [PubMed]
  11. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett. 31, 1800-1802 (2006).
    [CrossRef] [PubMed]
  12. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376-379(2008).
    [CrossRef] [PubMed]
  13. V. M. Shalaev, W. Cai, U. K. Chettiar, H. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356-3358(2005).
    [CrossRef]
  14. S. O'Brien and J. B. Pendry, “Photonic band-gap effects and magnetic activity in dielectric composites,” J. Phys. Condens. Matter 14, 4035-4045 (2002).
    [CrossRef]
  15. W. Park and Q. Wu, “Negative effective permeability in metal cluster photonic crystal,” Solid State Commun. 146, 221-227(2008).
    [CrossRef]
  16. W. Park and Q. Wu, “Optical frequency magnetic activity in metal nanocluster photonic crystal,” J. Comput. Theor. Nanosci. 5, 476-482 (2008).
  17. Q. Wu and W. Park, “Negative index materials based on metal nanoclusters,” Appl. Phys. Lett. 92, 153114 (2008).
    [CrossRef]
  18. C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, “Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum,” Phys. Rev. Lett. 99, 017401(2007).
    [CrossRef] [PubMed]
  19. J. H. Lee, Q. Wu, and W. Park, “Metal nanocluster metamaterial fabricated by the colloidal self-assembly,” Opt. Lett. 34, 443-445 (2009).
    [CrossRef] [PubMed]
  20. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  21. N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM 2: A new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189-196 (2000).
    [CrossRef]
  22. V. Yannopapas and A. Modinos, “Optical properties of metallodielectric photonic crystals,” Phys. Rev. B 60, 5359-5365(1999).
    [CrossRef]
  23. D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
    [CrossRef]
  24. D. Kim, S. Jeong, and J. Moon, “Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection,” Nanotechnology 17, 4019-4024 (2006).
    [CrossRef] [PubMed]
  25. W. Stöber and A. Fink, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26, 62-69 (1968).
    [CrossRef]
  26. C. Graf, D. L. J. Vossen, A. Imhof, and A. van Blaaderen, “A general method to coat colloidal particles with silica,” Langmuir 19, 6693-6700 (2003).
    [CrossRef]
  27. H. K. Yuan, U. K. Chettiar, W. S. Cai, A. V. Kildishev, A. Boltasseva, V. P. Drachev, and V. M. Shalaev, “A negative permeability material at red light,” Opt. Express 15, 1076-1083(2007).
    [CrossRef] [PubMed]

2009 (4)

2008 (6)

W. Park and Q. Wu, “Negative effective permeability in metal cluster photonic crystal,” Solid State Commun. 146, 221-227(2008).
[CrossRef]

W. Park and Q. Wu, “Optical frequency magnetic activity in metal nanocluster photonic crystal,” J. Comput. Theor. Nanosci. 5, 476-482 (2008).

Q. Wu and W. Park, “Negative index materials based on metal nanoclusters,” Appl. Phys. Lett. 92, 153114 (2008).
[CrossRef]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376-379(2008).
[CrossRef] [PubMed]

See, for review, W. Park and J. Kim, “Negative index materials,” MRS Bull. 33, 907-911 (2008).

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
[CrossRef] [PubMed]

2007 (2)

H. K. Yuan, U. K. Chettiar, W. S. Cai, A. V. Kildishev, A. Boltasseva, V. P. Drachev, and V. M. Shalaev, “A negative permeability material at red light,” Opt. Express 15, 1076-1083(2007).
[CrossRef] [PubMed]

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, “Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum,” Phys. Rev. Lett. 99, 017401(2007).
[CrossRef] [PubMed]

2006 (4)

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett. 31, 1800-1802 (2006).
[CrossRef] [PubMed]

D. Kim, S. Jeong, and J. Moon, “Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection,” Nanotechnology 17, 4019-4024 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777-1780 (2006).
[CrossRef] [PubMed]

2005 (3)

