Abstract

We demonstrate a simple method for obtaining slope contours of bent plates using Talbot interferometry. The technique has been used to map slope contours of polymethyl methacrylate specimens of different shapes. The Talbot image of a coarse grating is projected onto a specimen such that the self-image is backreflected onto the same grating again. As a Talbot interferometer is basically a grating shearing inter ferometer, it results in the generation of characteristic slope maps of the specimen under test. Results of the investigation match well with other slope-mapping techniques. Validation of experimental results with theoretical predictions in the case of a cantilever beam specimen has been undertaken. Accuracy of about 4.7% with respect to theoretical predictions is obtained.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. K. Ligtenberg, “The moiré method: a new experimental method for the determination of moments in small slab models,” Proc. SESA 12, 83-98 (1954).
  2. P. S. Theocaris and A. Koutsabessis “Slope measurement by means of moiré fringes,” J. Sci. Instrum. 42, 607-610 (1965).
    [CrossRef]
  3. R. Ritter and R. Schettler-Koehler, “Curvature measurement by moiré effect,” Exp. Mech. 23, 165-170 (1983).
    [CrossRef]
  4. A. Assa, A. A. Bester, and J. Politch, “Recording slope and curvature contours of fixed plates using a grating shearing interferometer,” Appl. Opt. 16, 2504-2513 (1977).
    [CrossRef] [PubMed]
  5. A. Assa, T. Politch, and A. A. Betser, “Slope and curvature measurement by a double-frequency-grating shearing interferometer,” Exp. Mech. 19, 129-137 (1979).
    [CrossRef]
  6. F. P. Chiang and T. Y. Kao, “Family of grating techniques of slope and curvature measurements for static and dynamic flexure of plates,” Opt. Eng. 21, 721-742 (1982).
  7. K. P. Rastogi, “Visualization and measurement of slope and curvature fields using holographic interferometry: an application to flaw detection,” J. Mod. Opt. 38, 1251-1263 (1991).
    [CrossRef]
  8. P. R. Sreedhar, N. K. Mohan, and R. S. Sirohi, “Displacement and slope measurements using image plane holography with a BaTiO3 crystal,” Opt. Laser Technol. 29, 111-115 (1997).
    [CrossRef]
  9. F. P. Chiang and R. M. Juang, “Laser speckle interferometry for plate bending problems,” Appl. Opt. 15, 2199-2204 (1976).
    [CrossRef] [PubMed]
  10. R. K. Mohanty, C. Joenathan, and R. S. Sirohi, “Speckle and speckle-shearing interferometers combined for the simultaneous determination of out-of-plane displacement and slope,” Appl. Opt. 24, 3106-3109 (1985).
    [CrossRef] [PubMed]
  11. C. J. Tay, H. M. Shang, A. N. Poo, and M. Luo “Measurement of surface coordinates and slopes by shearography,” Opt. Laser Technol. 24, 209-213 (1992).
    [CrossRef]
  12. K. Szmodits, “Zur theorie des moiré verfahrens,” Proceedings of Symposium on Shell Research, A. M. Hass and A. L. Bowma, eds. (North Holland, 1961), pp. 208-214.
  13. G. Reider and R. Ritter, “Krummungsmessung an belasteter platten nach dem ligentenbergschen moiré verfahren,” Forsch Ing. Wes. 31, 33-44 (1965).
    [CrossRef]
  14. T. Y. Kao and F. P. Chiang, “Family of grating techniques of slope and curvature measurements for static and dynamic flexures of plates,” Opt. Eng. 21, 721-742 (1982).
  15. Vasco Ronchi, “Forty years of history of a grating interferometer,” Appl. Opt. 3, 437-451 (1964).
    [CrossRef]
  16. G. Subramanian and S. Krishnakumar, “An image shearing moiré method to record slopes in flexed plates,” Strain 20, 69-73 (1984).
    [CrossRef]
  17. G. Subramanian and P. N. Akella, “A selective diffraction order based lens-plane grating shearing interferometer for the study of bent plates,” Strain 23, 55-59 (1987).
    [CrossRef]
  18. G. Subramanian, K. Jancy Rose, and A. Subramanian, “A multiplexed grating shearing interferometer for reflection moiré analysis of partial slopes and curvatures of bent plates,” Exp. Tech. 24, 27-30 (2000).
    [CrossRef]
  19. L. Wang and D. Yun, “Measurement of the deformation of thin plates by moiré interferometry,” Opt. Laser Technol. 23, 151-154 (1991).
    [CrossRef]
  20. L. Wang and D. Z. Yun, “Application of moiré shearing interferometry to slope measurement of shallow shells,” J. Strain Anal. Eng. Des. 27, 45-48 (1992).
    [CrossRef]
  21. R. Ritter and W. Wilke, “Slope and contour measurement by reflection grating method and the photogrammetric principle,” Opt. Lasers Eng. 15, 103-113 (1991).
    [CrossRef]
  22. G. Subramanian and P. Ramana Kumar, “Intensity integration technique for contouring two dimensional reflective surfaces,” Exp. Tech. 30, 56-60 (2006).
    [CrossRef]
  23. H. V. Tippur, “Simultaneous and real-time measurement of slope and curvature fringes in thin structures using shearing interferometry,” Opt. Eng. 43, 3014-3020 (2004).
    [CrossRef]
  24. H. F. Talbot, “Facts relating to optical Science,” Philos. Mag. 9, 403-405 (1836).
  25. K. Patorski, “Self imaging and its applications,” Progress in Optics Vol. 27, E.Wolf, ed. (Elsevier, 1989).
    [CrossRef]
  26. S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells2nd ed. (McGraw-Hill, 1959).
  27. K. Kalestynski and S. Smolinska, “Self restoration of autoidolon of defective periodic objects,” Opt. Acta 25, 125-134(1978).
  28. C. Menzel and E. Menzel, “Beugungsercheinungen optischer Gitter nach intensitat and phase,” Optik (Jena) 3, 247-59 (1948).
  29. J. Cowley and A. Moodie, “Fourier images II--The out of focus patterns,” Proc. Phys. Soc. London Sect. B 70, 497-504(1957).
    [CrossRef]
  30. Q. Liu and R. Ohba, “Effects of unparallel grating planes in Talbot interferometry,” Appl. Opt. 38, 4111-4116 (1999).
    [CrossRef]
  31. Q. Liu, R. Ohba, and S. Kakuma, “Effects of unparallel grating planes in Talbot interferometry. II,” Appl. Opt. 39, 2084-2090 (2000).
    [CrossRef]
  32. Q. Liu and R. Ohba, “Effects of a small inclination misalignment in Talbot interferometry by use of gratings with arbitrary line orientation. II. Experimental verification,” Appl. Opt. 40, 4534-4539 (2001).
    [CrossRef]

