Abstract

We present the development of a versatile spectroscopic imaging tool to allow for imaging with single-molecule sensitivity and high spatial resolution. The microscope allows for near-field and subdiffraction-limited far-field imaging by integrating a shear-force microscope on top of a custom inverted microscope design. The instrument has the ability to image in ambient conditions with optical resolutions on the order of tens of nanometers in the near field. A single low-cost computer controls the microscope with a field programmable gate array data acquisition card. High spatial resolution imaging is achieved with an inexpensive CW multiphoton excitation source, using an apertureless probe and simplified optical pathways. The high-resolution, combined with high collection efficiency and single-molecule sensitive optical capabilities of the microscope, are demonstrated with a low-cost CW laser source as well as a mode-locked laser source.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49, 57–61 (1982).
    [Crossref]
  2. G. Binnig, C. F. Quate, and Ch. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56, 930–933 (1986).
    [Crossref] [PubMed]
  3. K. Karrai and R. D. Grober, “Piezo-electric tuning fork tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66, 1842–1844 (1995).
    [Crossref]
  4. W. H. J. Rensen, N. F. van Hulst, and S. B. Kammer, “Imaging soft samples in liquid with tuning fork based shear force microscopy,” Appl. Phys. Lett. 77, 1557–1559 (2000).
    [Crossref]
  5. A. La Rosa, X. Cui, J. McCollum, N. Li, and R. Nordstrom, “The ultrasonic/shear-force microscope: integrating ultrasonic sensing into a near-field scanning optical microscope,” Rev. Sci. Instrum. 76, 093707 (2005).
    [Crossref]
  6. J. Rychen, T. Ihn, P. Studerus, A. Herrmann, K. Ensslin, H. J. Hug, P. J. A. van Schendel, and H. J. Gäuntherodt, “Force—distance studies with piezoelectric tuning forks below 4.2K,” Appl. Surf. Sci. 157, 290–294 (2000).
    [Crossref]
  7. H. Edwards, L. Taylor, W. Duncan, and A. J. Melmed, “Fast, high-resolution atomic force microscopy using a quartz tuning fork as actuator and sensor,” J. Appl. Phys. 82, 980–984 (1997).
    [Crossref]
  8. M. Todorovic and S. Schultz, “Magnetic force microscopy using nonoptical piezoelectric quartz tuning fork detection design with applications to magnetic recording studies,” J. Appl. Phys. 83, 6229–6231 (1998).
    [Crossref]
  9. D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653(1984).
    [Crossref]
  10. A. Lewis, M. Isaacson, A. Harootunian, and A. Murry, “Development of a 500Å spatial resolution light microscope: I. Light is efficiently transmitted through λ/16 diameter apertures,” Ultramicroscopy 13, 227–231 (1984).
    [Crossref]
  11. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
    [Crossref] [PubMed]
  12. M. Dyba and S. Hell, “Focal spots of size λ/23 open up far-field florescence microscopy at 33nm axial resolution,” Phys. Rev. Lett. 88, 163901 (2002).
    [Crossref] [PubMed]
  13. K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440, 935–939 (2006).
    [Crossref] [PubMed]
  14. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–795 (2006).
    [Crossref] [PubMed]
  15. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Elenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645(2006).
    [Crossref] [PubMed]
  16. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).
    [Crossref] [PubMed]
  17. Y. Inouye and S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett. 19, 159–161(1994).
    [Crossref] [PubMed]
  18. F. Zenhausern, Y. Martin, and H. K. Wickramsinghe, “Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science 269, 1083–1085 (1995).
    [Crossref] [PubMed]
  19. E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
    [Crossref]
  20. M. J. Vasile, D. A. Grigg, J. E. Griffith, E. A. Fitzgerald, and P. E. Russell, “Scanning probe tips formed by focused ion beams,” Rev. Sci. Instrum. 62, 2167–2171 (1991).
    [Crossref]
  21. J. Orloff, “High-resolution focused ion beams,” Rev. Sci. Instrum. 64, 1105–1130 (1993).
    [Crossref]
  22. E. J. Sánchez, J. T. Krug II, and X. S. Xie, “Ion and electron beam assisted growth of nanometric SimOn structures for near-field microscopy,” Rev. Sci. Instrum. 73, 3901–3907(2002).
    [Crossref]
  23. J. Wessel, “Surface-enhanced optical microscopy,” J. Opt. Soc. Am. B 2, 1538–1541 (1985).
    [Crossref]
  24. R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131–136 (2000).
    [Crossref]
  25. A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90, 095503 (2003).
    [Crossref] [PubMed]
  26. J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, “Tip-enhanced fluorescence microscopy at 10 nanometer resolution,” Phys. Rev. Lett. 93, 180801 (2004).
    [Crossref] [PubMed]
  27. H. F. Hamann, A. Gallagher, and D. J. Nesbitt, “Near-field fluorescence imaging by localized field enhancement near a sharp probe tip,” Appl. Phys. Lett. 76, 1953–1955 (2000).
    [Crossref]
  28. T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801 (2004).
    [Crossref] [PubMed]
  29. J. T. Krug, E. J. Sánchez, and X. S. Xie, “Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation,” J. Chem. Phys. 116, 10895–10901 (2002).
    [Crossref]
  30. L. Novotny, E. J. Sánchez, and X. S. Xie, “Near-field optical imaging using metal tips illuminated by higher-order Hermite–Gaussian beams,” Ultramicroscopy 71, 21–29 (1998).
    [Crossref]
  31. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
    [Crossref] [PubMed]
  32. S. W. Hell, M. Booth, S. Wilms, C. M. Schettner, A. K. Kirsch, D. J. Arndt-Jovin, and T. M. Jovin, “Two-photon near- and far-field fluorescence microscopy with continuous-wave excitation,” Opt. Lett. 23, 1238–1240 (1998).
    [Crossref]
  33. B. Drake, R. Sonnenfeld, J. Schneir, P. K. Hansma, G. Slough, and R. V. Coleman, “A tunneling microscope for operation in air or fluids,” Rev. Sci. Instrum. 57, 441–445 (1986).
    [Crossref]
  34. S. Gregory and C. T. Rogers, “High-speed scanning tunneling microscopes,” J. Vac. Sci. Technol. A 6, 390–392 (1988).
    [Crossref]
  35. S. Park and R. C. Barrett, “Design considerations for an STM system,” in Methods of Experimental Physics, J.A.Stroscio and W.J.Kaiser, eds. (Academic, 1993), Vol. 27, pp. 30–76.
  36. E. J. Sánchez, L. Novotny, G. R. Holtom, and S. Xie, “Room-temperature fluorescence imaging and spectroscopy of single molecules by two-photon excitation,” J. Phys. Chem. A 101, 7019–7023 (1997).
    [Crossref]
  37. D. A. Higgins and P. F. Barbara, “Excitonic transitions in J-aggregates probed by near-field scanning optical microscopy,” J. Phys. Chem. 99, 3–7 (1995).
    [Crossref]
  38. D. A. Higgins, J. Kerimo, D. A. Vanden Bout, and P. F. Barbara, “A molecular yarn: near-field optical studies of self-assembled, flexible, fluorescent fibers,” J. Am. Chem. Soc. 118, 4049–4058 (1996).
    [Crossref]
  39. D. B. Nowak, “ANSOM Project,” http://ansom.research.pdx.edu/.
  40. D. B. Nowak, “The design of a novel tip enhanced near-field scanning probe microscope for ultra-high resolution optical imaging,” Ph.D dissertation (Portland State University, 2010).