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404(2005).
[CrossRef] [PubMed]

V. M. Shalaev, W. Cai, U. K. Chettiar, H. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356-3358(2005).
[CrossRef]

2004 (1)

R. A. Depine and A. Lakhtakia, “A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity,” Microwave Opt. Technol. Lett. 41, 315-316(2004).
[CrossRef]

2003 (1)

C. Graf, D. L. J. Vossen, A. Imhof, and A. van Blaaderen, “A general method to coat colloidal particles with silica,” Langmuir 19, 6693-6700 (2003).
[CrossRef]

2002 (2)

S. O'Brien and J. B. Pendry, “Photonic band-gap effects and magnetic activity in dielectric composites,” J. Phys. Condens. Matter 14, 4035-4045 (2002).
[CrossRef]

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[CrossRef]

2000 (1)

N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM 2: A new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189-196 (2000).
[CrossRef]

1999 (1)

V. Yannopapas and A. Modinos, “Optical properties of metallodielectric photonic crystals,” Phys. Rev. B 60, 5359-5365(1999).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

1968 (1)

W. Stöber and A. Fink, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26, 62-69 (1968).
[CrossRef]

Bartal, G.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568-571(2009).
[CrossRef]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376-379(2008).
[CrossRef] [PubMed]

Blair, J.

Boltasseva, A.

Brueck, S. R. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404(2005).
[CrossRef] [PubMed]

Burger, S.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Cai, W.

Cai, W. S.

Cardenas, J.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Cloaking at optical frequencies,” Nat. Photon. 3, 461-463(2009).
[CrossRef]

Chettiar, U. K.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Depine, R. A.

R. A. Depine and A. Lakhtakia, “A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity,” Microwave Opt. Technol. Lett. 41, 315-316(2004).
[CrossRef]

Dolling, G.

Drachev, V. P.

Enkrich, C.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett. 31, 1800-1802 (2006).
[CrossRef] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Etrich, C.

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, “Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum,” Phys. Rev. Lett. 99, 017401(2007).
[CrossRef] [PubMed]

Fan, W.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404(2005).
[CrossRef] [PubMed]

Fink, A.

W. Stöber and A. Fink, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26, 62-69 (1968).
[CrossRef]

Gabrielli, L. H.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Cloaking at optical frequencies,” Nat. Photon. 3, 461-463(2009).
[CrossRef]

Genov, D. A.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376-379(2008).
[CrossRef] [PubMed]

Graf, C.

C. Graf, D. L. J. Vossen, A. Imhof, and A. van Blaaderen, “A general method to coat colloidal particles with silica,” Langmuir 19, 6693-6700 (2003).
[CrossRef]

Imhof, A.

C. Graf, D. L. J. Vossen, A. Imhof, and A. van Blaaderen, “A general method to coat colloidal particles with silica,” Langmuir 19, 6693-6700 (2003).
[CrossRef]

Jeong, S.

D. Kim, S. Jeong, and J. Moon, “Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection,” Nanotechnology 17, 4019-4024 (2006).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Kildishev, A. V.

Kim, D.

D. Kim, S. Jeong, and J. Moon, “Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection,” Nanotechnology 17, 4019-4024 (2006).
[CrossRef] [PubMed]

Kim, J.

See, for review, W. Park and J. Kim, “Negative index materials,” MRS Bull. 33, 907-911 (2008).

Koschny, T.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Lakhtakia, A.

R. A. Depine and A. Lakhtakia, “A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity,” Microwave Opt. Technol. Lett. 41, 315-316(2004).
[CrossRef]

Lederer, F.

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, “Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum,” Phys. Rev. Lett. 99, 017401(2007).
[CrossRef] [PubMed]

Lee, J. H.

Leonhardt, U.

