Abstract

We show, to the best of our knowledge, the first simulation result of the strong plasmonic field coupling and enhancement at the Ag/Si interface of a silver core/protruded silicon shell nanocylinder by using the finite-element method. The strong plasmon field, with a slow effective phase velocity accumulated at the Ag/Si interface, which results from the large effective index of the surface plasmon due to the nearly identical real parts with opposite signs of the permittivities of silver and silicon at 633nm, is analyzed. When the silicon shell has shallow protrusions of proper periodicity to meet the phase matching condition between the incident light and the surface plasmon wave at the Ag/Si interface, a higher scattered electric field and a higher sensitivity to the refractive index change of the surrounding medium can be achieved. Furthermore, a feasible implementation of the core–shell nanocylinder design concept is studied and discussed.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
    [CrossRef]
  2. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface- enhanced Raman scattering,” Science 275, 1102–1106 (1997).
    [CrossRef] [PubMed]
  3. K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dassari, and M. S. Feld, “Population pumping of excited vibrational states by spontaneous surface-enhanced raman scattering,” Phys. Rev. Lett. 76, 2444–2447 (1996).
    [CrossRef] [PubMed]
  4. X. Hong and F. J. Kao, “Microsurface plasmon resonance biosensing based on gold-nanoparticle film,” Appl. Opt. 43, 2868–2873 (2004).
    [CrossRef] [PubMed]
  5. I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett. 5, 829–834 (2005).
    [CrossRef] [PubMed]
  6. Y. C. Cao, R. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297, 1536–1540 (2002).
    [CrossRef] [PubMed]
  7. A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124, 10596–10604(2002).
    [CrossRef] [PubMed]
  8. Y. F. Chau, M. W. Chen, and D. P. Tsai, “Three-dimensional analysis of surface plasmon resonance modes on a gold nanorod,” Appl. Opt. 48, 617–622 (2009).
    [CrossRef] [PubMed]
  9. M. J. Sung, Y. F. Ma, Y. F. Chau, and D. W. Huang, “Surface plasmon resonance in a hexagonal nanostructure formed by seven core shell nanocylinders,” Appl. Opt. 49, 920–926(2010).
    [CrossRef] [PubMed]
  10. Y. F. Chau, H. H. Yeh, and D. P. Tsai, “Near-field optical properties and surface plasmon effects generated by a dielectric hole in a silver-shell nanocylinder pair,” Appl. Opt. 47, 5557–5561 (2008).
    [CrossRef] [PubMed]
  11. L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71, 235408 (2005).
    [CrossRef]
  12. B. C. Sih and M. O. Wolf, “Dielectric medium effects on collective surface plasmon coupling interactions in oligothiophene-linked gold nanoparticles,” J. Phys. Chem. B 110, 22298–22301 (2006).
    [CrossRef] [PubMed]
  13. R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth,” Phys. Rev. Lett. 78, 4217–4220(1997).
    [CrossRef]
  14. S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas, “Infrared extinction properties of gold nanoshells,” Appl. Phys. Lett. 75, 2897–2899 (1999).
    [CrossRef]
  15. P. M. Gresho and R. L. Sani, Incompressible Flow and Finite Element Method (Wiley, 2000), Vols. 1 and 2.
  16. COMSOL Multiphysic, http://www.comsol.com (email: info @comsol.com).
  17. P. B. Johnson and R. W. Christy, “Optical constant of the noble metal,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  18. Luxpop, “Thin film and bulk index of refraction and photonics calculations,” http://www.luxpop.com (1 July 2010).
  19. J. R. Sambles, G. W. Bradbery, and F. Z. Yang, “Optical-excitation of surface-plasmons—an introduction,” Contemp. Phys. 32173–183 (1991).
    [CrossRef]
  20. F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458, 262–266 (2008).
    [CrossRef]
  21. L. Cao, J. S. White, J. S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647(2009).
    [CrossRef] [PubMed]
  22. I. C. Goyal, R. L. Gallawa, and A. K. Ghatek, “Bent planar waveguide and whispering gallery modes: a new method of analysis,” J. Lightwave Technol. 8, 768–774 (1990).
    [CrossRef]
  23. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, 1st ed. (Wiley, 2001).
  24. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401(2003).
    [CrossRef] [PubMed]