2006 (1)

G. Subramanian and P. Ramana Kumar, “Intensity integration technique for contouring two dimensional reflective surfaces,” Exp. Tech. 30, 56-60 (2006).
[CrossRef]

2004 (1)

H. V. Tippur, “Simultaneous and real-time measurement of slope and curvature fringes in thin structures using shearing interferometry,” Opt. Eng. 43, 3014-3020 (2004).
[CrossRef]

2001 (1)

2000 (2)

Q. Liu, R. Ohba, and S. Kakuma, “Effects of unparallel grating planes in Talbot interferometry. II,” Appl. Opt. 39, 2084-2090 (2000).
[CrossRef]

G. Subramanian, K. Jancy Rose, and A. Subramanian, “A multiplexed grating shearing interferometer for reflection moiré analysis of partial slopes and curvatures of bent plates,” Exp. Tech. 24, 27-30 (2000).
[CrossRef]

1999 (1)

1997 (1)

P. R. Sreedhar, N. K. Mohan, and R. S. Sirohi, “Displacement and slope measurements using image plane holography with a BaTiO3 crystal,” Opt. Laser Technol. 29, 111-115 (1997).
[CrossRef]

1992 (2)

C. J. Tay, H. M. Shang, A. N. Poo, and M. Luo “Measurement of surface coordinates and slopes by shearography,” Opt. Laser Technol. 24, 209-213 (1992).
[CrossRef]

