Abstract

Robustness against geometric attacks is one of the most important issues in digital watermarking. A novel geometric robust watermarking scheme that uses computer-generated holograms as the watermark is presented. To maintain imperceptibility and robustness, a quantization embedding algorithm is adopted to embed the mark hologram into the low-frequency subband of the wavelet-transformed host image. In the detection process, the geometric distorted watermarked images are recovered first by the proposed improved geometric correction method, which is based on the scale invariant feature transform, the invariant centroid, and the pulse coupled neural network. Then the mark holograms are extracted from the recovered images. In comparison with the traditional geometric estimation method, the suggested improved geometric correction method can estimate the geometric distortion parameters more accurately and needs less auxiliary information. Compared with other watermark schemes using digital holograms, the proposed method has the distinct advantage of robustness to geometric attacks. The experimental results demonstrate that the proposed method has good robustness to resist geometric attacks and common attacks including rotation, scaling, translation, image flipping, combined attacks, filtering, occlusion, cropping, and JPEG compression.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Seo and C. D. Yoo, “Localized image watermarking based on feature points of scale-space representation,” Pattern Recog. 37, 1365–1375 (2004).
    [CrossRef]
  2. D. Zheng, Y. Liu, and J. Y. Zhao, “RST invariant digital image watermarking based on a new phase-only filtering method,” Signal Process. 85, 2354–2370 (2005).
    [CrossRef]
  3. L. Zhang, G. B. Qian, and Z. Ji, “Geometric distortion-invariant watermarking based on Tschebycheff transform and dual-channel detection,” Opt. Express 15, 12922–12940(2007).
    [CrossRef]
  4. N. Takai and Y. Mifune, “Digital watermarking by a holographic technique,” Appl. Opt. 41, 865–873 (2002).
    [CrossRef] [PubMed]
  5. H. T. Chang and C. L. Tsan, “Image watermarking by use of digital holography embedded in the discrete-cosine-transform domain,” Appl. Opt. 44, 6211–6219 (2005).
    [CrossRef] [PubMed]
  6. S. Kishk and B. Javidi, “3D object watermarking by a 3D hidden object,” Opt. Express 11, 874–888 (2003).
    [CrossRef] [PubMed]
  7. O. E. Okman and G. B. Akar, “Quantization index modulation-based image watermarking using digital holography,” J. Opt. Soc. Am. A 24, 243–253 (2007).
    [CrossRef]
  8. M. Liu, G. L. Yang, and H. Y. Xie, M. Xia, J. Hu, and H. Zha, “Computer-generated hologram watermarking resilient to rotation and scaling,” Opt. Eng. 46, 060501 (2007).
    [CrossRef]
  9. T. Kreis, Holographic Interferometry: Principles and Methods, 1st ed. (Akademie-Verlag, 1996).
  10. G. Tricoles, “Computer generated holograms: an historical review,” Appl. Opt. 26, 4351–4357 (1987).
    [CrossRef] [PubMed]
  11. N. Pavillon, C. S. Seelamantula, J. Kühn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in off-axis digital holography through nonlinear filtering,” Appl. Opt. 48, H186–H195 (2009).
    [CrossRef] [PubMed]
  12. J. M. Blackledge, Digital Image Processing: Mathematical and Computational Methods (Woodhead, 2005).
  13. Z. H. Li and H. Z. Wu, “A cropping robust geometric distortion correcting algorithm for watermarked image based on SIFT,” in The 2nd IEEE International Congress on Image and Signal Processing (IEEE, 2009), pp. 1466–1470.
  14. D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60, 91–110 (2004).
    [CrossRef]
  15. H. Y. Lee, H. S. Kim, and H. K. Lee, “Robust image watermarking using local invariant features,” Opt. Eng. 45, 037002 (2006).
    [CrossRef]
  16. B. S. Kim, J. G. Choi, C. H. Park, J. U. Won, D. M. Kwak, S. K. Oh, C. R. Koh, and K. H. Park, “Robust digital image watermarking method against geometrical attacks,” Real-Time Imag. 9, 139–149 (2003).
    [CrossRef]
  17. Q. Liu, Y. D. Ma, S. G. Zhang, and W. S. He, “Image target recognition using pulse coupled neural networks time matrix,” in The 26th Chinese Control Conference (Publishing House of Beijing University of Aeronautics and Astronautics, 2007), pp. 96–99.
  18. J. J. Shen and J. M. Ren, “A robust associative watermarking technique based on vector quantization,” Digital Signal Process. 20, 1408–1423 (2010).
    [CrossRef]

2010 (1)

J. J. Shen and J. M. Ren, “A robust associative watermarking technique based on vector quantization,” Digital Signal Process. 20, 1408–1423 (2010).
[CrossRef]

2009 (1)

2007 (3)

2006 (1)

H. Y. Lee, H. S. Kim, and H. K. Lee, “Robust image watermarking using local invariant features,” Opt. Eng. 45, 037002 (2006).
[CrossRef]

2005 (2)

H. T. Chang and C. L. Tsan, “Image watermarking by use of digital holography embedded in the discrete-cosine-transform domain,” Appl. Opt. 44, 6211–6219 (2005).
[CrossRef] [PubMed]

D. Zheng, Y. Liu, and J. Y. Zhao, “RST invariant digital image watermarking based on a new phase-only filtering method,” Signal Process. 85, 2354–2370 (2005).
[CrossRef]

2004 (2)

J. S. Seo and C. D. Yoo, “Localized image watermarking based on feature points of scale-space representation,” Pattern Recog. 37, 1365–1375 (2004).
[CrossRef]

D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60, 91–110 (2004).
[CrossRef]

2003 (2)

B. S. Kim, J. G. Choi, C. H. Park, J. U. Won, D. M. Kwak, S. K. Oh, C. R. Koh, and K. H. Park, “Robust digital image watermarking method against geometrical attacks,” Real-Time Imag. 9, 139–149 (2003).
[CrossRef]

S. Kishk and B. Javidi, “3D object watermarking by a 3D hidden object,” Opt. Express 11, 874–888 (2003).
[CrossRef] [PubMed]

2002 (1)

1987 (1)

Akar, G. B.

Blackledge, J. M.

J. M. Blackledge, Digital Image Processing: Mathematical and Computational Methods (Woodhead, 2005).

Chang, H. T.

Choi, J. G.

B. S. Kim, J. G. Choi, C. H. Park, J. U. Won, D. M. Kwak, S. K. Oh, C. R. Koh, and K. H. Park, “Robust digital image watermarking method against geometrical attacks,” Real-Time Imag. 9, 139–149 (2003).
[CrossRef]

Depeursinge, C.

He, W. S.

Q. Liu, Y. D. Ma, S. G. Zhang, and W. S. He, “Image target recognition using pulse coupled neural networks time matrix,” in The 26th Chinese Control Conference (Publishing House of Beijing University of Aeronautics and Astronautics, 2007), pp. 96–99.

Hu, J.

M. Liu, G. L. Yang, and H. Y. Xie, M. Xia, J. Hu, and H. Zha, “Computer-generated hologram watermarking resilient to rotation and scaling,” Opt. Eng. 46, 060501 (2007).
[CrossRef]

Javidi, B.

Ji, Z.

Kim, B. S.

B. S. Kim, J. G. Choi, C. H. Park, J. U. Won, D. M. Kwak, S. K. Oh, C. R. Koh, and K. H. Park, “Robust digital image watermarking method against geometrical attacks,” Real-Time Imag. 9, 139–149 (2003).
[CrossRef]

Kim, H. S.

H. Y. Lee, H. S. Kim, and H. K. Lee, “Robust image watermarking using local invariant features,” Opt. Eng. 45, 037002 (2006).
[CrossRef]

Kishk, S.

Koh, C. R.

B. S. Kim, J. G. Choi, C. H. Park, J. U. Won, D. M. Kwak, S. K. Oh, C. R. Koh, and K. H. Park, “Robust digital image watermarking method against geometrical attacks,” Real-Time Imag. 9, 139–149 (2003).
[CrossRef]

Kreis, T.

T. Kreis, Holographic Interferometry: Principles and Methods, 1st ed. (Akademie-Verlag, 1996).

Kühn, J.

Kwak, D. M.

B. S. Kim, J. G. Choi, C. H. Park, J. U. Won, D. M. Kwak, S. K. Oh, C. R. Koh, and K. H. Park, “Robust digital image watermarking method against geometrical attacks,” Real-Time Imag. 9, 139–149 (2003).
[CrossRef]

Lee, H. K.

H. Y. Lee, H. S. Kim, and H. K. Lee, “Robust image watermarking using local invariant features,” Opt. Eng. 45, 037002 (2006).
[CrossRef]

Lee, H. Y.

H. Y. Lee, H. S. Kim, and H. K. Lee, “Robust image watermarking using local invariant features,” Opt. Eng. 45, 037002 (2006).
[CrossRef]

Li, Z. H.