2010

2009

Y. F. Chau, M. W. Chen, and D. P. Tsai, “Three-dimensional analysis of surface plasmon resonance modes on a gold nanorod,” Appl. Opt. 48, 617–622 (2009).
[CrossRef] [PubMed]

L. Cao, J. S. White, J. S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647(2009).
[CrossRef] [PubMed]

2008

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458, 262–266 (2008).
[CrossRef]

Y. F. Chau, H. H. Yeh, and D. P. Tsai, “Near-field optical properties and surface plasmon effects generated by a dielectric hole in a silver-shell nanocylinder pair,” Appl. Opt. 47, 5557–5561 (2008).
[CrossRef] [PubMed]

2006

B. C. Sih and M. O. Wolf, “Dielectric medium effects on collective surface plasmon coupling interactions in oligothiophene-linked gold nanoparticles,” J. Phys. Chem. B 110, 22298–22301 (2006).
[CrossRef] [PubMed]

2005

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71, 235408 (2005).
[CrossRef]

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett. 5, 829–834 (2005).
[CrossRef] [PubMed]

2004

2003

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401(2003).
[CrossRef] [PubMed]

2002

Y. C. Cao, R. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297, 1536–1540 (2002).
[CrossRef] [PubMed]

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124, 10596–10604(2002).
[CrossRef] [PubMed]

1999

S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas, “Infrared extinction properties of gold nanoshells,” Appl. Phys. Lett. 75, 2897–2899 (1999).
[CrossRef]

1997

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface- enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef] [PubMed]

R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth,” Phys. Rev. Lett. 78, 4217–4220(1997).
[CrossRef]

1996

K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dassari, and M. S. Feld, “Population pumping of excited vibrational states by spontaneous surface-enhanced raman scattering,” Phys. Rev. Lett. 76, 2444–2447 (1996).
[CrossRef] [PubMed]

1991

J. R. Sambles, G. W. Bradbery, and F. Z. Yang, “Optical-excitation of surface-plasmons—an introduction,” Contemp. Phys. 32173–183 (1991).
[CrossRef]

1990

I. C. Goyal, R. L. Gallawa, and A. K. Ghatek, “Bent planar waveguide and whispering gallery modes: a new method of analysis,” J. Lightwave Technol. 8, 768–774 (1990).
[CrossRef]

1974

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical constant of the noble metal,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Aizpurua, J.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401(2003).
[CrossRef] [PubMed]

Ali, T. A.

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458, 262–266 (2008).
[CrossRef]

Atwater, H. A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71, 235408 (2005).
[CrossRef]

Averitt, R. D.

R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth,” Phys. Rev. Lett. 78, 4217–4220(1997).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, 1st ed. (Wiley, 2001).

Bradbery, G. W.

J. R. Sambles, G. W. Bradbery, and F. Z. Yang, “Optical-excitation of surface-plasmons—an introduction,” Contemp. Phys. 32173–183 (1991).
[CrossRef]

Brongersma, M. L.

L. Cao, J. S. White, J. S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647(2009).
[CrossRef] [PubMed]

Bryant, G. W.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401(2003).
[CrossRef] [PubMed]

Cao, L.

L. Cao, J. S. White, J. S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647(2009).
[CrossRef] [PubMed]

Cao, Y. C.

Y. C. Cao, R. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297, 1536–1540 (2002).
[CrossRef] [PubMed]

Chau, Y. F.

Chen, M. W.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constant of the noble metal,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Clemens, B. M.

L. Cao, J. S. White, J. S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647(2009).
[CrossRef] [PubMed]

Dassari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dassari, and M. S. Feld, “Population pumping of excited vibrational states by spontaneous surface-enhanced raman scattering,” Phys. Rev. Lett. 76, 2444–2447 (1996).
[CrossRef] [PubMed]

El-Sayed, I. H.