2006 (4)

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440, 935–939 (2006).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–795 (2006).
[Crossref] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Elenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645(2006).
[Crossref] [PubMed]

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).
[Crossref] [PubMed]

2005 (1)

A. La Rosa, X. Cui, J. McCollum, N. Li, and R. Nordstrom, “The ultrasonic/shear-force microscope: integrating ultrasonic sensing into a near-field scanning optical microscope,” Rev. Sci. Instrum. 76, 093707 (2005).
[Crossref]

2004 (2)

J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, “Tip-enhanced fluorescence microscopy at 10 nanometer resolution,” Phys. Rev. Lett. 93, 180801 (2004).
[Crossref] [PubMed]

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801 (2004).
[Crossref] [PubMed]

2003 (1)

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90, 095503 (2003).
[Crossref] [PubMed]

2002 (3)

E. J. Sánchez, J. T. Krug II, and X. S. Xie, “Ion and electron beam assisted growth of nanometric SimOn structures for near-field microscopy,” Rev. Sci. Instrum. 73, 3901–3907(2002).
[Crossref]

J. T. Krug, E. J. Sánchez, and X. S. Xie, “Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation,” J. Chem. Phys. 116, 10895–10901 (2002).
[Crossref]

M. Dyba and S. Hell, “Focal spots of size λ/23 open up far-field florescence microscopy at 33nm axial resolution,” Phys. Rev. Lett. 88, 163901 (2002).
[Crossref] [PubMed]

2000 (4)

J. Rychen, T. Ihn, P. Studerus, A. Herrmann, K. Ensslin, H. J. Hug, P. J. A. van Schendel, and H. J. Gäuntherodt, “Force—distance studies with piezoelectric tuning forks below 4.2K,” Appl. Surf. Sci. 157, 290–294 (2000).
[Crossref]

W. H. J. Rensen, N. F. van Hulst, and S. B. Kammer, “Imaging soft samples in liquid with tuning fork based shear force microscopy,” Appl. Phys. Lett. 77, 1557–1559 (2000).
[Crossref]

R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131–136 (2000).
[Crossref]

H. F. Hamann, A. Gallagher, and D. J. Nesbitt, “Near-field fluorescence imaging by localized field enhancement near a sharp probe tip,” Appl. Phys. Lett. 76, 1953–1955 (2000).
[Crossref]

1999 (1)

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[Crossref]

1998 (3)

M. Todorovic and S. Schultz, “Magnetic force microscopy using nonoptical piezoelectric quartz tuning fork detection design with applications to magnetic recording studies,” J. Appl. Phys. 83, 6229–6231 (1998).
[Crossref]

L. Novotny, E. J. Sánchez, and X. S. Xie, “Near-field optical imaging using metal tips illuminated by higher-order Hermite–Gaussian beams,” Ultramicroscopy 71, 21–29 (1998).
[Crossref]

S. W. Hell, M. Booth, S. Wilms, C. M. Schettner, A. K. Kirsch, D. J. Arndt-Jovin, and T. M. Jovin, “Two-photon near- and far-field fluorescence microscopy with continuous-wave excitation,” Opt. Lett. 23, 1238–1240 (1998).
[Crossref]

1997 (2)

E. J. Sánchez, L. Novotny, G. R. Holtom, and S. Xie, “Room-temperature fluorescence imaging and spectroscopy of single molecules by two-photon excitation,” J. Phys. Chem. A 101, 7019–7023 (1997).
[Crossref]

H. Edwards, L. Taylor, W. Duncan, and A. J. Melmed, “Fast, high-resolution atomic force microscopy using a quartz tuning fork as actuator and sensor,” J. Appl. Phys. 82, 980–984 (1997).
[Crossref]

1996 (1)

D. A. Higgins, J. Kerimo, D. A. Vanden Bout, and P. F. Barbara, “A molecular yarn: near-field optical studies of self-assembled, flexible, fluorescent fibers,” J. Am. Chem. Soc. 118, 4049–4058 (1996).
[Crossref]

1995 (3)

K. Karrai and R. D. Grober, “Piezo-electric tuning fork tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66, 1842–1844 (1995).
[Crossref]

D. A. Higgins and P. F. Barbara, “Excitonic transitions in J-aggregates probed by near-field scanning optical microscopy,” J. Phys. Chem. 99, 3–7 (1995).
[Crossref]

F. Zenhausern, Y. Martin, and H. K. Wickramsinghe, “Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science 269, 1083–1085 (1995).
[Crossref] [PubMed]

1994 (1)

1993 (1)

J. Orloff, “High-resolution focused ion beams,” Rev. Sci. Instrum. 64, 1105–1130 (1993).
[Crossref]

1991 (2)

M. J. Vasile, D. A. Grigg, J. E. Griffith, E. A. Fitzgerald, and P. E. Russell, “Scanning probe tips formed by focused ion beams,” Rev. Sci. Instrum. 62, 2167–2171 (1991).
[Crossref]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[Crossref] [PubMed]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

1988 (1)

S. Gregory and C. T. Rogers, “High-speed scanning tunneling microscopes,” J. Vac. Sci. Technol. A 6, 390–392 (1988).
[Crossref]

1986 (2)

B. Drake, R. Sonnenfeld, J. Schneir, P. K. Hansma, G. Slough, and R. V. Coleman, “A tunneling microscope for operation in air or fluids,” Rev. Sci. Instrum. 57, 441–445 (1986).
[Crossref]

G. Binnig, C. F. Quate, and Ch. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56, 930–933 (1986).
[Crossref] [PubMed]

1985 (1)

1984 (2)

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653(1984).
[Crossref]

A. Lewis, M. Isaacson, A. Harootunian, and A. Murry, “Development of a 500Å spatial resolution light microscope: I. Light is efficiently transmitted through λ/16 diameter apertures,” Ultramicroscopy 13, 227–231 (1984).
[Crossref]

1982 (1)

G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49, 57–61 (1982).
[Crossref]

Arndt-Jovin, D. J.

Barbara, P. F.

D. A. Higgins, J. Kerimo, D. A. Vanden Bout, and P. F. Barbara, “A molecular yarn: near-field optical studies of self-assembled, flexible, fluorescent fibers,” J. Am. Chem. Soc. 118, 4049–4058 (1996).
[Crossref]

D. A. Higgins and P. F. Barbara, “Excitonic transitions in J-aggregates probed by near-field scanning optical microscopy,” J. Phys. Chem. 99, 3–7 (1995).
[Crossref]

Barrett, R. C.

S. Park and R. C. Barrett, “Design considerations for an STM system,” in Methods of Experimental Physics, J.A.Stroscio and W.J.Kaiser, eds. (Academic, 1993), Vol. 27, pp. 30–76.

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–795 (2006).
[Crossref] [PubMed]

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Elenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645(2006).
[Crossref] [PubMed]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[Crossref] [PubMed]

Binnig, G.

G. Binnig, C. F. Quate, and Ch. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56, 930–933 (1986).
[Crossref] [PubMed]

G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49, 57–61 (1982).
[Crossref]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Elenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645(2006).
[Crossref] [PubMed]

Booth, M.

Coleman, R. V.

B. Drake, R. Sonnenfeld, J. Schneir, P. K. Hansma, G. Slough, and R. V. Coleman, “A tunneling microscope for operation in air or fluids,” Rev. Sci. Instrum. 57, 441–445 (1986).
[Crossref]

Cui, X.

A. La Rosa, X. Cui, J. McCollum, N. Li, and R. Nordstrom, “The ultrasonic/shear-force microscope: integrating ultrasonic sensing into a near-field scanning optical microscope,” Rev. Sci. Instrum. 76, 093707 (2005).
[Crossref]

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Elenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645(2006).
[Crossref] [PubMed]

Deckert, V.

R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131–136 (2000).
[Crossref]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653(1984).
[Crossref]

Drake, B.

B. Drake, R. Sonnenfeld, J. Schneir, P. K. Hansma, G. Slough, and R. V. Coleman, “A tunneling microscope for operation in air or fluids,” Rev. Sci. Instrum. 57, 441–445 (1986).
[Crossref]

Duncan, W.

H. Edwards, L. Taylor, W. Duncan, and A. J. Melmed, “Fast, high-resolution atomic force microscopy using a quartz tuning fork as actuator and sensor,” J. Appl. Phys. 82, 980–984 (1997).
[Crossref]

Dyba, M.

M. Dyba and S. Hell, “Focal spots of size λ/23 open up far-field florescence microscopy at 33nm axial resolution,” Phys. Rev. Lett. 88, 163901 (2002).
[Crossref] [PubMed]

Edwards, H.

H. Edwards, L. Taylor, W. Duncan, and A. J. Melmed, “Fast, high-resolution atomic force microscopy using a quartz tuning fork as actuator and sensor,” J. Appl. Phys. 82, 980–984 (1997).
[Crossref]

Elenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Elenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645(2006).
[Crossref] [PubMed]

Ensslin, K.

J. Rychen, T. Ihn, P. Studerus, A. Herrmann, K. Ensslin, H. J. Hug, P. J. A. van Schendel, and H. J. Gäuntherodt, “Force—distance studies with piezoelectric tuning forks below 4.2K,” Appl. Surf. Sci. 157, 290–294 (2000).
[Crossref]

Fitzgerald, E. A.

M. J. Vasile, D. A. Grigg, J. E. Griffith, E. A. Fitzgerald, and P. E. Russell, “Scanning probe tips formed by focused ion beams,” Rev. Sci. Instrum. 62, 2167–2171 (1991).
[Crossref]

Gallagher, A.

H. F. Hamann, A. Gallagher, and D. J. Nesbitt, “Near-field fluorescence imaging by localized field enhancement near a sharp probe tip,” Appl. Phys. Lett. 76, 1953–1955 (2000).
[Crossref]

Gäuntherodt, H. J.

J. Rychen, T. Ihn, P. Studerus, A. Herrmann, K. Ensslin, H. J. Hug, P. J. A. van Schendel, and H. J. Gäuntherodt, “Force—distance studies with piezoelectric tuning forks below 4.2K,” Appl. Surf. Sci. 157, 290–294 (2000).
[Crossref]

Gerber, Ch.

G. Binnig, C. F. Quate, and Ch. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56, 930–933 (1986).
[Crossref] [PubMed]

G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49, 57–61 (1982).
[Crossref]

Gerton, J. M.

J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, “Tip-enhanced fluorescence microscopy at 10 nanometer resolution,” Phys. Rev. Lett. 93, 180801 (2004).
[Crossref] [PubMed]

Girirajan, T. P. K.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).
[Crossref] [PubMed]

Gregory, S.

S. Gregory and C. T. Rogers, “High-speed scanning tunneling microscopes,” J. Vac. Sci. Technol. A 6, 390–392 (1988).
[Crossref]

Griffith, J. E.

M. J. Vasile, D. A. Grigg, J. E. Griffith, E. A. Fitzgerald, and P. E. Russell, “Scanning probe tips formed by focused ion beams,” Rev. Sci. Instrum. 62, 2167–2171 (1991).
[Crossref]

Grigg, D. A.

M. J. Vasile, D. A. Grigg, J. E. Griffith, E. A. Fitzgerald, and P. E. Russell, “Scanning probe tips formed by focused ion beams,” Rev. Sci. Instrum. 62, 2167–2171 (1991).
[Crossref]

Grober, R. D.

K. Karrai and R. D. Grober, “Piezo-electric tuning fork tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66, 1842–1844 (1995).
[Crossref]

Hamann, H. F.

H. F. Hamann, A. Gallagher, and D. J. Nesbitt, “Near-field fluorescence imaging by localized field enhancement near a sharp probe tip,” Appl. Phys. Lett. 76, 1953–1955 (2000).
[Crossref]

Hansma, P. K.

B. Drake, R. Sonnenfeld, J. Schneir, P. K. Hansma, G. Slough, and R. V. Coleman, “A tunneling microscope for operation in air or fluids,” Rev. Sci. Instrum. 57, 441–445 (1986).
[Crossref]

Harootunian, A.

A. Lewis, M. Isaacson, A. Harootunian, and A. Murry, “Development of a 500Å spatial resolution light microscope: I. Light is efficiently transmitted through λ/16 diameter apertures,” Ultramicroscopy 13, 227–231 (1984).
[Crossref]

Harris, T. D.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[Crossref] [PubMed]

Hartschuh, A.

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90, 095503 (2003).
[Crossref] [PubMed]

Hashimoto, M.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801 (2004).
[Crossref] [PubMed]

Hayazawa, N.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801 (2004).
[Crossref] [PubMed]

Hell, S.

M. Dyba and S. Hell, “Focal spots of size λ/23 open up far-field florescence microscopy at 33nm axial resolution,” Phys. Rev. Lett. 88, 163901 (2002).
[Crossref] [PubMed]

Hell, S. W.

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440, 935–939 (2006).
[Crossref] [PubMed]

S. W. Hell, M. Booth, S. Wilms, C. M. Schettner, A. K. Kirsch, D. J. Arndt-Jovin, and T. M. Jovin, “Two-photon near- and far-field fluorescence microscopy with continuous-wave excitation,” Opt. Lett. 23, 1238–1240 (1998).
[Crossref]

Herrmann, A.

J. Rychen, T. Ihn, P. Studerus, A. Herrmann, K. Ensslin, H. J. Hug, P. J. A. van Schendel, and H. J. Gäuntherodt, “Force—distance studies with piezoelectric tuning forks below 4.2K,” Appl. Surf. Sci. 157, 290–294 (2000).
[Crossref]

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Elenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645(2006).
[Crossref] [PubMed]

Hess, S. T.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).
[Crossref] [PubMed]

Higgins, D. A.

D. A. Higgins, J. Kerimo, D. A. Vanden Bout, and P. F. Barbara, “A molecular yarn: near-field optical studies of self-assembled, flexible, fluorescent fibers,” J. Am. Chem. Soc. 118, 4049–4058 (1996).
[Crossref]

D. A. Higgins and P. F. Barbara, “Excitonic transitions in J-aggregates probed by near-field scanning optical microscopy,” J. Phys. Chem. 99, 3–7 (1995).
[Crossref]

Holtom, G. R.

E. J. Sánchez, L. Novotny, G. R. Holtom, and S. Xie, “Room-temperature fluorescence imaging and spectroscopy of single molecules by two-photon excitation,” J. Phys. Chem. A 101, 7019–7023 (1997).
[Crossref]

Hug, H. J.

J. Rychen, T. Ihn, P. Studerus, A. Herrmann, K. Ensslin, H. J. Hug, P. J. A. van Schendel, and H. J. Gäuntherodt, “Force—distance studies with piezoelectric tuning forks below 4.2K,” Appl. Surf. Sci. 157, 290–294 (2000).
[Crossref]

Ichimura, T.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801 (2004).
[Crossref] [PubMed]

Ihn, T.

J. Rychen, T. Ihn, P. Studerus, A. Herrmann, K. Ensslin, H. J. Hug, P. J. A. van Schendel, and H. J. Gäuntherodt, “Force—distance studies with piezoelectric tuning forks below 4.2K,” Appl. Surf. Sci. 157, 290–294 (2000).
[Crossref]

Inouye, Y.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801 (2004).
[Crossref] [PubMed]

Y. Inouye and S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett. 19, 159–161(1994).
[Crossref] [PubMed]

Isaacson, M.

A. Lewis, M. Isaacson, A. Harootunian, and A. Murry, “Development of a 500Å spatial resolution light microscope: I. Light is efficiently transmitted through λ/16 diameter apertures,” Ultramicroscopy 13, 227–231 (1984).
[Crossref]

Jahn, R.

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440, 935–939 (2006).
[Crossref] [PubMed]

Jovin, T. M.

Kammer, S. B.

W. H. J. Rensen, N. F. van Hulst, and S. B. Kammer, “Imaging soft samples in liquid with tuning fork based shear force microscopy,” Appl. Phys. Lett. 77, 1557–1559 (2000).
[Crossref]

Karrai, K.

K. Karrai and R. D. Grober, “Piezo-electric tuning fork tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66, 1842–1844 (1995).
[Crossref]

Kawata, S.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801 (2004).
[Crossref] [PubMed]

Y. Inouye and S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett. 19, 159–161(1994).
[Crossref] [PubMed]

Kerimo, J.

D. A. Higgins, J. Kerimo, D. A. Vanden Bout, and P. F. Barbara, “A molecular yarn: near-field optical studies of self-assembled, flexible, fluorescent fibers,” J. Am. Chem. Soc. 118, 4049–4058 (1996).
[Crossref]

Kirsch, A. K.

Kostelak, R. L.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[Crossref] [PubMed]

Krug, J. T.

J. T. Krug, E. J. Sánchez, and X. S. Xie, “Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation,” J. Chem. Phys. 116, 10895–10901 (2002).
[Crossref]

E. J. Sánchez, J. T. Krug II, and X. S. Xie, “Ion and electron beam assisted growth of nanometric SimOn structures for near-field microscopy,” Rev. Sci. Instrum. 73, 3901–3907(2002).
[Crossref]

La Rosa, A.

A. La Rosa, X. Cui, J. McCollum, N. Li, and R. Nordstrom, “The ultrasonic/shear-force microscope: integrating ultrasonic sensing into a near-field scanning optical microscope,” Rev. Sci. Instrum. 76, 093707 (2005).
[Crossref]

Lanz, M.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653(1984).
[Crossref]

Lessard, G. A.

J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, “Tip-enhanced fluorescence microscopy at 10 nanometer resolution,” Phys. Rev. Lett. 93, 180801 (2004).
[Crossref] [PubMed]

Lewis, A.

A. Lewis, M. Isaacson, A. Harootunian, and A. Murry, “Development of a 500Å spatial resolution light microscope: I. Light is efficiently transmitted through λ/16 diameter apertures,” Ultramicroscopy 13, 227–231 (1984).
[Crossref]

Li, N.

A. La Rosa, X. Cui, J. McCollum, N. Li, and R. Nordstrom, “The ultrasonic/shear-force microscope: integrating ultrasonic sensing into a near-field scanning optical microscope,” Rev. Sci. Instrum. 76, 093707 (2005).
[Crossref]

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Elenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645(2006).
[Crossref] [PubMed]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Elenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645(2006).
[Crossref] [PubMed]

Ma, Z.

J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, “Tip-enhanced fluorescence microscopy at 10 nanometer resolution,” Phys. Rev. Lett. 93, 180801 (2004).
[Crossref] [PubMed]

Martin, Y.

F. Zenhausern, Y. Martin, and H. K. Wickramsinghe, “Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science 269, 1083–1085 (1995).
[Crossref] [PubMed]

Mason, M. D.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).
[Crossref] [PubMed]

McCollum, J.

A. La Rosa, X. Cui, J. McCollum, N. Li, and R. Nordstrom, “The ultrasonic/shear-force microscope: integrating ultrasonic sensing into a near-field scanning optical microscope,” Rev. Sci. Instrum. 76, 093707 (2005).
[Crossref]

Melmed, A. J.

H. Edwards, L. Taylor, W. Duncan, and A. J. Melmed, “Fast, high-resolution atomic force microscopy using a quartz tuning fork as actuator and sensor,” J. Appl. Phys. 82, 980–984 (1997).
[Crossref]

Murry, A.

A. Lewis, M. Isaacson, A. Harootunian, and A. Murry, “Development of a 500Å spatial resolution light microscope: I. Light is efficiently transmitted through λ/16 diameter apertures,” Ultramicroscopy 13, 227–231 (1984).
[Crossref]

Nesbitt, D. J.

H. F. Hamann, A. Gallagher, and D. J. Nesbitt, “Near-field fluorescence imaging by localized field enhancement near a sharp probe tip,” Appl. Phys. Lett. 76, 1953–1955 (2000).
[Crossref]

Nordstrom, R.

A. La Rosa, X. Cui, J. McCollum, N. Li, and R. Nordstrom, “The ultrasonic/shear-force microscope: integrating ultrasonic sensing into a near-field scanning optical microscope,” Rev. Sci. Instrum. 76, 093707 (2005).
[Crossref]

Novotny, L.

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90, 095503 (2003).
[Crossref] [PubMed]

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[Crossref]

L. Novotny, E. J. Sánchez, and X. S. Xie, “Near-field optical imaging using metal tips illuminated by higher-order Hermite–Gaussian beams,” Ultramicroscopy 71, 21–29 (1998).
[Crossref]

E. J. Sánchez, L. Novotny, G. R. Holtom, and S. Xie, “Room-temperature fluorescence imaging and spectroscopy of single molecules by two-photon excitation,” J. Phys. Chem. A 101, 7019–7023 (1997).
[Crossref]

Nowak, D. B.

D. B. Nowak, “ANSOM Project,” http://ansom.research.pdx.edu/.

D. B. Nowak, “The design of a novel tip enhanced near-field scanning probe microscope for ultra-high resolution optical imaging,” Ph.D dissertation (Portland State University, 2010).

Orloff, J.

J. Orloff, “High-resolution focused ion beams,” Rev. Sci. Instrum. 64, 1105–1130 (1993).
[Crossref]

Park, S.

S. Park and R. C. Barrett, “Design considerations for an STM system,” in Methods of Experimental Physics, J.A.Stroscio and W.J.Kaiser, eds. (Academic, 1993), Vol. 27, pp. 30–76.

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Elenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645(2006).
[Crossref] [PubMed]

Pohl, D. W.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653(1984).
[Crossref]

Quake, S. R.

J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, “Tip-enhanced fluorescence microscopy at 10 nanometer resolution,” Phys. Rev. Lett. 93, 180801 (2004).
[Crossref] [PubMed]

Quate, C. F.

G. Binnig, C. F. Quate, and Ch. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56, 930–933 (1986).
[Crossref] [PubMed]

Rensen, W. H. J.

W. H. J. Rensen, N. F. van Hulst, and S. B. Kammer, “Imaging soft samples in liquid with tuning fork based shear force microscopy,” Appl. Phys. Lett. 77, 1557–1559 (2000).
[Crossref]

Rizzoli, S. O.

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440, 935–939 (2006).
[Crossref] [PubMed]

Rogers, C. T.

S. Gregory and C. T. Rogers, “High-speed scanning tunneling microscopes,” J. Vac. Sci. Technol. A 6, 390–392 (1988).
[Crossref]

Rohrer, H.

G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49, 57–61 (1982).
[Crossref]

Russell, P. E.

M. J. Vasile, D. A. Grigg, J. E. Griffith, E. A. Fitzgerald, and P. E. Russell, “Scanning probe tips formed by focused ion beams,” Rev. Sci. Instrum. 62, 2167–2171 (1991).
[Crossref]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–795 (2006).
[Crossref] [PubMed]

Rychen, J.

J. Rychen, T. Ihn, P. Studerus, A. Herrmann, K. Ensslin, H. J. Hug, P. J. A. van Schendel, and H. J. Gäuntherodt, “Force—distance studies with piezoelectric tuning forks below 4.2K,” Appl. Surf. Sci. 157, 290–294 (2000).
[Crossref]

Sánchez, E. J.

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90, 095503 (2003).
[Crossref] [PubMed]

E. J. Sánchez, J. T. Krug II, and X. S. Xie, “Ion and electron beam assisted growth of nanometric SimOn structures for near-field microscopy,” Rev. Sci. Instrum. 73, 3901–3907(2002).
[Crossref]

J. T. Krug, E. J. Sánchez, and X. S. Xie, “Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation,” J. Chem. Phys. 116, 10895–10901 (2002).
[Crossref]

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[Crossref]

L. Novotny, E. J. Sánchez, and X. S. Xie, “Near-field optical imaging using metal tips illuminated by higher-order Hermite–Gaussian beams,” Ultramicroscopy 71, 21–29 (1998).
[Crossref]

E. J. Sánchez, L. Novotny, G. R. Holtom, and S. Xie, “Room-temperature fluorescence imaging and spectroscopy of single molecules by two-photon excitation,” J. Phys. Chem. A 101, 7019–7023 (1997).
[Crossref]

Schettner, C. M.

Schneir, J.

B. Drake, R. Sonnenfeld, J. Schneir, P. K. Hansma, G. Slough, and R. V. Coleman, “A tunneling microscope for operation in air or fluids,” Rev. Sci. Instrum. 57, 441–445 (1986).
[Crossref]

Schultz, S.

M. Todorovic and S. Schultz, “Magnetic force microscopy using nonoptical piezoelectric quartz tuning fork detection design with applications to magnetic recording studies,” J. Appl. Phys. 83, 6229–6231 (1998).
[Crossref]

Slough, G.

B. Drake, R. Sonnenfeld, J. Schneir, P. K. Hansma, G. Slough, and R. V. Coleman, “A tunneling microscope for operation in air or fluids,” Rev. Sci. Instrum. 57, 441–445 (1986).
[Crossref]

Sonnenfeld, R.

B. Drake, R. Sonnenfeld, J. Schneir, P. K. Hansma, G. Slough, and R. V. Coleman, “A tunneling microscope for operation in air or fluids,” Rev. Sci. Instrum. 57, 441–445 (1986).
[Crossref]

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Elenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645(2006).
[Crossref] [PubMed]

Stöckle, R. M.

R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131–136 (2000).
[Crossref]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

Studerus, P.

J. Rychen, T. Ihn, P. Studerus, A. Herrmann, K. Ensslin, H. J. Hug, P. J. A. van Schendel, and H. J. Gäuntherodt, “Force—distance studies with piezoelectric tuning forks below 4.2K,” Appl. Surf. Sci. 157, 290–294 (2000).
[Crossref]

Suh, Y. D.

R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131–136 (2000).
[Crossref]

Taylor, L.

H. Edwards, L. Taylor, W. Duncan, and A. J. Melmed, “Fast, high-resolution atomic force microscopy using a quartz tuning fork as actuator and sensor,” J. Appl. Phys. 82, 980–984 (1997).
[Crossref]

Todorovic, M.

M. Todorovic and S. Schultz, “Magnetic force microscopy using nonoptical piezoelectric quartz tuning fork detection design with applications to magnetic recording studies,” J. Appl. Phys. 83, 6229–6231 (1998).
[Crossref]

Trautman, J. K.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[Crossref] [PubMed]

van Hulst, N. F.

W. H. J. Rensen, N. F. van Hulst, and S. B. Kammer, “Imaging soft samples in liquid with tuning fork based shear force microscopy,” Appl. Phys. Lett. 77, 1557–1559 (2000).
[Crossref]

van Schendel, P. J. A.

J. Rychen, T. Ihn, P. Studerus, A. Herrmann, K. Ensslin, H. J. Hug, P. J. A. van Schendel, and H. J. Gäuntherodt, “Force—distance studies with piezoelectric tuning forks below 4.2K,” Appl. Surf. Sci. 157, 290–294 (2000).
[Crossref]

Vanden Bout, D. A.

D. A. Higgins, J. Kerimo, D. A. Vanden Bout, and P. F. Barbara, “A molecular yarn: near-field optical studies of self-assembled, flexible, fluorescent fibers,” J. Am. Chem. Soc. 118, 4049–4058 (1996).
[Crossref]

Vasile, M. J.

M. J. Vasile, D. A. Grigg, J. E. Griffith, E. A. Fitzgerald, and P. E. Russell, “Scanning probe tips formed by focused ion beams,” Rev. Sci. Instrum. 62, 2167–2171 (1991).
[Crossref]

Wade, L. A.

J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, “Tip-enhanced fluorescence microscopy at 10 nanometer resolution,” Phys. Rev. Lett. 93, 180801 (2004).
[Crossref] [PubMed]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

Weibel, E.

G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49, 57–61 (1982).
[Crossref]

Weiner, J. S.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[Crossref] [PubMed]

Wessel, J.

Westphal, V.

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440, 935–939 (2006).
[Crossref] [PubMed]

Wickramsinghe, H. K.

F. Zenhausern, Y. Martin, and H. K. Wickramsinghe, “Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science 269, 1083–1085 (1995).
[Crossref] [PubMed]

Willig, K. I.

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440, 935–939 (2006).
[Crossref] [PubMed]

Wilms, S.

Xie, S.

E. J. Sánchez, L. Novotny, G. R. Holtom, and S. Xie, “Room-temperature fluorescence imaging and spectroscopy of single molecules by two-photon excitation,” J. Phys. Chem. A 101, 7019–7023 (1997).
[Crossref]

Xie, X. S.

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90, 095503 (2003).
[Crossref] [PubMed]

E. J. Sánchez, J. T. Krug II, and X. S. Xie, “Ion and electron beam assisted growth of nanometric SimOn structures for near-field microscopy,” Rev. Sci. Instrum. 73, 3901–3907(2002).
[Crossref]

J. T. Krug, E. J. Sánchez, and X. S. Xie, “Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation,” J. Chem. Phys. 116, 10895–10901 (2002).
[Crossref]

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[Crossref]

L. Novotny, E. J. Sánchez, and X. S. Xie, “Near-field optical imaging using metal tips illuminated by higher-order Hermite–Gaussian beams,” Ultramicroscopy 71, 21–29 (1998).
[Crossref]

Zenhausern, F.

F. Zenhausern, Y. Martin, and H. K. Wickramsinghe, “Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science 269, 1083–1085 (1995).
[Crossref] [PubMed]

Zenobi, R.

R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131–136 (2000).
[Crossref]

Zhuang, X.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–795 (2006).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

K. Karrai and R. D. Grober, “Piezo-electric tuning fork tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66, 1842–1844 (1995).
[Crossref]

W. H. J. Rensen, N. F. van Hulst, and S. B. Kammer, “Imaging soft samples in liquid with tuning fork based shear force microscopy,” Appl. Phys. Lett. 77, 1557–1559 (2000).
[Crossref]

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653(1984).
[Crossref]

H. F. Hamann, A. Gallagher, and D. J. Nesbitt, “Near-field fluorescence imaging by localized field enhancement near a sharp probe tip,” Appl. Phys. Lett. 76, 1953–1955 (2000).
[Crossref]

Appl. Surf. Sci. (1)

J. Rychen, T. Ihn, P. Studerus, A. Herrmann, K. Ensslin, H. J. Hug, P. J. A. van Schendel, and H. J. Gäuntherodt, “Force—distance studies with piezoelectric tuning forks below 4.2K,” Appl. Surf. Sci. 157, 290–294 (2000).
[Crossref]

Biophys. J. (1)

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).
[Crossref] [PubMed]

Chem. Phys. Lett. (1)

R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131–136 (2000).
[Crossref]

J. Am. Chem. Soc. (1)

D. A. Higgins, J. Kerimo, D. A. Vanden Bout, and P. F. Barbara, “A molecular yarn: near-field optical studies of self-assembled, flexible, fluorescent fibers,” J. Am. Chem. Soc. 118, 4049–4058 (1996).
[Crossref]

J. Appl. Phys. (2)

H. Edwards, L. Taylor, W. Duncan, and A. J. Melmed, “Fast, high-resolution atomic force microscopy using a quartz tuning fork as actuator and sensor,” J. Appl. Phys. 82, 980–984 (1997).
[Crossref]

M. Todorovic and S. Schultz, “Magnetic force microscopy using nonoptical piezoelectric quartz tuning fork detection design with applications to magnetic recording studies,” J. Appl. Phys. 83, 6229–6231 (1998).
[Crossref]

J. Chem. Phys. (1)

J. T. Krug, E. J. Sánchez, and X. S. Xie, “Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation,” J. Chem. Phys. 116, 10895–10901 (2002).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (1)

D. A. Higgins and P. F. Barbara, “Excitonic transitions in J-aggregates probed by near-field scanning optical microscopy,” J. Phys. Chem. 99, 3–7 (1995).
[Crossref]

J. Phys. Chem. A (1)

E. J. Sánchez, L. Novotny, G. R. Holtom, and S. Xie, “Room-temperature fluorescence imaging and spectroscopy of single molecules by two-photon excitation,” J. Phys. Chem. A 101, 7019–7023 (1997).
[Crossref]

J. Vac. Sci. Technol. A (1)

S. Gregory and C. T. Rogers, “High-speed scanning tunneling microscopes,” J. Vac. Sci. Technol. A 6, 390–392 (1988).
[Crossref]

Nat. Methods (1)

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–795 (2006).
[Crossref] [PubMed]

Nature (1)

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440, 935–939 (2006).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Rev. Lett. (7)

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90, 095503 (2003).
[Crossref] [PubMed]

J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, “Tip-enhanced fluorescence microscopy at 10 nanometer resolution,” Phys. Rev. Lett. 93, 180801 (2004).
[Crossref] [PubMed]

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801 (2004).
[Crossref] [PubMed]

M. Dyba and S. Hell, “Focal spots of size λ/23 open up far-field florescence microscopy at 33nm axial resolution,” Phys. Rev. Lett. 88, 163901 (2002).
[Crossref] [PubMed]

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[Crossref]

G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49, 57–61 (1982).
[Crossref]

G. Binnig, C. F. Quate, and Ch. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56, 930–933 (1986).
[Crossref] [PubMed]

Rev. Sci. Instrum. (5)

A. La Rosa, X. Cui, J. McCollum, N. Li, and R. Nordstrom, “The ultrasonic/shear-force microscope: integrating ultrasonic sensing into a near-field scanning optical microscope,” Rev. Sci. Instrum. 76, 093707 (2005).
[Crossref]

M. J. Vasile, D. A. Grigg, J. E. Griffith, E. A. Fitzgerald, and P. E. Russell, “Scanning probe tips formed by focused ion beams,” Rev. Sci. Instrum. 62, 2167–2171 (1991).
[Crossref]

J. Orloff, “High-resolution focused ion beams,” Rev. Sci. Instrum. 64, 1105–1130 (1993).
[Crossref]

E. J. Sánchez, J. T. Krug II, and X. S. Xie, “Ion and electron beam assisted growth of nanometric SimOn structures for near-field microscopy,” Rev. Sci. Instrum. 73, 3901–3907(2002).
[Crossref]

B. Drake, R. Sonnenfeld, J. Schneir, P. K. Hansma, G. Slough, and R. V. Coleman, “A tunneling microscope for operation in air or fluids,” Rev. Sci. Instrum. 57, 441–445 (1986).
[Crossref]

Science (4)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

F. Zenhausern, Y. Martin, and H. K. Wickramsinghe, “Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science 269, 1083–1085 (1995).
[Crossref] [PubMed]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[Crossref] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Elenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645(2006).
[Crossref] [PubMed]

Ultramicroscopy (2)

A. Lewis, M. Isaacson, A. Harootunian, and A. Murry, “Development of a 500Å spatial resolution light microscope: I. Light is efficiently transmitted through λ/16 diameter apertures,” Ultramicroscopy 13, 227–231 (1984).
[Crossref]

L. Novotny, E. J. Sánchez, and X. S. Xie, “Near-field optical imaging using metal tips illuminated by higher-order Hermite–Gaussian beams,” Ultramicroscopy 71, 21–29 (1998).
[Crossref]

Other (3)

S. Park and R. C. Barrett, “Design considerations for an STM system,” in Methods of Experimental Physics, J.A.Stroscio and W.J.Kaiser, eds. (Academic, 1993), Vol. 27, pp. 30–76.

D. B. Nowak, “ANSOM Project,” http://ansom.research.pdx.edu/.

D. B. Nowak, “The design of a novel tip enhanced near-field scanning probe microscope for ultra-high resolution optical imaging,” Ph.D dissertation (Portland State University, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Diagram of the optical pathways of the TENOM system. The beam expander and laser steering periscope give the degrees of freedom necessary to properly fill the back aperture of the objective lens. (b) Mechanical drawing of a cross section of the custom inverted microscope and SFM scan head.

Fig. 2
Fig. 2

Views from the alignment CCDs: (a) is from the CCD focused on the sample surface with probe side illuminated with LEDs. (The squares are gold coatings made through lithography techniques.); (b) is from the CCD mounted to the scan head or microscope base plate, focusing on the tuning fork and imaging probe. [(a) and (b) correspond to the labels (A) and (B), respectively, in Fig. 1.]

Fig. 3
Fig. 3

Single-molecule sensitivity: Images (a) and (b) are far-field optical responses of two-photon excitation of single Rhodamine 6G molecules. (a) was acquired with 50 fs laser pulses at 824 nm and an excitation power of P avg = 563 μW . The FWHM of the single molecules is 275 nm , roughly λ / 3 , which is expected for two-photon excitation. (b) was acquired with the same laser configured for CW at 817 nm at P avg = 32 mW . (c) shows two-photon excited Si quantum dots.

Fig. 4
Fig. 4

Two-photon far-field fluorescence mapping of BPAE cells mounted on a cover glass slip. Sample was excited at 800 nm using 50 fs laser pulses with an average intensity of P avg = 112 μW . Image shows combined fluorescence of MitoTracker red CMXRos, Alexa Fluor 488 (Phalloidin) and di(2-ethylhexyl) phthalate labels. The spectrum of (a) MitoTracker red CMXRos and (b) Alexa Fluor 488 (Phalloidin) were acquired with a 1.0 s integration time at the area marked in the image.

Fig. 5
Fig. 5

Two-photon CW excited spectra of J aggregates demonstrating the quadratic emission profile of the spectra. Data were obtained using 833 nm excitation wavelength with an ICCD using a 1.0 s integration time. The emission output was a power factor of 2.028 in relation to the average excitation power shown by the inlayed graph.

Fig. 6
Fig. 6

Comparison between near-field imaging with ML and CW excitation. (a) Near-field CW two-photon excitation fluorescence image of J aggregates of PIC dye in a PVS film on a glass substrate. λ e = 834 nm at P avg = 1.3 mW . (b) Same region of interest (ROI) with λ e = 833 nm at P avg = 10.2 μm ML at 52 fs . (c) Diffraction-limited far-field two-photon excitation fluorescence of same ROI and excitation source as (a) at P avg = 31.5 μW . (d) Topography of J aggregates taken simultaneously with optical image. Inlay (iv) is an FIB image of the imaging probe. Spectrum (v) is the fluorescence emission from the PIC dye.

Metrics