Abstract

We demonstrate the stabilization of a laser diode frequency, using the circular dichroism of an alkali vapor and feeding back the correction signal to the temperature actuator of the junction. The conditions of operation and the performance of such a system are discussed.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1-20 (1991).
    [CrossRef]
  2. A. Hemmerich, D. H. McIntyre, D. Schropp Jr., D. Meschede, and T. W. Hänsch, “Optically stabilized narrow linewidth semiconductor laser for high resolution spectroscopy,” Opt. Commun. 75, 118-122 (1990).
    [CrossRef]
  3. E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631-2634 (1987).
    [CrossRef] [PubMed]
  4. P. Laurent, A. Clairon, and C. Bréant, “Frequency noise analysis of optically self-locked diode lasers,” IEEE J. Quantum Electron. 25, 1131-1142 (1989).
    [CrossRef]
  5. M. W. Fleming and A. Mooradian, “Spectral characteristics of external-cavity controlled semiconductor lasers,” IEEE J. Quantum Electron. 17, 44-59 (1981).
    [CrossRef]
  6. G. D. Rovera, G. Santarelli, and A. Clairon, “A laser diode system stabilized on the caesium D2 line,” Rev. Sci. Instrum. 65, 1502-1505 (1994).
    [CrossRef]
  7. K. C. Harvey and C. J. Myatt, “External-cavity diode laser using a grazing-incidence diffraction grating,” Opt. Lett. 16, 910-912 (1991).
    [CrossRef] [PubMed]
  8. A. J. Wallard, “Frequency stabilization of the helium-neon laser by saturated absorption in iodine vapour,” J. Phys. E 5, 926-930 (1972).
    [CrossRef]
  9. R. L. Barger, M. S. Sorem, and J. L. Hall, “Frequency stabilization of a cw dye laser,” Appl. Phys. Lett. 22, 573-575 (1973).
    [CrossRef]
  10. B. Chéron, H. Gilles, J. Havel, O. Moreau, and H. Sorel, “Laser frequency stabilization using Zeeman effect,” J. Phys. III 4, 401-406 (1994).
    [CrossRef]
  11. K. L. Corwin, Z.-T. Lu, C. F. Hand, R. J. Epstein, and C. E. Wieman, “Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor,” Appl. Opt. 37, 3295-3298 (1998).
    [CrossRef]
  12. G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadski, “Laser frequency stabilization by Doppler-free magnetic dichroism,” Appl. Phys. B 75, 613-619 (2002).
    [CrossRef]
  13. T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D 22, 279-283 (2003).
    [CrossRef]
  14. N. Beverini, E. Maccioni, P. Marsili, A. Ruffini, and F. Sorrentino, “Frequency stabilization of a diode laser on the Cs D2 resonance line by the Zeeman effect in a vapor cell,” Appl. Phys. B 73, 133-138 (2001).
    [CrossRef]
  15. This system has been used in our laboratory, in atom surface experiments requiring a steady illumination by a fixed-frequency pump diode laser: see W. S. Martins, M. Oriá, and M. Chevrollier, “Probing laser-induced adsorption with selective reflection,”Nineteenth International Conference on Laser Spectroscopy, ICOLS'09, Kussharo, Hokkaido, Japan, 2009.
  16. The magnetic field is produced by permanent magnets removed from loudspeakers. The inhomogeneities at the extremities of the cell do not affect the performance of the system.
  17. The laser is mounted on an L-shaped copper base with a large (3 cm×3 cm) exchange surface in contact with a TEC element.
  18. W. Demtröder, Laser Spectroscopy, 3rd ed. (Springer-Verlag, 2003).
  19. The system recovers to stabilization after we strongly hit our homemade optical table with a rubber hammer: see .