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett. 5, 829–834 (2005).
[CrossRef] [PubMed]

El-Sayed, M. A.

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett. 5, 829–834 (2005).
[CrossRef] [PubMed]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface- enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef] [PubMed]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dassari, and M. S. Feld, “Population pumping of excited vibrational states by spontaneous surface-enhanced raman scattering,” Phys. Rev. Lett. 76, 2444–2447 (1996).
[CrossRef] [PubMed]

Fleischmann, M.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[CrossRef]

Gallawa, R. L.

I. C. Goyal, R. L. Gallawa, and A. K. Ghatek, “Bent planar waveguide and whispering gallery modes: a new method of analysis,” J. Lightwave Technol. 8, 768–774 (1990).
[CrossRef]

García de Abajo, F. J.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401(2003).
[CrossRef] [PubMed]

Ghatek, A. K.

I. C. Goyal, R. L. Gallawa, and A. K. Ghatek, “Bent planar waveguide and whispering gallery modes: a new method of analysis,” J. Lightwave Technol. 8, 768–774 (1990).
[CrossRef]

Goyal, I. C.

I. C. Goyal, R. L. Gallawa, and A. K. Ghatek, “Bent planar waveguide and whispering gallery modes: a new method of analysis,” J. Lightwave Technol. 8, 768–774 (1990).
[CrossRef]

Gresho, P. M.

P. M. Gresho and R. L. Sani, Incompressible Flow and Finite Element Method (Wiley, 2000), Vols. 1 and 2.

Haes, A. J.

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124, 10596–10604(2002).
[CrossRef] [PubMed]

Halas, N. J.

S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas, “Infrared extinction properties of gold nanoshells,” Appl. Phys. Lett. 75, 2897–2899 (1999).
[CrossRef]

R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth,” Phys. Rev. Lett. 78, 4217–4220(1997).
[CrossRef]

Hanarp, P.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401(2003).
[CrossRef] [PubMed]

Hao, F.

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458, 262–266 (2008).
[CrossRef]

Hendra, P. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[CrossRef]

Hong, X.

Huang, D. W.

Huang, X.

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett. 5, 829–834 (2005).
[CrossRef] [PubMed]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, 1st ed. (Wiley, 2001).

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dassari, and M. S. Feld, “Population pumping of excited vibrational states by spontaneous surface-enhanced raman scattering,” Phys. Rev. Lett. 76, 2444–2447 (1996).
[CrossRef] [PubMed]

Jackson, J. B.

S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas, “Infrared extinction properties of gold nanoshells,” Appl. Phys. Lett. 75, 2897–2899 (1999).
[CrossRef]

Jin, R.

Y. C. Cao, R. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297, 1536–1540 (2002).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constant of the noble metal,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Käll, M.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401(2003).
[CrossRef] [PubMed]

Kao, F. J.

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dassari, and M. S. Feld, “Population pumping of excited vibrational states by spontaneous surface-enhanced raman scattering,” Phys. Rev. Lett. 76, 2444–2447 (1996).
[CrossRef] [PubMed]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dassari, and M. S. Feld, “Population pumping of excited vibrational states by spontaneous surface-enhanced raman scattering,” Phys. Rev. Lett. 76, 2444–2447 (1996).
[CrossRef] [PubMed]

Larsson, E. M.

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458, 262–266 (2008).
[CrossRef]

Ma, Y. F.

Maier, S. A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71, 235408 (2005).
[CrossRef]

McQuillan, A. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[CrossRef]

Mirkin, C. A.

Y. C. Cao, R. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297, 1536–1540 (2002).
[CrossRef] [PubMed]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface- enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef] [PubMed]

Nordlander, P.

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458, 262–266 (2008).
[CrossRef]

Oldenburg, S. J.

S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas, “Infrared extinction properties of gold nanoshells,” Appl. Phys. Lett. 75, 2897–2899 (1999).
[CrossRef]

Park, J. S.