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777-1780 (2006).
[CrossRef] [PubMed]

Li, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568-571(2009).
[CrossRef]

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
[CrossRef] [PubMed]

Linden, S.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett. 31, 1800-1802 (2006).
[CrossRef] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Lipson, M.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Cloaking at optical frequencies,” Nat. Photon. 3, 461-463(2009).
[CrossRef]

Malloy, K. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404(2005).
[CrossRef] [PubMed]

Markoš, P.

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[CrossRef]

Modinos, A.

N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM 2: A new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189-196 (2000).
[CrossRef]

V. Yannopapas and A. Modinos, “Optical properties of metallodielectric photonic crystals,” Phys. Rev. B 60, 5359-5365(1999).
[CrossRef]

Moon, J.

D. Kim, S. Jeong, and J. Moon, “Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection,” Nanotechnology 17, 4019-4024 (2006).
[CrossRef] [PubMed]

O'Brien, S.

S. O'Brien and J. B. Pendry, “Photonic band-gap effects and magnetic activity in dielectric composites,” J. Phys. Condens. Matter 14, 4035-4045 (2002).
[CrossRef]

Osgood, R. M.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404(2005).
[CrossRef] [PubMed]

Panoiu, N. C.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404(2005).
[CrossRef] [PubMed]

Park, W.

J. H. Lee, J. Blair, V. A. Tamma, Q. Wu, S. J. Rhee, C. J. Summers, and W. Park, “Direct visualization of optical frequency invisibility cloak based on silicon nanorod array,” Opt. Express 17, 12922-12928 (2009).
[CrossRef] [PubMed]

J. H. Lee, Q. Wu, and W. Park, “Metal nanocluster metamaterial fabricated by the colloidal self-assembly,” Opt. Lett. 34, 443-445 (2009).
[CrossRef] [PubMed]

Q. Wu and W. Park, “Negative index materials based on metal nanoclusters,” Appl. Phys. Lett. 92, 153114 (2008).
[CrossRef]

W. Park and Q. Wu, “Negative effective permeability in metal cluster photonic crystal,” Solid State Commun. 146, 221-227(2008).
[CrossRef]

W. Park and Q. Wu, “Optical frequency magnetic activity in metal nanocluster photonic crystal,” J. Comput. Theor. Nanosci. 5, 476-482 (2008).

See, for review, W. Park and J. Kim, “Negative index materials,” MRS Bull. 33, 907-911 (2008).

Pendry, J. B.

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

S. O'Brien and J. B. Pendry, “Photonic band-gap effects and magnetic activity in dielectric composites,” J. Phys. Condens. Matter 14, 4035-4045 (2002).
[CrossRef]

Pertsch, T.

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, “Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum,” Phys. Rev. Lett. 99, 017401(2007).
[CrossRef] [PubMed]

Poitras, C. B.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Cloaking at optical frequencies,” Nat. Photon. 3, 461-463(2009).
[CrossRef]

Rhee, S. J.

Rockstuhl, C.

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, “Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum,” Phys. Rev. Lett. 99, 017401(2007).
[CrossRef] [PubMed]

Sarychev, A. K.

Scharf, T.

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, “Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum,” Phys. Rev. Lett. 99, 017401(2007).
[CrossRef] [PubMed]

Schmidt, F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Schultz, S.

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[CrossRef]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

Shalaev, V. M.

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[CrossRef]

Soukoulis, C. M.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett. 31, 1800-1802 (2006).
[CrossRef] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[CrossRef]

Stefanou, N.

N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM 2: A new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189-196 (2000).
[CrossRef]

Stöber, W.

W. Stöber and A. Fink, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26, 62-69 (1968).
[CrossRef]

Summers, C. J.

Tamma, V. A.

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376-379(2008).
[CrossRef] [PubMed]

Valentine, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568-571(2009).
[CrossRef]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376-379(2008).
[CrossRef] [PubMed]

van Blaaderen, A.

C. Graf, D. L. J. Vossen, A. Imhof, and A. van Blaaderen, “A general method to coat colloidal particles with silica,” Langmuir 19, 6693-6700 (2003).
[CrossRef]

Vossen, D. L. J.

C. Graf, D. L. J. Vossen, A. Imhof, and A. van Blaaderen, “A general method to coat colloidal particles with silica,” Langmuir 19, 6693-6700 (2003).
[CrossRef]

Wegener, M.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett. 31, 1800-1802 (2006).
[CrossRef] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Wu, Q.

J. H. Lee, Q. Wu, and W. Park, “Metal nanocluster metamaterial fabricated by the colloidal self-assembly,” Opt. Lett. 34, 443-445 (2009).
[CrossRef] [PubMed]

J. H. Lee, J. Blair, V. A. Tamma, Q. Wu, S. J. Rhee, C. J. Summers, and W. Park, “Direct visualization of optical frequency invisibility cloak based on silicon nanorod array,” Opt. Express 17, 12922-12928 (2009).
[CrossRef] [PubMed]

Q. Wu and W. Park, “Negative index materials based on metal nanoclusters,” Appl. Phys. Lett. 92, 153114 (2008).
[CrossRef]

W. Park and Q. Wu, “Negative effective permeability in metal cluster photonic crystal,” Solid State Commun. 146, 221-227(2008).
[CrossRef]

W. Park and Q. Wu, “Optical frequency magnetic activity in metal nanocluster photonic crystal,” J. Comput. Theor. Nanosci. 5, 476-482 (2008).

Yannopapas, V.

N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM 2: A new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189-196 (2000).
[CrossRef]

V. Yannopapas and A. Modinos, “Optical properties of metallodielectric photonic crystals,” Phys. Rev. B 60, 5359-5365(1999).
[CrossRef]

Yuan, H.

Yuan, H. K.

Zentgraf, T.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568-571(2009).
[CrossRef]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376-379(2008).
[CrossRef] [PubMed]

Zhang, S.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376-379(2008).
[CrossRef] [PubMed]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404(2005).
[CrossRef] [PubMed]

Zhang, X.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568-571(2009).
[CrossRef]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376-379(2008).
[CrossRef] [PubMed]

Zhou, J. F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Zschiedrich, L.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

Q. Wu and W. Park, “Negative index materials based on metal nanoclusters,” Appl. Phys. Lett. 92, 153114 (2008).
[CrossRef]

Comput. Phys. Commun. (1)

N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM 2: A new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189-196 (2000).
[CrossRef]

J. Colloid Interface Sci. (1)

W. Stöber and A. Fink, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26, 62-69 (1968).
[CrossRef]

J. Comput. Theor. Nanosci. (1)

W. Park and Q. Wu, “Optical frequency magnetic activity in metal nanocluster photonic crystal,” J. Comput. Theor. Nanosci. 5, 476-482 (2008).

J. Phys. Condens. Matter (1)

S. O'Brien and J. B. Pendry, “Photonic band-gap effects and magnetic activity in dielectric composites,” J. Phys. Condens. Matter 14, 4035-4045 (2002).
[CrossRef]

Langmuir (1)

C. Graf, D. L. J. Vossen, A. Imhof, and A. van Blaaderen, “A general method to coat colloidal particles with silica,” Langmuir 19, 6693-6700 (2003).
[CrossRef]

Microwave Opt. Technol. Lett. (1)

R. A. Depine and A. Lakhtakia, “A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity,” Microwave Opt. Technol. Lett. 41, 315-316(2004).
[CrossRef]

Nanotechnology (1)

D. Kim, S. Jeong, and J. Moon, “Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection,” Nanotechnology 17, 4019-4024 (2006).
[CrossRef] [PubMed]

Nat. Photon. (1)

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Cloaking at optical frequencies,” Nat. Photon. 3, 461-463(2009).
[CrossRef]

Nature (1)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376-379(2008).
[CrossRef] [PubMed]

Nature Mater. (1)

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568-571(2009).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. B (3)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

V. Yannopapas and A. Modinos, “Optical properties of metallodielectric photonic crystals,” Phys. Rev. B 60, 5359-5365(1999).
[CrossRef]