2003

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D 22, 279-283 (2003).
[CrossRef]

2002

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadski, “Laser frequency stabilization by Doppler-free magnetic dichroism,” Appl. Phys. B 75, 613-619 (2002).
[CrossRef]

2001

N. Beverini, E. Maccioni, P. Marsili, A. Ruffini, and F. Sorrentino, “Frequency stabilization of a diode laser on the Cs D2 resonance line by the Zeeman effect in a vapor cell,” Appl. Phys. B 73, 133-138 (2001).
[CrossRef]

1998

1994

G. D. Rovera, G. Santarelli, and A. Clairon, “A laser diode system stabilized on the caesium D2 line,” Rev. Sci. Instrum. 65, 1502-1505 (1994).
[CrossRef]

B. Chéron, H. Gilles, J. Havel, O. Moreau, and H. Sorel, “Laser frequency stabilization using Zeeman effect,” J. Phys. III 4, 401-406 (1994).
[CrossRef]

1991

1990

A. Hemmerich, D. H. McIntyre, D. Schropp Jr., D. Meschede, and T. W. Hänsch, “Optically stabilized narrow linewidth semiconductor laser for high resolution spectroscopy,” Opt. Commun. 75, 118-122 (1990).
[CrossRef]

1989

P. Laurent, A. Clairon, and C. Bréant, “Frequency noise analysis of optically self-locked diode lasers,” IEEE J. Quantum Electron. 25, 1131-1142 (1989).
[CrossRef]

1987

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631-2634 (1987).
[CrossRef] [PubMed]

1981

M. W. Fleming and A. Mooradian, “Spectral characteristics of external-cavity controlled semiconductor lasers,” IEEE J. Quantum Electron. 17, 44-59 (1981).
[CrossRef]

1973

R. L. Barger, M. S. Sorem, and J. L. Hall, “Frequency stabilization of a cw dye laser,” Appl. Phys. Lett. 22, 573-575 (1973).
[CrossRef]

1972

A. J. Wallard, “Frequency stabilization of the helium-neon laser by saturated absorption in iodine vapour,” J. Phys. E 5, 926-930 (1972).
[CrossRef]

Barger, R. L.

R. L. Barger, M. S. Sorem, and J. L. Hall, “Frequency stabilization of a cw dye laser,” Appl. Phys. Lett. 22, 573-575 (1973).
[CrossRef]

Beverini, N.

N. Beverini, E. Maccioni, P. Marsili, A. Ruffini, and F. Sorrentino, “Frequency stabilization of a diode laser on the Cs D2 resonance line by the Zeeman effect in a vapor cell,” Appl. Phys. B 73, 133-138 (2001).
[CrossRef]

Bréant, C.

P. Laurent, A. Clairon, and C. Bréant, “Frequency noise analysis of optically self-locked diode lasers,” IEEE J. Quantum Electron. 25, 1131-1142 (1989).
[CrossRef]

Cable, A.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631-2634 (1987).
[CrossRef] [PubMed]

Chéron, B.

B. Chéron, H. Gilles, J. Havel, O. Moreau, and H. Sorel, “Laser frequency stabilization using Zeeman effect,” J. Phys. III 4, 401-406 (1994).
[CrossRef]

Chevrollier, M.

This system has been used in our laboratory, in atom surface experiments requiring a steady illumination by a fixed-frequency pump diode laser: see W. S. Martins, M. Oriá, and M. Chevrollier, “Probing laser-induced adsorption with selective reflection,”Nineteenth International Conference on Laser Spectroscopy, ICOLS'09, Kussharo, Hokkaido, Japan, 2009.

Chu, S.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631-2634 (1987).
[CrossRef] [PubMed]

Clairon, A.

G. D. Rovera, G. Santarelli, and A. Clairon, “A laser diode system stabilized on the caesium D2 line,” Rev. Sci. Instrum. 65, 1502-1505 (1994).
[CrossRef]

P. Laurent, A. Clairon, and C. Bréant, “Frequency noise analysis of optically self-locked diode lasers,” IEEE J. Quantum Electron. 25, 1131-1142 (1989).
[CrossRef]

Corwin, K. L.

Demtröder, W.

W. Demtröder, Laser Spectroscopy, 3rd ed. (Springer-Verlag, 2003).

Epstein, R. J.

Fattori, M.

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D 22, 279-283 (2003).
[CrossRef]

Fleming, M. W.

M. W. Fleming and A. Mooradian, “Spectral characteristics of external-cavity controlled semiconductor lasers,” IEEE J. Quantum Electron. 17, 44-59 (1981).
[CrossRef]

Gawlik, W.