L. Wang and D. Z. Yun, “Application of moiré shearing interferometry to slope measurement of shallow shells,” J. Strain Anal. Eng. Des. 27, 45-48 (1992).
[CrossRef]

1991 (3)

R. Ritter and W. Wilke, “Slope and contour measurement by reflection grating method and the photogrammetric principle,” Opt. Lasers Eng. 15, 103-113 (1991).
[CrossRef]

L. Wang and D. Yun, “Measurement of the deformation of thin plates by moiré interferometry,” Opt. Laser Technol. 23, 151-154 (1991).
[CrossRef]

K. P. Rastogi, “Visualization and measurement of slope and curvature fields using holographic interferometry: an application to flaw detection,” J. Mod. Opt. 38, 1251-1263 (1991).
[CrossRef]

1987 (1)

G. Subramanian and P. N. Akella, “A selective diffraction order based lens-plane grating shearing interferometer for the study of bent plates,” Strain 23, 55-59 (1987).
[CrossRef]

1985 (1)

1984 (1)

G. Subramanian and S. Krishnakumar, “An image shearing moiré method to record slopes in flexed plates,” Strain 20, 69-73 (1984).
[CrossRef]

1983 (1)

R. Ritter and R. Schettler-Koehler, “Curvature measurement by moiré effect,” Exp. Mech. 23, 165-170 (1983).
[CrossRef]

1982 (2)

F. P. Chiang and T. Y. Kao, “Family of grating techniques of slope and curvature measurements for static and dynamic flexure of plates,” Opt. Eng. 21, 721-742 (1982).

T. Y. Kao and F. P. Chiang, “Family of grating techniques of slope and curvature measurements for static and dynamic flexures of plates,” Opt. Eng. 21, 721-742 (1982).

1979 (1)

A. Assa, T. Politch, and A. A. Betser, “Slope and curvature measurement by a double-frequency-grating shearing interferometer,” Exp. Mech. 19, 129-137 (1979).
[CrossRef]

1978 (1)

K. Kalestynski and S. Smolinska, “Self restoration of autoidolon of defective periodic objects,” Opt. Acta 25, 125-134(1978).

1977 (1)

1976 (1)

1965 (2)

P. S. Theocaris and A. Koutsabessis “Slope measurement by means of moiré fringes,” J. Sci. Instrum. 42, 607-610 (1965).
[CrossRef]

G. Reider and R. Ritter, “Krummungsmessung an belasteter platten nach dem ligentenbergschen moiré verfahren,” Forsch Ing. Wes. 31, 33-44 (1965).
[CrossRef]

1964 (1)

1957 (1)

J. Cowley and A. Moodie, “Fourier images II--The out of focus patterns,” Proc. Phys. Soc. London Sect. B 70, 497-504(1957).
[CrossRef]

1954 (1)

F. K. Ligtenberg, “The moiré method: a new experimental method for the determination of moments in small slab models,” Proc. SESA 12, 83-98 (1954).

1948 (1)

C. Menzel and E. Menzel, “Beugungsercheinungen optischer Gitter nach intensitat and phase,” Optik (Jena) 3, 247-59 (1948).

1836 (1)

H. F. Talbot, “Facts relating to optical Science,” Philos. Mag. 9, 403-405 (1836).

Akella, P. N.

G. Subramanian and P. N. Akella, “A selective diffraction order based lens-plane grating shearing interferometer for the study of bent plates,” Strain 23, 55-59 (1987).
[CrossRef]

Assa, A.

A. Assa, T. Politch, and A. A. Betser, “Slope and curvature measurement by a double-frequency-grating shearing interferometer,” Exp. Mech. 19, 129-137 (1979).
[CrossRef]

A. Assa, A. A. Bester, and J. Politch, “Recording slope and curvature contours of fixed plates using a grating shearing interferometer,” Appl. Opt. 16, 2504-2513 (1977).
[CrossRef] [PubMed]

Bester, A. A.

Betser, A. A.

A. Assa, T. Politch, and A. A. Betser, “Slope and curvature measurement by a double-frequency-grating shearing interferometer,” Exp. Mech. 19, 129-137 (1979).
[CrossRef]

Chiang, F. P.

F. P. Chiang and T. Y. Kao, “Family of grating techniques of slope and curvature measurements for static and dynamic flexure of plates,” Opt. Eng. 21, 721-742 (1982).

T. Y. Kao and F. P. Chiang, “Family of grating techniques of slope and curvature measurements for static and dynamic flexures of plates,” Opt. Eng. 21, 721-742 (1982).

F. P. Chiang and R. M. Juang, “Laser speckle interferometry for plate bending problems,” Appl. Opt. 15, 2199-2204 (1976).
[CrossRef] [PubMed]

Cowley, J.

J. Cowley and A. Moodie, “Fourier images II--The out of focus patterns,” Proc. Phys. Soc. London Sect. B 70, 497-504(1957).
[CrossRef]

Joenathan, C.

Juang, R. M.

Kakuma, S.

Kalestynski, K.

K. Kalestynski and S. Smolinska, “Self restoration of autoidolon of defective periodic objects,” Opt. Acta 25, 125-134(1978).

Kao, T. Y.

T. Y. Kao and F. P. Chiang, “Family of grating techniques of slope and curvature measurements for static and dynamic flexures of plates,” Opt. Eng. 21, 721-742 (1982).

F. P. Chiang and T. Y. Kao, “Family of grating techniques of slope and curvature measurements for static and dynamic flexure of plates,” Opt. Eng. 21, 721-742 (1982).

Koutsabessis, A.

P. S. Theocaris and A. Koutsabessis “Slope measurement by means of moiré fringes,” J. Sci. Instrum. 42, 607-610 (1965).
[CrossRef]

Krishnakumar, S.

G. Subramanian and S. Krishnakumar, “An image shearing moiré method to record slopes in flexed plates,” Strain 20, 69-73 (1984).
[CrossRef]

Kumar, P. Ramana

G. Subramanian and P. Ramana Kumar, “Intensity integration technique for contouring two dimensional reflective surfaces,” Exp. Tech. 30, 56-60 (2006).
[CrossRef]

Ligtenberg, F. K.

F. K. Ligtenberg, “The moiré method: a new experimental method for the determination of moments in small slab models,” Proc. SESA 12, 83-98 (1954).

Liu, Q.

Luo, M.

C. J. Tay, H. M. Shang, A. N. Poo, and M. Luo “Measurement of surface coordinates and slopes by shearography,” Opt. Laser Technol. 24, 209-213 (1992).
[CrossRef]

Menzel, C.

C. Menzel and E. Menzel, “Beugungsercheinungen optischer Gitter nach intensitat and phase,” Optik (Jena) 3, 247-59 (1948).

Menzel, E.

C. Menzel and E. Menzel, “Beugungsercheinungen optischer Gitter nach intensitat and phase,” Optik (Jena) 3, 247-59 (1948).

Mohan, N. K.

P. R. Sreedhar, N. K. Mohan, and R. S. Sirohi, “Displacement and slope measurements using image plane holography with a BaTiO3 crystal,” Opt. Laser Technol. 29, 111-115 (1997).
[CrossRef]

Mohanty, R. K.

Moodie, A.

J. Cowley and A. Moodie, “Fourier images II--The out of focus patterns,” Proc. Phys. Soc. London Sect. B 70, 497-504(1957).
[CrossRef]

Ohba, R.

Patorski, K.

K. Patorski, “Self imaging and its applications,” Progress in Optics Vol. 27, E.Wolf, ed. (Elsevier, 1989).
[CrossRef]

Politch, J.

Politch, T.

A. Assa, T. Politch, and A. A. Betser, “Slope and curvature measurement by a double-frequency-grating shearing interferometer,” Exp. Mech. 19, 129-137 (1979).
[CrossRef]

Poo, A. N.

C. J. Tay, H. M. Shang, A. N. Poo, and M. Luo “Measurement of surface coordinates and slopes by shearography,” Opt. Laser Technol. 24, 209-213 (1992).
[CrossRef]

Rastogi, K. P.

K. P. Rastogi, “Visualization and measurement of slope and curvature fields using holographic interferometry: an application to flaw detection,” J. Mod. Opt. 38, 1251-1263 (1991).
[CrossRef]

Reider, G.

G. Reider and R. Ritter, “Krummungsmessung an belasteter platten nach dem ligentenbergschen moiré verfahren,” Forsch Ing. Wes. 31, 33-44 (1965).
[CrossRef]

Ritter, R.

R. Ritter and W. Wilke, “Slope and contour measurement by reflection grating method and the photogrammetric principle,” Opt. Lasers Eng. 15, 103-113 (1991).
[CrossRef]

R. Ritter and R. Schettler-Koehler, “Curvature measurement by moiré effect,” Exp. Mech. 23, 165-170 (1983).
[CrossRef]

G. Reider and R. Ritter, “Krummungsmessung an belasteter platten nach dem ligentenbergschen moiré verfahren,” Forsch Ing. Wes. 31, 33-44 (1965).
[CrossRef]

Ronchi, Vasco

Rose, K. Jancy

G. Subramanian, K. Jancy Rose, and A. Subramanian, “A multiplexed grating shearing interferometer for reflection moiré analysis of partial slopes and curvatures of bent plates,” Exp. Tech. 24, 27-30 (2000).
[CrossRef]

Schettler-Koehler, R.

R. Ritter and R. Schettler-Koehler, “Curvature measurement by moiré effect,” Exp. Mech. 23, 165-170 (1983).
[CrossRef]

Shang, H. M.

C. J. Tay, H. M. Shang, A. N. Poo, and M. Luo “Measurement of surface coordinates and slopes by shearography,” Opt. Laser Technol. 24, 209-213 (1992).
[CrossRef]

Sirohi, R. S.

P. R. Sreedhar, N. K. Mohan, and R. S. Sirohi, “Displacement and slope measurements using image plane holography with a BaTiO3 crystal,” Opt. Laser Technol. 29, 111-115 (1997).
[CrossRef]

R. K. Mohanty, C. Joenathan, and R. S. Sirohi, “Speckle and speckle-shearing interferometers combined for the simultaneous determination of out-of-plane displacement and slope,” Appl. Opt. 24, 3106-3109 (1985).
[CrossRef] [PubMed]

Smolinska, S.

K. Kalestynski and S. Smolinska, “Self restoration of autoidolon of defective periodic objects,” Opt. Acta 25, 125-134(1978).

Sreedhar, P. R.

P. R. Sreedhar, N. K. Mohan, and R. S. Sirohi, “Displacement and slope measurements using image plane holography with a BaTiO3 crystal,” Opt. Laser Technol. 29, 111-115 (1997).
[CrossRef]

Subramanian, A.

G. Subramanian, K. Jancy Rose, and A. Subramanian, “A multiplexed grating shearing interferometer for reflection moiré analysis of partial slopes and curvatures of bent plates,” Exp. Tech. 24, 27-30 (2000).
[CrossRef]

Subramanian, G.

G. Subramanian and P. Ramana Kumar, “Intensity integration technique for contouring two dimensional reflective surfaces,” Exp. Tech. 30, 56-60 (2006).
[CrossRef]

G. Subramanian, K. Jancy Rose, and A. Subramanian, “A multiplexed grating shearing interferometer for reflection moiré analysis of partial slopes and curvatures of bent plates,” Exp. Tech. 24, 27-30 (2000).
[CrossRef]

G. Subramanian and P. N. Akella, “A selective diffraction order based lens-plane grating shearing interferometer for the study of bent plates,” Strain 23, 55-59 (1987).
[CrossRef]

G. Subramanian and S. Krishnakumar, “An image shearing moiré method to record slopes in flexed plates,” Strain 20, 69-73 (1984).
[CrossRef]

Szmodits, K.

K. Szmodits, “Zur theorie des moiré verfahrens,” Proceedings of Symposium on Shell Research, A. M. Hass and A. L. Bowma, eds. (North Holland, 1961), pp. 208-214.

Talbot, H. F.

H. F. Talbot, “Facts relating to optical Science,” Philos. Mag. 9, 403-405 (1836).

Tay, C. J.

C. J. Tay, H. M. Shang, A. N. Poo, and M. Luo “Measurement of surface coordinates and slopes by shearography,” Opt. Laser Technol. 24, 209-213 (1992).
[CrossRef]

Theocaris, P. S.