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[CrossRef]

Phys. Rev. Lett. (4)

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404(2005).
[CrossRef] [PubMed]

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
[CrossRef] [PubMed]

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, “Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum,” Phys. Rev. Lett. 99, 017401(2007).
[CrossRef] [PubMed]

Science (2)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777-1780 (2006).
[CrossRef] [PubMed]

Solid State Commun. (1)

W. Park and Q. Wu, “Negative effective permeability in metal cluster photonic crystal,” Solid State Commun. 146, 221-227(2008).
[CrossRef]

Other (1)

See, for review, W. Park and J. Kim, “Negative index materials,” MRS Bull. 33, 907-911 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the 1D silver nanocluster metamaterial. The circles represent the silica-coated silver nanoparticles: p, periodicity; w, width of the trenches; h, height of the trenches.

Fig. 2
Fig. 2

(a), (b), (c) Plots of the dispersion curves obtained from multiple scattering (M.Scat) and extended Maxwell-Garnett effective medium theory (EMT) for silver fill fractions of f = 0.1 , 0., and 0.5 respectively. (d), (e), (f) Plots of the real and imaginary parts of the effective permittivity calculated by the extended Maxwell-Garnett effective medium for silver fill fractions of f = 0.1 , 0.3, and 0.5 respectively.

Fig. 3
Fig. 3

(a) Calculated transmission (T), reflection (R), and absorption (A) for the 1D silver nanocluster metamaterial with parameters of p = 280 nm , w = 140 nm , h = 120 nm and vol ume fill fraction of silver of 0.50 for TM polarized incident light. (b) Real and imaginary parts of the effective permittivity ( ε 1 , ε 2 ) for the structure with parameters given in (a). (c) Real and imaginary parts of the effective permeability ( μ 1 , μ 2 ) for the structure with parameters given in (a). (d) Magnetic field pattern of the lowest-order Mie resonance at 700 nm . (e) Electric field pattern inside the cluster at 700 nm .

Fig. 4
Fig. 4

(a) SEM picture of the 1D pattern in SU-8 with parameters of p = 280 nm , w = 128 nm , and h = 100 nm . (b) SEM picture of self-assembled 1D pattern with parameters of p = 280 nm , w = 140 nm , and h = 120 nm with silver nanoparticles of 12 nm radius and 2 nm coating. (c) SEM picture with higher resolution of the self-assembled pattern with parameters given in (c). (d) SEM picture of a self-assembled 1D pattern with parameters of p = 280 nm , w = 120 nm , and h = 140 nm with silver nanoparticles of 12 nm radius and an 2 nm coating.

Fig. 5
Fig. 5

Measured transmittance (%), reflectance (%), and absorption (%) spectra for the nanocluster metamaterial self-assembled on the template shown in Fig. 4(a): (a) TM polarization and (b) TE polarization.

Fig. 6
Fig. 6

(a) Comparison of experimental and fitted transmittance (T) and reflectance (R) data for structures with parameters of p = 280 nm , w = 140 nm , and h = 120 nm . Silver nanoparticle of 20 nm diameter and an 4 nm silica coating thickness for TM polarized incident light. (b) Extracted real and imaginary parts of the effective permeability ( μ 1 , μ 2 ) for the structure and parameters described in (a).

Fig. 7
Fig. 7

(a) Experimentally measured transmission (T), reflection (R), and absorption (A) of the 1D silver nanocluster metamaterial with parameters of p = 280 nm , w = 120 nm , and h = 140 nm . Silver nanoparticle of 24 nm diameter and an 2 nm silica coating thickness for TM polarized incident light. (b) Experimentally measured transmission (T), reflection (R), and absorption (A) of the 1D silver nanocluster metamaterial with parameters of p = 280 nm , w = 140 nm , and h = 120 nm , Silver nanoparticle of 24 nm diameter and an 2 nm silica coating thickness for TM polarized incident light.

Metrics