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadski, “Laser frequency stabilization by Doppler-free magnetic dichroism,” Appl. Phys. B 75, 613-619 (2002).
[CrossRef]

Gilles, H.

B. Chéron, H. Gilles, J. Havel, O. Moreau, and H. Sorel, “Laser frequency stabilization using Zeeman effect,” J. Phys. III 4, 401-406 (1994).
[CrossRef]

Hall, J. L.

R. L. Barger, M. S. Sorem, and J. L. Hall, “Frequency stabilization of a cw dye laser,” Appl. Phys. Lett. 22, 573-575 (1973).
[CrossRef]

Hand, C. F.

Hänsch, T. W.

A. Hemmerich, D. H. McIntyre, D. Schropp Jr., D. Meschede, and T. W. Hänsch, “Optically stabilized narrow linewidth semiconductor laser for high resolution spectroscopy,” Opt. Commun. 75, 118-122 (1990).
[CrossRef]

Harvey, K. C.

Havel, J.

B. Chéron, H. Gilles, J. Havel, O. Moreau, and H. Sorel, “Laser frequency stabilization using Zeeman effect,” J. Phys. III 4, 401-406 (1994).
[CrossRef]

Hemmerich, A.

A. Hemmerich, D. H. McIntyre, D. Schropp Jr., D. Meschede, and T. W. Hänsch, “Optically stabilized narrow linewidth semiconductor laser for high resolution spectroscopy,” Opt. Commun. 75, 118-122 (1990).
[CrossRef]

Hollberg, L.

C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1-20 (1991).
[CrossRef]

Lamporesi, G.

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D 22, 279-283 (2003).
[CrossRef]

Laurent, P.

P. Laurent, A. Clairon, and C. Bréant, “Frequency noise analysis of optically self-locked diode lasers,” IEEE J. Quantum Electron. 25, 1131-1142 (1989).
[CrossRef]

Lu, Z.-T.

Maccioni, E.

N. Beverini, E. Maccioni, P. Marsili, A. Ruffini, and F. Sorrentino, “Frequency stabilization of a diode laser on the Cs D2 resonance line by the Zeeman effect in a vapor cell,” Appl. Phys. B 73, 133-138 (2001).
[CrossRef]

Marsili, P.

N. Beverini, E. Maccioni, P. Marsili, A. Ruffini, and F. Sorrentino, “Frequency stabilization of a diode laser on the Cs D2 resonance line by the Zeeman effect in a vapor cell,” Appl. Phys. B 73, 133-138 (2001).
[CrossRef]

Martins, W. S.

This system has been used in our laboratory, in atom surface experiments requiring a steady illumination by a fixed-frequency pump diode laser: see W. S. Martins, M. Oriá, and M. Chevrollier, “Probing laser-induced adsorption with selective reflection,”Nineteenth International Conference on Laser Spectroscopy, ICOLS'09, Kussharo, Hokkaido, Japan, 2009.

McIntyre, D. H.

A. Hemmerich, D. H. McIntyre, D. Schropp Jr., D. Meschede, and T. W. Hänsch, “Optically stabilized narrow linewidth semiconductor laser for high resolution spectroscopy,” Opt. Commun. 75, 118-122 (1990).
[CrossRef]

Meschede, D.

A. Hemmerich, D. H. McIntyre, D. Schropp Jr., D. Meschede, and T. W. Hänsch, “Optically stabilized narrow linewidth semiconductor laser for high resolution spectroscopy,” Opt. Commun. 75, 118-122 (1990).
[CrossRef]

Mooradian, A.

M. W. Fleming and A. Mooradian, “Spectral characteristics of external-cavity controlled semiconductor lasers,” IEEE J. Quantum Electron. 17, 44-59 (1981).
[CrossRef]

Moreau, O.

B. Chéron, H. Gilles, J. Havel, O. Moreau, and H. Sorel, “Laser frequency stabilization using Zeeman effect,” J. Phys. III 4, 401-406 (1994).
[CrossRef]

Myatt, C. J.

Oriá, M.