Z. H. Li and H. Z. Wu, “A cropping robust geometric distortion correcting algorithm for watermarked image based on SIFT,” in The 2nd IEEE International Congress on Image and Signal Processing (IEEE, 2009), pp. 1466–1470.

Liu, M.

M. Liu, G. L. Yang, and H. Y. Xie, M. Xia, J. Hu, and H. Zha, “Computer-generated hologram watermarking resilient to rotation and scaling,” Opt. Eng. 46, 060501 (2007).
[CrossRef]

Liu, Q.

Q. Liu, Y. D. Ma, S. G. Zhang, and W. S. He, “Image target recognition using pulse coupled neural networks time matrix,” in The 26th Chinese Control Conference (Publishing House of Beijing University of Aeronautics and Astronautics, 2007), pp. 96–99.

Liu, Y.

D. Zheng, Y. Liu, and J. Y. Zhao, “RST invariant digital image watermarking based on a new phase-only filtering method,” Signal Process. 85, 2354–2370 (2005).
[CrossRef]

Lowe, D. G.

D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60, 91–110 (2004).
[CrossRef]

Ma, Y. D.

Q. Liu, Y. D. Ma, S. G. Zhang, and W. S. He, “Image target recognition using pulse coupled neural networks time matrix,” in The 26th Chinese Control Conference (Publishing House of Beijing University of Aeronautics and Astronautics, 2007), pp. 96–99.

Mifune, Y.

Oh, S. K.

B. S. Kim, J. G. Choi, C. H. Park, J. U. Won, D. M. Kwak, S. K. Oh, C. R. Koh, and K. H. Park, “Robust digital image watermarking method against geometrical attacks,” Real-Time Imag. 9, 139–149 (2003).
[CrossRef]

Okman, O. E.

Park, C. H.

B. S. Kim, J. G. Choi, C. H. Park, J. U. Won, D. M. Kwak, S. K. Oh, C. R. Koh, and K. H. Park, “Robust digital image watermarking method against geometrical attacks,” Real-Time Imag. 9, 139–149 (2003).
[CrossRef]

Park, K. H.

B. S. Kim, J. G. Choi, C. H. Park, J. U. Won, D. M. Kwak, S. K. Oh, C. R. Koh, and K. H. Park, “Robust digital image watermarking method against geometrical attacks,” Real-Time Imag. 9, 139–149 (2003).
[CrossRef]

Pavillon, N.

Qian, G. B.

Ren, J. M.

J. J. Shen and J. M. Ren, “A robust associative watermarking technique based on vector quantization,” Digital Signal Process. 20, 1408–1423 (2010).
[CrossRef]

Seelamantula, C. S.

Seo, J. S.

J. S. Seo and C. D. Yoo, “Localized image watermarking based on feature points of scale-space representation,” Pattern Recog. 37, 1365–1375 (2004).
[CrossRef]

Shen, J. J.

J. J. Shen and J. M. Ren, “A robust associative watermarking technique based on vector quantization,” Digital Signal Process. 20, 1408–1423 (2010).
[CrossRef]

Takai, N.

Tricoles, G.

Tsan, C. L.

Unser, M.

Won, J. U.

B. S. Kim, J. G. Choi, C. H. Park, J. U. Won, D. M. Kwak, S. K. Oh, C. R. Koh, and K. H. Park, “Robust digital image watermarking method against geometrical attacks,” Real-Time Imag. 9, 139–149 (2003).
[CrossRef]

Wu, H. Z.

Z. H. Li and H. Z. Wu, “A cropping robust geometric distortion correcting algorithm for watermarked image based on SIFT,” in The 2nd IEEE International Congress on Image and Signal Processing (IEEE, 2009), pp. 1466–1470.

Xia, M.

M. Liu, G. L. Yang, and H. Y. Xie, M. Xia, J. Hu, and H. Zha, “Computer-generated hologram watermarking resilient to rotation and scaling,” Opt. Eng. 46, 060501 (2007).
[CrossRef]

Xie, H. Y.

M. Liu, G. L. Yang, and H. Y. Xie, M. Xia, J. Hu, and H. Zha, “Computer-generated hologram watermarking resilient to rotation and scaling,” Opt. Eng. 46, 060501 (2007).
[CrossRef]

Yang, G. L.

M. Liu, G. L. Yang, and H. Y. Xie, M. Xia, J. Hu, and H. Zha, “Computer-generated hologram watermarking resilient to rotation and scaling,” Opt. Eng. 46, 060501 (2007).
[CrossRef]

Yoo, C. D.

J. S. Seo and C. D. Yoo, “Localized image watermarking based on feature points of scale-space representation,” Pattern Recog. 37, 1365–1375 (2004).
[CrossRef]

Zha, H.

M. Liu, G. L. Yang, and H. Y. Xie, M. Xia, J. Hu, and H. Zha, “Computer-generated hologram watermarking resilient to rotation and scaling,” Opt. Eng. 46, 060501 (2007).
[CrossRef]

Zhang, L.

Zhang, S. G.

Q. Liu, Y. D. Ma, S. G. Zhang, and W. S. He, “Image target recognition using pulse coupled neural networks time matrix,” in The 26th Chinese Control Conference (Publishing House of Beijing University of Aeronautics and Astronautics, 2007), pp. 96–99.

Zhao, J. Y.

D. Zheng, Y. Liu, and J. Y. Zhao, “RST invariant digital image watermarking based on a new phase-only filtering method,” Signal Process. 85, 2354–2370 (2005).
[CrossRef]

Zheng, D.

D. Zheng, Y. Liu, and J. Y. Zhao, “RST invariant digital image watermarking based on a new phase-only filtering method,” Signal Process. 85, 2354–2370 (2005).
[CrossRef]

Appl. Opt. (4)

Digital Signal Process. (1)

J. J. Shen and J. M. Ren, “A robust associative watermarking technique based on vector quantization,” Digital Signal Process. 20, 1408–1423 (2010).
[CrossRef]

Int. J. Comput. Vis. (1)

D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60, 91–110 (2004).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Eng. (2)

M. Liu, G. L. Yang, and H. Y. Xie, M. Xia, J. Hu, and H. Zha, “Computer-generated hologram watermarking resilient to rotation and scaling,” Opt. Eng. 46, 060501 (2007).
[CrossRef]

H. Y. Lee, H. S. Kim, and H. K. Lee, “Robust image watermarking using local invariant features,” Opt. Eng. 45, 037002 (2006).
[CrossRef]

Opt. Express (2)

Pattern Recog. (1)

J. S. Seo and C. D. Yoo, “Localized image watermarking based on feature points of scale-space representation,” Pattern Recog. 37, 1365–1375 (2004).
[CrossRef]

Real-Time Imag. (1)

B. S. Kim, J. G. Choi, C. H. Park, J. U. Won, D. M. Kwak, S. K. Oh, C. R. Koh, and K. H. Park, “Robust digital image watermarking method against geometrical attacks,” Real-Time Imag. 9, 139–149 (2003).
[CrossRef]

Signal Process. (1)

D. Zheng, Y. Liu, and J. Y. Zhao, “RST invariant digital image watermarking based on a new phase-only filtering method,” Signal Process. 85, 2354–2370 (2005).
[CrossRef]

Other (4)

J. M. Blackledge, Digital Image Processing: Mathematical and Computational Methods (Woodhead, 2005).

Z. H. Li and H. Z. Wu, “A cropping robust geometric distortion correcting algorithm for watermarked image based on SIFT,” in The 2nd IEEE International Congress on Image and Signal Processing (IEEE, 2009), pp. 1466–1470.

Q. Liu, Y. D. Ma, S. G. Zhang, and W. S. He, “Image target recognition using pulse coupled neural networks time matrix,” in The 26th Chinese Control Conference (Publishing House of Beijing University of Aeronautics and Astronautics, 2007), pp. 96–99.

T. Kreis, Holographic Interferometry: Principles and Methods, 1st ed. (Akademie-Verlag, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Sample watermark generated by computer: (a) original image, (b) Fourier transform CGH, and (c) reconstructed image.

Fig. 2
Fig. 2

Lena image and its LCRs: (a) LCRs for Lena, (b) LCR, and (c) zero padding of the LCR.

Fig. 3
Fig. 3

Block diagram of the matching algorithm.

Fig. 4
Fig. 4

Sample of watermarked images using the proposed method: (a) original Lena image, (b) watermarked image of (a), (c) mark hologram extracted from (b), (d) reconstruction of (c), (e) original man image, (f) watermarked image of (e), (g) mark hologram extracted from (f), (h) reconstruction of (g), (i) original sailboat image, (j) watermarked image of (i), (k) mark hologram extracted from (j), (l) reconstruction of (k), (m) original tank image, (n) watermarked image of (m), (o) mark hologram extracted from (n), and (p) reconstruction of (o).

Fig. 5
Fig. 5

Geometric distorted watermarked images and the reconstructions under geometric attacks: (a) crop rotation ( 40 ° ), (b) reconstruction of (a), (c) scaling (0.5), (d) reconstruction of (c), (e) translation (10,20), (f) reconstruction of (e), (g) horizontal flipping, (h) reconstruction of (g), (i) vertical flipping, (j) reconstruction of (i), (k) crop rotation ( 5 ° ) + scaling ( 0.8 ) + crop ( 50 × 50 ) , (l) reconstruction of (k), (m) crop rotation ( 10 ° ) + scaling ( 1.5 ) + JPEG ( Q = 40 ) , (n) reconstruction of (m), (o) translation ( 5 , 5 ) + crop rotation ( 10 ° ) + scaling ( 1.2 ) , and (p) reconstruction of (o).

Fig. 6
Fig. 6

Attacked watermarked images and the reconstructions under common signal processing: (a) Gaussian noise, (b) reconstruction of (a), (c) salt and pepper noise, (d) reconstruction of (c), (e) Gaussian low-pass filtering, (f) reconstruction of (e), (g) average filtering, (h) reconstruction of (g), (i) median filtering, (j) reconstruction of (i), (k) JPEG compression ( Q = 30 ), (l) reconstruction of (k), (m) occlusion, (n) reconstruction of (m), (o) cropping, and (p) reconstruction of (o).

Fig. 7
Fig. 7

Example of a digital watermark when the gray-scale image (a) is used as a watermark, (b) host image ( 1024 × 1024 ) including the hologram component, and (c) image ( 128 × 128 ) reconstructed from (b).

Fig. 8
Fig. 8

Example of a mark hologram that is not normalized: (a) watermarked Lena, (b) image reconstructed from (a), (c) watermarked man, (d) image reconstructed from (c), (e) watermarked sailboat, (f) image reconstructed from (e), (g) watermarked tank, and (i) image reconstructed from (g).

Tables (3)

Tables Icon

Table 1 Comparison of the Proposed Geometric Correction Scheme and the Li Method

Tables Icon

Table 2 Peak Signal-to-Noise Ratios for the Watermarked Images and the Normalized Correlations for the Extracted Watermarks

Tables Icon

Table 3 Normalized Correlations for the Extracted Watermarks Under Attack

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

F x y = Re x y + j Im x y ,
I x y = ( Re x y 2 + Im x y 2 ) 1 / 2 , φ x y = arctan [ Im x y / Re x y ] .
T x y = 0.5 [ 1 + I x y cos ( 2 π α x φ x y ) ] ,
H ( u , v ) = 1 1 + ( D 0 / u 2 + v 2 ) 2 n ,
m p , q = x y x p y q f ( x , y ) ,
x ¯ = m 1 , 0 / m 0 , 0 , y ¯ = m 0 , 1 / m 0 , 0 .
F i j [ n ] = I i j ,
L i j [ n ] = V L k l W i j k l Y k l [ n 1 ] ,
U i j [ n ] = F i j [ n ] ( 1 + β L i j [ n ] ) ,
Y i j ( n ) = { 1 , U i j ( n ) > E i j ( n 1 ) 0 , otherwise ,
E i j [ n ] = E 0 exp ( n α E ) ,
T i j [ n ] = { n , if Y i j [ n ] = 1 T i j [ n 1 ] , otherwise .
n ¯ = n = 0 S [ n × H ( n ) ] / n = 0 S H ( n ) ,
( x t 1 ) 2 + ( y t 2 ) 2 = ( k s ) 2 ,
Δ x = c x t c x , Δ y = c y t c y .
θ = i = 1 num ( θ i θ i ) num ,
μ = i = 1 num ( D i / d i ) num ,
sum _ blk i , j = sum _ blk i , j / Δ × Δ + λ × Δ × wm ( i , j ) = m = 1 t n = 1 t B i , j ( m , n ) / Δ × Δ + λ × Δ × wm ( i , j ) ,
B i , j ( m , n ) = B i , j ( m , n ) + ( sum _ blk i , j sum _ blk i , j ) / ( t × t ) = B i , j ( m , n ) + ( m = 1 t n = 1 t B i , j ( m , n ) / Δ × Δ + λ × Δ × wm ( i , j ) ) m = 1 t n = 1 t B i , j ( m , n ) t × t .
wm ( i , j ) = ( sum _ blk i , j sum _ blk i , j / Δ × Δ ) / ( λ × Δ ) = m = 1 t n = 1 t B i , j ( m , n ) m = 1 t n = 1 t B i , j ( m , n ) / Δ × Δ λ × Δ .

Metrics