L. Cao, J. S. White, J. S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647(2009).
[CrossRef] [PubMed]

Penninkhof, J. J.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71, 235408 (2005).
[CrossRef]

Polman, A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71, 235408 (2005).
[CrossRef]

Sambles, J. R.

J. R. Sambles, G. W. Bradbery, and F. Z. Yang, “Optical-excitation of surface-plasmons—an introduction,” Contemp. Phys. 32173–183 (1991).
[CrossRef]

Sani, R. L.

P. M. Gresho and R. L. Sani, Incompressible Flow and Finite Element Method (Wiley, 2000), Vols. 1 and 2.

Sarkar, D.

R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth,” Phys. Rev. Lett. 78, 4217–4220(1997).
[CrossRef]

Schuller, J. A.

L. Cao, J. S. White, J. S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647(2009).
[CrossRef] [PubMed]

Sih, B. C.

B. C. Sih and M. O. Wolf, “Dielectric medium effects on collective surface plasmon coupling interactions in oligothiophene-linked gold nanoparticles,” J. Phys. Chem. B 110, 22298–22301 (2006).
[CrossRef] [PubMed]

Sung, M. J.

Sutherland, D. S.

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458, 262–266 (2008).
[CrossRef]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401(2003).
[CrossRef] [PubMed]

Sweatlock, L. A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71, 235408 (2005).
[CrossRef]

Tsai, D. P.

Van Duyne, R. P.

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124, 10596–10604(2002).
[CrossRef] [PubMed]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dassari, and M. S. Feld, “Population pumping of excited vibrational states by spontaneous surface-enhanced raman scattering,” Phys. Rev. Lett. 76, 2444–2447 (1996).
[CrossRef] [PubMed]

Westcott, S. L.

S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas, “Infrared extinction properties of gold nanoshells,” Appl. Phys. Lett. 75, 2897–2899 (1999).
[CrossRef]

White, J. S.

L. Cao, J. S. White, J. S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647(2009).
[CrossRef] [PubMed]

Wolf, M. O.

B. C. Sih and M. O. Wolf, “Dielectric medium effects on collective surface plasmon coupling interactions in oligothiophene-linked gold nanoparticles,” J. Phys. Chem. B 110, 22298–22301 (2006).
[CrossRef] [PubMed]

Yang, F. Z.

J. R. Sambles, G. W. Bradbery, and F. Z. Yang, “Optical-excitation of surface-plasmons—an introduction,” Contemp. Phys. 32173–183 (1991).
[CrossRef]

Yeh, H. H.

Appl. Opt.

Appl. Phys. Lett.

S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas, “Infrared extinction properties of gold nanoshells,” Appl. Phys. Lett. 75, 2897–2899 (1999).
[CrossRef]

Chem. Phys. Lett.

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458, 262–266 (2008).
[CrossRef]

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[CrossRef]

Contemp. Phys.

J. R. Sambles, G. W. Bradbery, and F. Z. Yang, “Optical-excitation of surface-plasmons—an introduction,” Contemp. Phys. 32173–183 (1991).
[CrossRef]

J. Am. Chem. Soc.

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124, 10596–10604(2002).
[CrossRef] [PubMed]

J. Lightwave Technol.

I. C. Goyal, R. L. Gallawa, and A. K. Ghatek, “Bent planar waveguide and whispering gallery modes: a new method of analysis,” J. Lightwave Technol. 8, 768–774 (1990).
[CrossRef]

J. Phys. Chem. B

B. C. Sih and M. O. Wolf, “Dielectric medium effects on collective surface plasmon coupling interactions in oligothiophene-linked gold nanoparticles,” J. Phys. Chem. B 110, 22298–22301 (2006).
[CrossRef] [PubMed]

Nano Lett.

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett. 5, 829–834 (2005).
[CrossRef] [PubMed]

Nat. Mater.

L. Cao, J. S. White, J. S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647(2009).
[CrossRef] [PubMed]

Phys. Rev. B

P. B. Johnson and R. W. Christy, “Optical constant of the noble metal,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71, 235408 (2005).
[CrossRef]

Phys. Rev. Lett.

R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth,” Phys. Rev. Lett. 78, 4217–4220(1997).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dassari, and M. S. Feld, “Population pumping of excited vibrational states by spontaneous surface-enhanced raman scattering,” Phys. Rev. Lett. 76, 2444–2447 (1996).
[CrossRef] [PubMed]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401(2003).
[CrossRef] [PubMed]

Science

Y. C. Cao, R. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297, 1536–1540 (2002).
[CrossRef] [PubMed]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface- enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef] [PubMed]

Other

Luxpop, “Thin film and bulk index of refraction and photonics calculations,” http://www.luxpop.com (1 July 2010).

P. M. Gresho and R. L. Sani, Incompressible Flow and Finite Element Method (Wiley, 2000), Vols. 1 and 2.

COMSOL Multiphysic, http://www.comsol.com (email: info @comsol.com).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, 1st ed. (Wiley, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagrams of (a) silver-core– silicon-shell nanocylinder, (b) silver-core–protruded-silicon- nanoshell nanocylinder, and (c) solid silver nanocylinder.

Fig. 2
Fig. 2

Scattered electric field distributions for (a) Case 1 at 633 and 790 nm and (b) for Case 2 at 633 nm with different incident angles. The parameters are maintained as: the surrounding medium n w = 1.33 , the silver core radius is fixed at 100 nm for Case 1 and Case 2, shell thickness is 17 nm for Case 1, and the average thickness of the protruded silicon shell is 17 nm (including the maximal and minimal thickness of the protruded silicon shell t max = 19 nm and t min = 15 nm , respectively).

Fig. 3
Fig. 3

Effective index versus thickness of the silicon nanoshell for Case 1 with the inner radius r 1 = 100 nm , the refractive index of the surrounding medium n w = 1.33 , and the excitation wavelength λ = 633 nm .

Fig. 4
Fig. 4

Electric field distribution with varied radial position (x) of a surface plasmon on a thin silicon nanoshell ( t Si = 10 , 14, and 17 nm ) sandwiched between silver core ( r 1 = 100 nm ) and surrounding medium ( n w = 1.33 ) for Case 1 at the excitation wavelength λ = 633 nm .

Fig. 5
Fig. 5

Scattered electric field as a function of the surrounding medium for three cases with the inner radius r 1 = 100 nm at the excitation wavelength 633 nm .

Fig. 6
Fig. 6

Scattered electric field versus the wavelength of TM-polarized incident light ranging from 550 to 700 nm for Case 2 with different refractive indices of the surrounding medium. The inset shows the effective index of the dielectric medium n Si / w (including the silicon and surrounding medium) as a function of the surrounding medium n w . The silver core radius is fixed at 100 nm . The average thickness of the protruded silicon nanoshell is 17 nm .

Fig. 7
Fig. 7

Scattered electric field versus refractive index of the surrounding medium n w with varied average thickness of the protruded silicon nanoshell for Case 2 with the silver core radius r 1 = 100 nm at the excitation wavelength λ = 633 nm ; the difference between maximal and minimal thickness of the protruded silicon nanoshell is fixed at 4 nm .

Fig. 8
Fig. 8

Scattered electric field versus the refractive index of the surrounding medium n w with varied silver core radius r 1 for Case 2 with the average thickness of the protruded silicon nanoshell t Si = 17 nm at the excitation wavelength λ = 633 nm ; the difference between maximal and minimal thickness of the protruded silicon nanoshell is fixed at 4 nm .

Fig. 9
Fig. 9

Resonant wavelength for Case 2 as a function of thickness of silicon protruded nanoshell t Si with the inner radius r 1 = 100 nm when the refractive index of the surrounding medium is varied.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n SP = ε d ε m ε d + ε m ,
λ n SP = 2 π ( r 1 + t Si 2 ) m .
C sca = 8 π 3 k 4 a 6 | ε m ε Si / w ε m + ε Si / w | 2 ,

Metrics