Abstract

We propose an electrically controlled terahertz switch based on metallic grating–liquid crystal–metallic grating (MG-LC-MG) structures. The switching mechanism is realized by modifying the effective refractive of the LC using different bias electric fields. In our design, the MGs not only support supertransmittance at certain frequencies, but they also act as the electrodes. Simulation results show the proposed structure has the potential to realize an electrically controlled terahertz switch with a high extinction ratio and low insertion loss. A prototype design is also proposed for practical implementation.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photonics 1, 97–105 (2007).
    [CrossRef]
  2. R.-P. Pan, C.-F. Hsieh, C.-L. Pan, and C.-Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys. 103, 093523 (2008).
    [CrossRef]
  3. C.-Y. Chen, C.-F. Hsieh, Y.-F. Lin, R.-P. Pan, and C.-L. Pan, “Magnetically tunable room-temperature 2 pi liquid crystal terahertz phase shifter,” Opt. Express 12, 2625–2630 (2004).
    [CrossRef] [PubMed]
  4. T. Tsong-Ru, C. Chao-Yuan, P. Ru-Pin, P. Ci-Ling, and Z. Xi-Cheng, “Electrically controlled room temperature terahertz phase shifter with liquid crystal,” IEEE Microw. Wireless Comp. Lett. 14, 77–79 (2004).
    [CrossRef]
  5. C. J. Lin, C. H. Lin, Y. T. Li, R. P. Pan, and C. L. Pan, “Electrically controlled liquid crystal phase grating for terahertz waves,” IEEE Photon. Technol. Lett. 21, 730–732 (2009).
    [CrossRef]
  6. C. J. Lin, Y. T. Li, C. F. Hsieh, R. P. Pan, and C. L. Pan, “Manipulating terahertz wave by a magnetically tunable liquid crystal phase grating,” Opt. Express 16, 2995–3001 (2008).
    [CrossRef] [PubMed]
  7. C.-F. Hsieh, R.-P. Pan, T.-T. Tang, H.-L. Chen, and C.-L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate,” Opt. Lett. 31, 1112–1114 (2006).
    [CrossRef] [PubMed]
  8. C.-Y. Chen, C.-L. Pan, C.-F. Hsieh, Y.-F. Lin, and R.-P. Pan, “Liquid-crystal-based terahertz tunable Lyot filter,” Appl. Phys. Lett. 88, 101107 (2006).
    [CrossRef]
  9. C.-L. Pan, C.-F. Hsieh, R.-P. Pan, M. Tanaka, F. Miyamaru, M. Tani, and M. Hangyo, “Control of enhanced THz transmission through metallic hole arrays using nematic liquid crystal,” Opt. Express 13, 3921–3930 (2005).
    [CrossRef] [PubMed]
  10. S. A. Jewell, E. Hendry, T. H. Isaac, and J. R. Sambles, “Tuneable Fabry–Perot etalon for terahertz radiation,” New J. Phys. 10, 033012 (2008).
    [CrossRef]
  11. H. Zhang, P. Guo, P. Chen, S. J. Chang, and J. H. Yuan, “Liquid-crystal-filled photonic crystal for terahertz switch and filter,” J. Opt. Soc. Am. B 26, 101–106 (2009).
    [CrossRef]
  12. K. Song and P. Mazumder, “Active terahertz spoof surface plasmon polariton switch comprising the perfect conductor metamaterial,” IEEE Trans. Electron. Dev. 56, 2792–2799(2009).
    [CrossRef]
  13. Z. Ghattan, T. Hasek, R. Wilk, M. Shahabadi, and M. Koch, “Sub-terahertz on–off switch based on a two-dimensional photonic crystal infiltrated by liquid crystals,” Opt. Commun. 281, 4623–4625 (2008).
    [CrossRef]
  14. C.-F. Hsieh, Y.-C. Lai, R.-P. Pan, and C.-L. Pan, “Polarizing terahertz waves with nematic liquid crystals,” Opt. Lett. 33, 1174–1176 (2008).
    [CrossRef] [PubMed]
  15. T. Bauer, J. S. Kolb, T. Loffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys. 92, 2210–2212 (2002).
    [CrossRef]
  16. R. Wilk, N. Vieweg, O. Kopschinski, and M. Koch, “Liquid crystal based electrically switchable Bragg structure for THz waves,” Opt. Express 17, 7377–7382 (2009).
    [CrossRef] [PubMed]
  17. P. Lalanne and D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43, 2063–2086 (1996).
    [CrossRef]
  18. J. L. Adams and L. C. Botten, “Double gratings and their applications as Fabry–Perot interferometers,” J. Opt. 10, 109–117 (1979).
    [CrossRef]
  19. J. L. Coutaz, F. Garet, E. Bonnet, A. V. Tishchenko, O. Parriaux, and M. Nazarov, “Grating diffraction effects in the THz domain,” Acta Phys. Pol. A 107, 26–37 (2005).
  20. D. Armand, Y. Todorov, F. Garet, C. Minot, and J. L. Coutaz, “Study of the transmission of subwavelength metallic grids in the THz frequency range,” IEEE J. Sel. Top. Quantum Electron. 14, 513–520 (2008).
    [CrossRef]
  21. C. Minot, Y. Todorov, D. Armand, F. Garet, and J. L. Coutaz, “Long-wavelength limit and Fano profiles of extraordinary transmission through metallic slit gratings in the THz range,” Phys. Rev. B 80, 153410 (2009).
    [CrossRef]
  22. COMSOL Multiphysics, “Multiphysics modeling and simulation software—COMSOL” (COMSOL, Inc., retrieved 19 September 2010), http://www.comsol.com.
  23. R. Wilk, N. Vieweg, O. Kopschinski, T. Hasek, and M. Koch, “THz spectroscopy of liquid crystals from the CB family,” J. Infrared Millim. Terahz. Waves 30, 1139–1147 (2009).
    [CrossRef]
  24. K. Sakoda, Optical Properties of Photonic Crystals, 1st ed. (Springer-Verlag, 2001), pp. 177–185.
  25. W. L. Chan, H. T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
    [CrossRef]
  26. H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).
    [CrossRef]
  27. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
    [CrossRef] [PubMed]
  28. M. Guillaumée, A. Y. Nikitin, M. J. K. Klein, L. A. Dunbar, V. Spassov, R. Eckert, L. Martin-Moreno, F. J. Garcia-Vidal, and R. P. Stanley, “Observation of enhanced transmission for s-polarized light through a subwavelength slit,” Opt. Express 18, 9722–9727 (2010).
    [CrossRef] [PubMed]
  29. H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nature Photonics 3, 148–151 (2009).
    [CrossRef]

2010

2009

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nature Photonics 3, 148–151 (2009).
[CrossRef]

C. Minot, Y. Todorov, D. Armand, F. Garet, and J. L. Coutaz, “Long-wavelength limit and Fano profiles of extraordinary transmission through metallic slit gratings in the THz range,” Phys. Rev. B 80, 153410 (2009).
[CrossRef]

R. Wilk, N. Vieweg, O. Kopschinski, T. Hasek, and M. Koch, “THz spectroscopy of liquid crystals from the CB family,” J. Infrared Millim. Terahz. Waves 30, 1139–1147 (2009).
[CrossRef]

W. L. Chan, H. T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[CrossRef]

C. J. Lin, C. H. Lin, Y. T. Li, R. P. Pan, and C. L. Pan, “Electrically controlled liquid crystal phase grating for terahertz waves,” IEEE Photon. Technol. Lett. 21, 730–732 (2009).
[CrossRef]

H. Zhang, P. Guo, P. Chen, S. J. Chang, and J. H. Yuan, “Liquid-crystal-filled photonic crystal for terahertz switch and filter,” J. Opt. Soc. Am. B 26, 101–106 (2009).
[CrossRef]

K. Song and P. Mazumder, “Active terahertz spoof surface plasmon polariton switch comprising the perfect conductor metamaterial,” IEEE Trans. Electron. Dev. 56, 2792–2799(2009).
[CrossRef]

R. Wilk, N. Vieweg, O. Kopschinski, and M. Koch, “Liquid crystal based electrically switchable Bragg structure for THz waves,” Opt. Express 17, 7377–7382 (2009).
[CrossRef] [PubMed]

2008

D. Armand, Y. Todorov, F. Garet, C. Minot, and J. L. Coutaz, “Study of the transmission of subwavelength metallic grids in the THz frequency range,” IEEE J. Sel. Top. Quantum Electron. 14, 513–520 (2008).
[CrossRef]

Z. Ghattan, T. Hasek, R. Wilk, M. Shahabadi, and M. Koch, “Sub-terahertz on–off switch based on a two-dimensional photonic crystal infiltrated by liquid crystals,” Opt. Commun. 281, 4623–4625 (2008).
[CrossRef]

C.-F. Hsieh, Y.-C. Lai, R.-P. Pan, and C.-L. Pan, “Polarizing terahertz waves with nematic liquid crystals,” Opt. Lett. 33, 1174–1176 (2008).
[CrossRef] [PubMed]

C. J. Lin, Y. T. Li, C. F. Hsieh, R. P. Pan, and C. L. Pan, “Manipulating terahertz wave by a magnetically tunable liquid crystal phase grating,” Opt. Express 16, 2995–3001 (2008).
[CrossRef] [PubMed]

R.-P. Pan, C.-F. Hsieh, C.-L. Pan, and C.-Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys. 103, 093523 (2008).
[CrossRef]

S. A. Jewell, E. Hendry, T. H. Isaac, and J. R. Sambles, “Tuneable Fabry–Perot etalon for terahertz radiation,” New J. Phys. 10, 033012 (2008).
[CrossRef]

H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).
[CrossRef]

2007

M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photonics 1, 97–105 (2007).
[CrossRef]

2006

C.-F. Hsieh, R.-P. Pan, T.-T. Tang, H.-L. Chen, and C.-L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate,” Opt. Lett. 31, 1112–1114 (2006).
[CrossRef] [PubMed]

C.-Y. Chen, C.-L. Pan, C.-F. Hsieh, Y.-F. Lin, and R.-P. Pan, “Liquid-crystal-based terahertz tunable Lyot filter,” Appl. Phys. Lett. 88, 101107 (2006).
[CrossRef]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[CrossRef] [PubMed]

2005

C.-L. Pan, C.-F. Hsieh, R.-P. Pan, M. Tanaka, F. Miyamaru, M. Tani, and M. Hangyo, “Control of enhanced THz transmission through metallic hole arrays using nematic liquid crystal,” Opt. Express 13, 3921–3930 (2005).
[CrossRef] [PubMed]

J. L. Coutaz, F. Garet, E. Bonnet, A. V. Tishchenko, O. Parriaux, and M. Nazarov, “Grating diffraction effects in the THz domain,” Acta Phys. Pol. A 107, 26–37 (2005).

2004

C.-Y. Chen, C.-F. Hsieh, Y.-F. Lin, R.-P. Pan, and C.-L. Pan, “Magnetically tunable room-temperature 2 pi liquid crystal terahertz phase shifter,” Opt. Express 12, 2625–2630 (2004).
[CrossRef] [PubMed]

T. Tsong-Ru, C. Chao-Yuan, P. Ru-Pin, P. Ci-Ling, and Z. Xi-Cheng, “Electrically controlled room temperature terahertz phase shifter with liquid crystal,” IEEE Microw. Wireless Comp. Lett. 14, 77–79 (2004).
[CrossRef]

2002

T. Bauer, J. S. Kolb, T. Loffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys. 92, 2210–2212 (2002).
[CrossRef]

1996

P. Lalanne and D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43, 2063–2086 (1996).
[CrossRef]

1979

J. L. Adams and L. C. Botten, “Double gratings and their applications as Fabry–Perot interferometers,” J. Opt. 10, 109–117 (1979).
[CrossRef]

Adams, J. L.

J. L. Adams and L. C. Botten, “Double gratings and their applications as Fabry–Perot interferometers,” J. Opt. 10, 109–117 (1979).
[CrossRef]

Armand, D.

C. