Abstract

We demonstrate what is, to the best of our knowledge, the first electronically controlled variable focus lens (ECVFL)-based sensor for remote object shape sensing. Using a target illuminating laser, the axial depths of the shape features on a given object are measured by observing the intensity profile of the optical beam falling on the object surface and tuning the ECVFL focal length to form a minimum beam spot. Using a lens focal length control calibration table, the object feature depths are computed. Transverse measurement of the dimensions of each object feature is done using a surface-flooding technique that completely illuminates a given feature. Alternately, transverse measurements can also be made by the variable spatial sampling scan technique, where, depending upon the feature sizes, the spatial sampling spot beam size is controlled using the ECVFL. A proof-of-concept sensor is demonstrated using an optical beam from a laser source operating at a power of 10mW and a wavelength of 633nm. A three-dimensional (3D) test object constructed from LEGO building blocks forms has three mini-skyscraper structures labeled A, B, and C. The (x,y,z) dimensions for A, B, and C are (8mm, 8mm, 124.84mm), (24.2mm, 24.2mm, 38.5mm), and (15.86mm, 15.86mm, 86.74mm), respectively. The smart sensor experimentally measured (x,y,z) dimensions for A, B, C are (7.95mm, 7.95mm, 120mm), (24.1mm, 24.1mm, 37mm), and (15.8mm, 15.8mm, 85mm), respectively. The average shape sensor transverse measurement percentage errors for A, B, and C are ±0.625%, ±0.41%, and ±0.38%, respectively. The average shape sensor axial measurement percentage errors for A, B, and C are ±4.03%, ±3.9%, and ±2.01%, respectively. Applications for the proposed shape sensor include machine parts inspection, 3D object reconstruction, and animation

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10-22 (2000).
    [CrossRef]
  2. P. J. Besl, “Active optical range imaging sensors,” in Machine Vision and Applications (Springer, 1988), Vol. 1, pp. 127-152.
    [CrossRef]
  3. H. J. Tiziani and H. M. Uhde, “Three-dimensional image sensing by chromatic confocal microscopy,” Appl. Opt. 33, 1838-1843 (1994).
    [CrossRef] [PubMed]
  4. N. A. Riza and Y. Huang, “High speed optical scanner for multi-dimensional beam pointing and acquisition,” in Lasers and Electro-Optics Society 12th Annual Conference Proceedings, L. Goldberg, ed. (IEEE, 1999), pp. 184-185.
  5. N. A. Riza, “Multiplexed optical scanner technology,” U.S. patent 6,687,036 (3 Feb. 2004).
  6. S. D. Cochran and G. Medioni, “3-D surface description from binocular stereo,”IEEE Trans. Pattern Anal. Machine Intell. 14, 981-994 (1992).
    [CrossRef]
  7. G. Häusler and D. Ritter, “Parallel three-dimensional sensing by color-coded triangulation,” Appl. Opt. 32, 7164-7169(1993).
    [CrossRef] [PubMed]
  8. K. D. Moore, “Intercalibration method for underwater three-dimensional mapping laser line scan systems,” Appl. Opt. 40, 5991-6004 (2001).
    [CrossRef]
  9. X. X. Cheng, X. Y. Su, and L. R. Guo, “Automated measurement method for 360° profilometry of 3-D diffuse objects,” Appl. Opt. 30, 1274-1278 (1991).
    [CrossRef] [PubMed]
  10. C. Reich, R. Ritter, and J. Thesing, “3-D shape measurement of complex objects by combining photogrammetry and fringe projection,” Opt. Eng. 39, 224-231 (2000).
    [CrossRef]
  11. H. Takasaki, “Moiré topology,” Appl. Opt. 9, 1467-1472 (1970).
    [CrossRef] [PubMed]
  12. S. Wei, S. Wu, I. Kao, and F. P Chiang, “Measurement of wafer surface using shadow moiré technique with Talbot effect,” J. Electron. Packag. 120, 166-170 (1998).
    [CrossRef]
  13. A. Anand, V. Chhaniwal, P. Almoro, G. Pedrini, and W. Osten, “Shape and deformation measurements of 3D objects using volume speckle field and phase retrieval,” Opt. Lett. 34, 1522-1523 (2009).
    [CrossRef] [PubMed]
  14. Leica Geosystems HDS 3000 3-D Laser Scanner System 2009 Data Sheet.
  15. A. J. Makynen, J. T. Kostamovaara, and R. A. Myllyla, “A high-resolution lateral displacement sensing method using active illumination of a cooperative target and a focused four-quadrant position-sensitive detector,” IEEE Trans. Instrum. Meas. 44, 46-52 (1995).
    [CrossRef]
  16. B. Nilsson and T. E. Carlsson, “Direct three-dimensional shape measurement by digital light-in-flight holography,” Appl. Opt. 37, 7954-7959 (1998).
    [CrossRef]
  17. C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring,” Opt. Eng. 39, 79-85 (2000).
    [CrossRef]
  18. N. A. Riza, “Digital control polarization-based optical scanner,” U.S. patent 6,031,658 (29 Feb. 2000).
  19. S. A. Khan and N. A. Riza, “Confocal microscopy based agile optical endoscope using liquid crystals,” in IEEE LEOS Biophotonics Summer Topical Meeting Digest (IEEE, 2004), pp. 10-11.
    [CrossRef]
  20. N. A. Riza and S. A. Reza, “Non-contact distance sensor using spatial signal processing,” Opt. Lett. 34, 434-436(2009).
    [CrossRef] [PubMed]
  21. N. A. Riza and F. Perez, patent pending.
  22. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550-1567 (1966).
    [CrossRef] [PubMed]
  23. E. Friedman and J. L. Miller, Photonics Rules of Thumb: Optics, Electro-Optics, Fiber Optics, and Lasers, 2nd ed. (McGraw-Hill, 2004), p. 170.
  24. L. Saurei, J. Peseux, F. Laune, and B. Berge, “Tunable liquid lens based on electrowetting technology: principle, properties and applications,” in 10th Annual Micro-optics Conference (Elsevier, 2004), p. E-1.
  25. Model Arctic 320 liquid lens technical datasheet: optical and opto-mechanical data (Varioptic SA, 2006), pp. 1-7.

2009 (2)

2001 (1)

2000 (3)

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10-22 (2000).
[CrossRef]

C. Reich, R. Ritter, and J. Thesing, “3-D shape measurement of complex objects by combining photogrammetry and fringe projection,” Opt. Eng. 39, 224-231 (2000).
[CrossRef]

C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring,” Opt. Eng. 39, 79-85 (2000).
[CrossRef]

1998 (2)

S. Wei, S. Wu, I. Kao, and F. P Chiang, “Measurement of wafer surface using shadow moiré technique with Talbot effect,” J. Electron. Packag. 120, 166-170 (1998).
[CrossRef]

B. Nilsson and T. E. Carlsson, “Direct three-dimensional shape measurement by digital light-in-flight holography,” Appl. Opt. 37, 7954-7959 (1998).
[CrossRef]

1995 (1)

A. J. Makynen, J. T. Kostamovaara, and R. A. Myllyla, “A high-resolution lateral displacement sensing method using active illumination of a cooperative target and a focused four-quadrant position-sensitive detector,” IEEE Trans. Instrum. Meas. 44, 46-52 (1995).
[CrossRef]

1994 (1)

1993 (1)

1992 (1)

S. D. Cochran and G. Medioni, “3-D surface description from binocular stereo,”IEEE Trans. Pattern Anal. Machine Intell. 14, 981-994 (1992).
[CrossRef]

1991 (1)

1970 (1)

1966 (1)

Almoro, P.

Anand, A.

Berge, B.

L. Saurei, J. Peseux, F. Laune, and B. Berge, “Tunable liquid lens based on electrowetting technology: principle, properties and applications,” in 10th Annual Micro-optics Conference (Elsevier, 2004), p. E-1.

Besl, P. J.

P. J. Besl, “Active optical range imaging sensors,” in Machine Vision and Applications (Springer, 1988), Vol. 1, pp. 127-152.
[CrossRef]

Brown, G. M.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10-22 (2000).
[CrossRef]

Carlsson, T. E.

Chen, F.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10-22 (2000).
[CrossRef]

Cheng, X. X.

Chhaniwal, V.

Chiang, F. P

S. Wei, S. Wu, I. Kao, and F. P Chiang, “Measurement of wafer surface using shadow moiré technique with Talbot effect,” J. Electron. Packag. 120, 166-170 (1998).
[CrossRef]

Cochran, S. D.

S. D. Cochran and G. Medioni, “3-D surface description from binocular stereo,”IEEE Trans. Pattern Anal. Machine Intell. 14, 981-994 (1992).
[CrossRef]

Friedman, E.

E. Friedman and J. L. Miller, Photonics Rules of Thumb: Optics, Electro-Optics, Fiber Optics, and Lasers, 2nd ed. (McGraw-Hill, 2004), p. 170.

Guo, L. R.

Häusler, G.

Huang, Y.

N. A. Riza and Y. Huang, “High speed optical scanner for multi-dimensional beam pointing and acquisition,” in Lasers and Electro-Optics Society 12th Annual Conference Proceedings, L. Goldberg, ed. (IEEE, 1999), pp. 184-185.

Kao, I.

S. Wei, S. Wu, I. Kao, and F. P Chiang, “Measurement of wafer surface using shadow moiré technique with Talbot effect,” J. Electron. Packag. 120, 166-170 (1998).
[CrossRef]

Khan, S. A.

S. A. Khan and N. A. Riza, “Confocal microscopy based agile optical endoscope using liquid crystals,” in IEEE LEOS Biophotonics Summer Topical Meeting Digest (IEEE, 2004), pp. 10-11.
[CrossRef]

Kogelnik, H.

Kostamovaara, J. T.

A. J. Makynen, J. T. Kostamovaara, and R. A. Myllyla, “A high-resolution lateral displacement sensing method using active illumination of a cooperative target and a focused four-quadrant position-sensitive detector,” IEEE Trans. Instrum. Meas. 44, 46-52 (1995).
[CrossRef]

Laune, F.

L. Saurei, J. Peseux, F. Laune, and B. Berge, “Tunable liquid lens based on electrowetting technology: principle, properties and applications,” in 10th Annual Micro-optics Conference (Elsevier, 2004), p. E-1.

Li, T.

Makynen, A. J.

A. J. Makynen, J. T. Kostamovaara, and R. A. Myllyla, “A high-resolution lateral displacement sensing method using active illumination of a cooperative target and a focused four-quadrant position-sensitive detector,” IEEE Trans. Instrum. Meas. 44, 46-52 (1995).
[CrossRef]

Medioni, G.

S. D. Cochran and G. Medioni, “3-D surface description from binocular stereo,”IEEE Trans. Pattern Anal. Machine Intell. 14, 981-994 (1992).
[CrossRef]

Miller, J. L.

E. Friedman and J. L. Miller, Photonics Rules of Thumb: Optics, Electro-Optics, Fiber Optics, and Lasers, 2nd ed. (McGraw-Hill, 2004), p. 170.

Moore, K. D.

Myllyla, R. A.

A. J. Makynen, J. T. Kostamovaara, and R. A. Myllyla, “A high-resolution lateral displacement sensing method using active illumination of a cooperative target and a focused four-quadrant position-sensitive detector,” IEEE Trans. Instrum. Meas. 44, 46-52 (1995).
[CrossRef]

Nilsson, B.

Osten, W.

A. Anand, V. Chhaniwal, P. Almoro, G. Pedrini, and W. Osten, “Shape and deformation measurements of 3D objects using volume speckle field and phase retrieval,” Opt. Lett. 34, 1522-1523 (2009).
[CrossRef] [PubMed]

C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring,” Opt. Eng. 39, 79-85 (2000).
[CrossRef]

Pedrini, G.

Perez, F.

N. A. Riza and F. Perez, patent pending.

Peseux, J.

L. Saurei, J. Peseux, F. Laune, and B. Berge, “Tunable liquid lens based on electrowetting technology: principle, properties and applications,” in 10th Annual Micro-optics Conference (Elsevier, 2004), p. E-1.

Reich, C.

C. Reich, R. Ritter, and J. Thesing, “3-D shape measurement of complex objects by combining photogrammetry and fringe projection,” Opt. Eng. 39, 224-231 (2000).
[CrossRef]

Reza, S. A.

Ritter, D.

Ritter, R.

C. Reich, R. Ritter, and J. Thesing, “3-D shape measurement of complex objects by combining photogrammetry and fringe projection,” Opt. Eng. 39, 224-231 (2000).
[CrossRef]

Riza, N. A.

N. A. Riza and S. A. Reza, “Non-contact distance sensor using spatial signal processing,” Opt. Lett. 34, 434-436(2009).
[CrossRef] [PubMed]

N. A. Riza and F. Perez, patent pending.

N. A. Riza, “Multiplexed optical scanner technology,” U.S. patent 6,687,036 (3 Feb. 2004).

N. A. Riza and Y. Huang, “High speed optical scanner for multi-dimensional beam pointing and acquisition,” in Lasers and Electro-Optics Society 12th Annual Conference Proceedings, L. Goldberg, ed. (IEEE, 1999), pp. 184-185.

S. A. Khan and N. A. Riza, “Confocal microscopy based agile optical endoscope using liquid crystals,” in IEEE LEOS Biophotonics Summer Topical Meeting Digest (IEEE, 2004), pp. 10-11.
[CrossRef]

N. A. Riza, “Digital control polarization-based optical scanner,” U.S. patent 6,031,658 (29 Feb. 2000).

Saurei, L.