P. S. Theocaris and A. Koutsabessis “Slope measurement by means of moiré fringes,” J. Sci. Instrum. 42, 607-610 (1965).
[CrossRef]

Timoshenko, S.

S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells2nd ed. (McGraw-Hill, 1959).

Tippur, H. V.

H. V. Tippur, “Simultaneous and real-time measurement of slope and curvature fringes in thin structures using shearing interferometry,” Opt. Eng. 43, 3014-3020 (2004).
[CrossRef]

Wang, L.

L. Wang and D. Z. Yun, “Application of moiré shearing interferometry to slope measurement of shallow shells,” J. Strain Anal. Eng. Des. 27, 45-48 (1992).
[CrossRef]

L. Wang and D. Yun, “Measurement of the deformation of thin plates by moiré interferometry,” Opt. Laser Technol. 23, 151-154 (1991).
[CrossRef]

Wilke, W.

R. Ritter and W. Wilke, “Slope and contour measurement by reflection grating method and the photogrammetric principle,” Opt. Lasers Eng. 15, 103-113 (1991).
[CrossRef]

Woinowsky-Krieger, S.

S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells2nd ed. (McGraw-Hill, 1959).

Yun, D.

L. Wang and D. Yun, “Measurement of the deformation of thin plates by moiré interferometry,” Opt. Laser Technol. 23, 151-154 (1991).
[CrossRef]

Yun, D. Z.

L. Wang and D. Z. Yun, “Application of moiré shearing interferometry to slope measurement of shallow shells,” J. Strain Anal. Eng. Des. 27, 45-48 (1992).
[CrossRef]

Appl. Opt. (7)

Exp. Mech. (2)

R. Ritter and R. Schettler-Koehler, “Curvature measurement by moiré effect,” Exp. Mech. 23, 165-170 (1983).
[CrossRef]

A. Assa, T. Politch, and A. A. Betser, “Slope and curvature measurement by a double-frequency-grating shearing interferometer,” Exp. Mech. 19, 129-137 (1979).
[CrossRef]

Exp. Tech. (2)

G. Subramanian, K. Jancy Rose, and A. Subramanian, “A multiplexed grating shearing interferometer for reflection moiré analysis of partial slopes and curvatures of bent plates,” Exp. Tech. 24, 27-30 (2000).
[CrossRef]

G. Subramanian and P. Ramana Kumar, “Intensity integration technique for contouring two dimensional reflective surfaces,” Exp. Tech. 30, 56-60 (2006).
[CrossRef]

Forsch Ing. Wes. (1)

G. Reider and R. Ritter, “Krummungsmessung an belasteter platten nach dem ligentenbergschen moiré verfahren,” Forsch Ing. Wes. 31, 33-44 (1965).
[CrossRef]

J. Mod. Opt. (1)

K. P. Rastogi, “Visualization and measurement of slope and curvature fields using holographic interferometry: an application to flaw detection,” J. Mod. Opt. 38, 1251-1263 (1991).
[CrossRef]

J. Sci. Instrum. (1)

P. S. Theocaris and A. Koutsabessis “Slope measurement by means of moiré fringes,” J. Sci. Instrum. 42, 607-610 (1965).
[CrossRef]

J. Strain Anal. Eng. Des. (1)

L. Wang and D. Z. Yun, “Application of moiré shearing interferometry to slope measurement of shallow shells,” J. Strain Anal. Eng. Des. 27, 45-48 (1992).
[CrossRef]

Opt. Acta (1)

K. Kalestynski and S. Smolinska, “Self restoration of autoidolon of defective periodic objects,” Opt. Acta 25, 125-134(1978).

Opt. Eng. (3)

H. V. Tippur, “Simultaneous and real-time measurement of slope and curvature fringes in thin structures using shearing interferometry,” Opt. Eng. 43, 3014-3020 (2004).
[CrossRef]

F. P. Chiang and T. Y. Kao, “Family of grating techniques of slope and curvature measurements for static and dynamic flexure of plates,” Opt. Eng. 21, 721-742 (1982).

T. Y. Kao and F. P. Chiang, “Family of grating techniques of slope and curvature measurements for static and dynamic flexures of plates,” Opt. Eng. 21, 721-742 (1982).

Opt. Laser Technol. (3)

P. R. Sreedhar, N. K. Mohan, and R. S. Sirohi, “Displacement and slope measurements using image plane holography with a BaTiO3 crystal,” Opt. Laser Technol. 29, 111-115 (1997).
[CrossRef]

L. Wang and D. Yun, “Measurement of the deformation of thin plates by moiré interferometry,” Opt. Laser Technol. 23, 151-154 (1991).
[CrossRef]

C. J. Tay, H. M. Shang, A. N. Poo, and M. Luo “Measurement of surface coordinates and slopes by shearography,” Opt. Laser Technol. 24, 209-213 (1992).
[CrossRef]

Opt. Lasers Eng. (1)

R. Ritter and W. Wilke, “Slope and contour measurement by reflection grating method and the photogrammetric principle,” Opt. Lasers Eng. 15, 103-113 (1991).
[CrossRef]

Optik (Jena) (1)

C. Menzel and E. Menzel, “Beugungsercheinungen optischer Gitter nach intensitat and phase,” Optik (Jena) 3, 247-59 (1948).

Philos. Mag. (1)

H. F. Talbot, “Facts relating to optical Science,” Philos. Mag. 9, 403-405 (1836).

Proc. Phys. Soc. London Sect. B (1)

J. Cowley and A. Moodie, “Fourier images II--The out of focus patterns,” Proc. Phys. Soc. London Sect. B 70, 497-504(1957).
[CrossRef]

Proc. SESA (1)

F. K. Ligtenberg, “The moiré method: a new experimental method for the determination of moments in small slab models,” Proc. SESA 12, 83-98 (1954).

Strain (2)

G. Subramanian and S. Krishnakumar, “An image shearing moiré method to record slopes in flexed plates,” Strain 20, 69-73 (1984).
[CrossRef]

G. Subramanian and P. N. Akella, “A selective diffraction order based lens-plane grating shearing interferometer for the study of bent plates,” Strain 23, 55-59 (1987).
[CrossRef]

Other (3)

K. Szmodits, “Zur theorie des moiré verfahrens,” Proceedings of Symposium on Shell Research, A. M. Hass and A. L. Bowma, eds. (North Holland, 1961), pp. 208-214.

K. Patorski, “Self imaging and its applications,” Progress in Optics Vol. 27, E.Wolf, ed. (Elsevier, 1989).
[CrossRef]

S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells2nd ed. (McGraw-Hill, 1959).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic showing orientation of grating G in the y z plane.

Fig. 2
Fig. 2

Schematic of the experimental arrangement.

Fig. 3
Fig. 3

(a) Slope pattern for a cantilever beam of length 45 mm , width 15 mm , and thickness 2 mm of PMMA material bound along one side. The specimen was normally loaded on the opposite side, as shown by arrow, using a precision translating device. (b) Schematic of the loading configuration.

Fig. 4
Fig. 4

Plot showing comparison of experimental and theoretical investigations for a cantilever beam specimen.

Fig. 5
Fig. 5

(a) Slope pattern for front-reflecting, simply supported, centrally loaded circular plate. (b) Schematic of the loading configuration.

Fig. 6
Fig. 6

Slope pattern for a simply supported circular plate, centrally loaded with out-of-plane displacement of 0.18 mm for (a) a flawless plate, (b) a plate with few defects 9 mm from the center and approximately half the depth of circular plate, (c) a plate with more defects, randomly scattered, of depth 0.5 1.0 mm , and (d) a plate with a crack.

Fig. 7
Fig. 7

Slope pattern for an equilateral-triangular-based plate of side 38 mm and thickness 2 mm of PMMA material bound along the corners. The slope curve (a) along the horizontal direction and (b) along the vertical direction. The specimen was normally loaded on the opposite side, at the center.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

y cos θ 2 = z sin θ 2 + k p ; k = 0 , ± 1 , ± 2 , ± 3 .
( y + z m φ 2 ) cos θ 2 = z sin θ 2 + m p .
( z m φ 2 ) cos θ 2 = ( m k ) p
φ = 2 w y = 2 l p z m .
w y = l p z m .
w y = P ( 2 L d ) d 2 E I ,

Metrics