This system has been used in our laboratory, in atom surface experiments requiring a steady illumination by a fixed-frequency pump diode laser: see W. S. Martins, M. Oriá, and M. Chevrollier, “Probing laser-induced adsorption with selective reflection,”Nineteenth International Conference on Laser Spectroscopy, ICOLS'09, Kussharo, Hokkaido, Japan, 2009.

Petelski, T.

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D 22, 279-283 (2003).
[CrossRef]

Prentiss, M.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631-2634 (1987).
[CrossRef] [PubMed]

Pritchard, D. E.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631-2634 (1987).
[CrossRef] [PubMed]

Raab, E. L.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631-2634 (1987).
[CrossRef] [PubMed]

Rovera, G. D.

G. D. Rovera, G. Santarelli, and A. Clairon, “A laser diode system stabilized on the caesium D2 line,” Rev. Sci. Instrum. 65, 1502-1505 (1994).
[CrossRef]

Ruffini, A.

N. Beverini, E. Maccioni, P. Marsili, A. Ruffini, and F. Sorrentino, “Frequency stabilization of a diode laser on the Cs D2 resonance line by the Zeeman effect in a vapor cell,” Appl. Phys. B 73, 133-138 (2001).
[CrossRef]

Santarelli, G.

G. D. Rovera, G. Santarelli, and A. Clairon, “A laser diode system stabilized on the caesium D2 line,” Rev. Sci. Instrum. 65, 1502-1505 (1994).
[CrossRef]

Schropp, D.

A. Hemmerich, D. H. McIntyre, D. Schropp Jr., D. Meschede, and T. W. Hänsch, “Optically stabilized narrow linewidth semiconductor laser for high resolution spectroscopy,” Opt. Commun. 75, 118-122 (1990).
[CrossRef]

Sorel, H.

B. Chéron, H. Gilles, J. Havel, O. Moreau, and H. Sorel, “Laser frequency stabilization using Zeeman effect,” J. Phys. III 4, 401-406 (1994).
[CrossRef]

Sorem, M. S.

R. L. Barger, M. S. Sorem, and J. L. Hall, “Frequency stabilization of a cw dye laser,” Appl. Phys. Lett. 22, 573-575 (1973).
[CrossRef]

Sorrentino, F.

N. Beverini, E. Maccioni, P. Marsili, A. Ruffini, and F. Sorrentino, “Frequency stabilization of a diode laser on the Cs D2 resonance line by the Zeeman effect in a vapor cell,” Appl. Phys. B 73, 133-138 (2001).
[CrossRef]

Stuhler, J.

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D 22, 279-283 (2003).
[CrossRef]

Tino, G. M.

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D 22, 279-283 (2003).
[CrossRef]

Wallard, A. J.

A. J. Wallard, “Frequency stabilization of the helium-neon laser by saturated absorption in iodine vapour,” J. Phys. E 5, 926-930 (1972).
[CrossRef]

Wasik, G.

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadski, “Laser frequency stabilization by Doppler-free magnetic dichroism,” Appl. Phys. B 75, 613-619 (2002).
[CrossRef]

Wieman, C. E.

Zachorowski, J.

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadski, “Laser frequency stabilization by Doppler-free magnetic dichroism,” Appl. Phys. B 75, 613-619 (2002).
[CrossRef]

Zawadski, W.

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadski, “Laser frequency stabilization by Doppler-free magnetic dichroism,” Appl. Phys. B 75, 613-619 (2002).
[CrossRef]

Appl. Opt.

Appl. Phys. B

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadski, “Laser frequency stabilization by Doppler-free magnetic dichroism,” Appl. Phys. B 75, 613-619 (2002).
[CrossRef]

N. Beverini, E. Maccioni, P. Marsili, A. Ruffini, and F. Sorrentino, “Frequency stabilization of a diode laser on the Cs D2 resonance line by the Zeeman effect in a vapor cell,” Appl. Phys. B 73, 133-138 (2001).
[CrossRef]

Appl. Phys. Lett.

R. L. Barger, M. S. Sorem, and J. L. Hall, “Frequency stabilization of a cw dye laser,” Appl. Phys. Lett. 22, 573-575 (1973).
[CrossRef]

Eur. Phys. J. D

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D 22, 279-283 (2003).
[CrossRef]

IEEE J. Quantum Electron.

P. Laurent, A. Clairon, and C. Bréant, “Frequency noise analysis of optically self-locked diode lasers,” IEEE J. Quantum Electron. 25, 1131-1142 (1989).
[CrossRef]

M. W. Fleming and A. Mooradian, “Spectral characteristics of external-cavity controlled semiconductor lasers,” IEEE J. Quantum Electron. 17, 44-59 (1981).
[CrossRef]

J. Phys. E

A. J. Wallard, “Frequency stabilization of the helium-neon laser by saturated absorption in iodine vapour,” J. Phys. E 5, 926-930 (1972).
[CrossRef]

J. Phys. III

B. Chéron, H. Gilles, J. Havel, O. Moreau, and H. Sorel, “Laser frequency stabilization using Zeeman effect,” J. Phys. III 4, 401-406 (1994).
[CrossRef]

Opt. Commun.

A. Hemmerich, D. H. McIntyre, D. Schropp Jr., D. Meschede, and T. W. Hänsch, “Optically stabilized narrow linewidth semiconductor laser for high resolution spectroscopy,” Opt. Commun. 75, 118-122 (1990).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631-2634 (1987).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

G. D. Rovera, G. Santarelli, and A. Clairon, “A laser diode system stabilized on the caesium D2 line,” Rev. Sci. Instrum. 65, 1502-1505 (1994).
[CrossRef]

C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1-20 (1991).
[CrossRef]

Other

This system has been used in our laboratory, in atom surface experiments requiring a steady illumination by a fixed-frequency pump diode laser: see W. S. Martins, M. Oriá, and M. Chevrollier, “Probing laser-induced adsorption with selective reflection,”Nineteenth International Conference on Laser Spectroscopy, ICOLS'09, Kussharo, Hokkaido, Japan, 2009.

The magnetic field is produced by permanent magnets removed from loudspeakers. The inhomogeneities at the extremities of the cell do not affect the performance of the system.

The laser is mounted on an L-shaped copper base with a large (3 cm×3 cm) exchange surface in contact with a TEC element.

W. Demtröder, Laser Spectroscopy, 3rd ed. (Springer-Verlag, 2003).

The system recovers to stabilization after we strongly hit our homemade optical table with a rubber hammer: see .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup: DL, diode laser; λ / 2 , half-wave plate; OI, optical isolator; BS, beam splitter; OF, optical filter; B, magnetic field; λ / 4 , quarter-wave plate; P, polarizer; M, mirror; PD, photodetector; DC, detector circuit; PID, proportional- integral-derivative controller; SW, switch; TEC, thermoelectric cooler; C1 and C2, optical cells with cesium vapor.

Fig. 2
Fig. 2

Schematic of the detection circuit. The U2A operational amplifier works as a transimpedance amplifier of the photocurrent derived from the photodiodes. The configuration employed allows only the amplification of the photocurrent difference. P 1 and P 2 are potentiometers: P 1 sets the operational amplifier offset voltage to zero, and P 2 adds a reference offset, thus enabling the locking point to be slightly shifted along the locking slope side.

Fig. 3
Fig. 3

Simultaneous recording, as a function of the laser frequency around the Cs D 2 , F = 4 F = 3 , 4 , 5 transition, of (a) the error signal generated through linear absorption of the two circular polarizations in the set up optical cell C1 and (b) the SA signal in an analysis optical cell C2. (c) and (d), SA amplitude as a function of time (c) with laser ALL-TF locked at points A or B, both at flank of a crossover line shape, and (d) with laser conventionally stabilized in current and temperature, both with a relative precision of about 10 4 .

Fig. 4
Fig. 4

SA amplitude as a function of time with laser ALL-TF locked (a) at point A and (c) at point B of Fig. 5, both at the flank of a crossover line shape; [(b), upper curve] SA amplitude as a function of time, starting from point A, with the laser conventionally stabilized in current and temperature, both with a relative precision of about 10 4 .

Fig. 5
Fig. 5

(a) linear absorption, (b) error signal, and (c) PID output before ( t < 0 ) and after ( t > 0 ) a manual on-off-on switching of the locking circuit.

Metrics