L. Saurei, J. Peseux, F. Laune, and B. Berge, “Tunable liquid lens based on electrowetting technology: principle, properties and applications,” in 10th Annual Micro-optics Conference (Elsevier, 2004), p. E-1.

Seebacher, S.

C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring,” Opt. Eng. 39, 79-85 (2000).
[CrossRef]

Song, M.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10-22 (2000).
[CrossRef]

Su, X. Y.

Takasaki, H.

Thesing, J.

C. Reich, R. Ritter, and J. Thesing, “3-D shape measurement of complex objects by combining photogrammetry and fringe projection,” Opt. Eng. 39, 224-231 (2000).
[CrossRef]

Tiziani, H. J.

Uhde, H. M.

Wagner, C.

C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring,” Opt. Eng. 39, 79-85 (2000).
[CrossRef]

Wei, S.

S. Wei, S. Wu, I. Kao, and F. P Chiang, “Measurement of wafer surface using shadow moiré technique with Talbot effect,” J. Electron. Packag. 120, 166-170 (1998).
[CrossRef]

Wu, S.

S. Wei, S. Wu, I. Kao, and F. P Chiang, “Measurement of wafer surface using shadow moiré technique with Talbot effect,” J. Electron. Packag. 120, 166-170 (1998).
[CrossRef]

Appl. Opt. (7)

IEEE Trans. Instrum. Meas. (1)

A. J. Makynen, J. T. Kostamovaara, and R. A. Myllyla, “A high-resolution lateral displacement sensing method using active illumination of a cooperative target and a focused four-quadrant position-sensitive detector,” IEEE Trans. Instrum. Meas. 44, 46-52 (1995).
[CrossRef]

IEEE Trans. Pattern Anal. Machine Intell. (1)

S. D. Cochran and G. Medioni, “3-D surface description from binocular stereo,”IEEE Trans. Pattern Anal. Machine Intell. 14, 981-994 (1992).
[CrossRef]

J. Electron. Packag. (1)

S. Wei, S. Wu, I. Kao, and F. P Chiang, “Measurement of wafer surface using shadow moiré technique with Talbot effect,” J. Electron. Packag. 120, 166-170 (1998).
[CrossRef]

Opt. Eng. (3)

C. Reich, R. Ritter, and J. Thesing, “3-D shape measurement of complex objects by combining photogrammetry and fringe projection,” Opt. Eng. 39, 224-231 (2000).
[CrossRef]

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10-22 (2000).
[CrossRef]

C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring,” Opt. Eng. 39, 79-85 (2000).
[CrossRef]

Opt. Lett. (2)

Other (10)

N. A. Riza, “Digital control polarization-based optical scanner,” U.S. patent 6,031,658 (29 Feb. 2000).

S. A. Khan and N. A. Riza, “Confocal microscopy based agile optical endoscope using liquid crystals,” in IEEE LEOS Biophotonics Summer Topical Meeting Digest (IEEE, 2004), pp. 10-11.
[CrossRef]

N. A. Riza and F. Perez, patent pending.

E. Friedman and J. L. Miller, Photonics Rules of Thumb: Optics, Electro-Optics, Fiber Optics, and Lasers, 2nd ed. (McGraw-Hill, 2004), p. 170.

L. Saurei, J. Peseux, F. Laune, and B. Berge, “Tunable liquid lens based on electrowetting technology: principle, properties and applications,” in 10th Annual Micro-optics Conference (Elsevier, 2004), p. E-1.

Model Arctic 320 liquid lens technical datasheet: optical and opto-mechanical data (Varioptic SA, 2006), pp. 1-7.

P. J. Besl, “Active optical range imaging sensors,” in Machine Vision and Applications (Springer, 1988), Vol. 1, pp. 127-152.
[CrossRef]

N. A. Riza and Y. Huang, “High speed optical scanner for multi-dimensional beam pointing and acquisition,” in Lasers and Electro-Optics Society 12th Annual Conference Proceedings, L. Goldberg, ed. (IEEE, 1999), pp. 184-185.

N. A. Riza, “Multiplexed optical scanner technology,” U.S. patent 6,687,036 (3 Feb. 2004).

Leica Geosystems HDS 3000 3-D Laser Scanner System 2009 Data Sheet.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Proposed smart agile remote optical sensor for 3D object shape measurements. Spherical lens, S1; laser source, LS; electronically controlled variable focus lens, ECVFL; voltage controller, VC.

Fig. 2
Fig. 2

The skyscraper structures test object: (a) top view photograph, (b) top view drawing, (c) side view photograph, and (d) side view drawing. A U.S. currency nickel (5 cents) coin is shown for scale comparison.

Fig. 3
Fig. 3

Sensor calibration plots for (a) target distance versus applied voltage for minimum spot size, (b) minimum and maximum spot diameters for different target ranges, and (c) spot size dynamic range for different target distances.

Fig. 4
Fig. 4

Mini skyscraper structures feature extraction of surface A using the flooding method implemented by agile-lensing-based beam expansion when surface A is 37.5 cm from the ECVFL.

Fig. 5
Fig. 5

Mini skyscraper structures feature extraction of surface B using an expanded beam of null-to-null diameter of 6 mm and employing low-resolution surface scanning by object motion.

Fig. 6
Fig. 6

Reconstructed shape of the mini skyscraper structures 3D test using both the flooding and the scanning techniques.

Fig. 7
Fig. 7

Block diagram of the computer algorithm used to determine beam diameters.

Fig. 8
Fig. 8

Transverse direction 3D object spatial sampling by a scanning laser beam using (a) the classic uncompressed data diffraction limited beam expanding laser spot, (b) a method similar to classic unassisted laser beam scanning when ECVFL is in its flat no-lensing state, (c) smart data-compressed large beam spot size scanning using the ECVFL in its diverging lens mode with spot size matched to target feature size AB, and (d) high-spatial- resolution target feature sampling using the ECVFL in its converging lens mode with laser spot smaller than target feature size.

Fig. 9
Fig. 9

(a) Fixed laser spot size transverse beam scanned uncompressed target feature mapping and (b) agile lens smart laser beam spot size transverse beam scanned compressed data target feature mapping.

Equations (41)

Equations on this page are rendered with MathJax. Learn more.

D S [ H / θ ] .
D T = ( D S F ) / ( D S F ) .
D F = | D T REF D T | .
d D T d F = D S 2 ( D S F ) 2 .
Δ D T ( V ) d D T d F Δ F ( V ) = D S 2 ( D S F ) 2 Δ F ( V ) .
D T = H × F ( H F θ ) .
R 1 = D T Max D T Min = H ( F Max ( H F Max θ ) F Min ( H F Min θ ) ) .
R δ = Δ D T D T = ( D S F ) D S + D S F ( D S F ) 2 × Δ F × D S F D S F ,
R δ = Δ D T D T = ( D S F ) D S + D S F ( D S F ) D S F × Δ F = ( 1 F + 1 D S F ) Δ F .
E ( r , z ) exp ( j k r 2 / 2 q ( z ) ) ,
1 q ( z ) = 1 R ( z ) j λ π w 2 ( z ) .
q P = π w 0 2 λ j .
H 2 = w 0 2 ( 1 + λ 2 D S 2 π 2 w 0 4 ) ,
w 0 = H 2 H 4 4 λ 2 D S 2 π 2 2 .
[ A B C D ] = [ 1 D T 0 1 ] × [ 1 0 1 F 1 ] × [ 1 D S 0 1 ] ,
[ A B C D ] = [ 1 D T F D + S D T D S D T F 1 F 1 D S F ] .
A = 1 D T F ,
B = D S + D T D S D T F ,
C = 1 F ,
D = 1 D S F .
q T = A q P + B C q P + D ,
q T = A q P + B C q P + D 1 / q T = C q P + D A q P + B .
Im ( 1 / q T ) = λ π w T 2 = Im ( C q P + D A q P + B ) ,
w T = λ π × Im ( C q P + D A q P + B ) .
R 99 = 1.517 R 1 / e 2 .
Δ D T ( V ) = D S 2 ( D S F ) 2 Δ F ( V ) .
D T New = D T + Δ D T ,
F New = F + Δ F .
A New = 1 D T F New ,
B New = D S + D T D S D T F New ,
C New = 1 F New ,
D New = 1 D S F New .
q New = A New q P + B New C New q P + D New 1 / q New = C New q P + D New A New q P + B New .
w New = λ π × Im ( 1 / q New ) = λ π × Im ( C New q P + D New A New q P + B New ) .
R T = | w New w T | ,
R T = | λ π × ( 1 Im ( C New q P + D New A New q P + B New ) 1 Im ( C q P + D A q P + B ) ) | .
ξ = w T Max w T Min .
2 W T X = P X Max × D X Pixel ,
2 W T Y = P Y Max × D Y Pixel ,
C F = ( N N C ) 2 ,
C F = ( w T Div w T ) 2 ,

Metrics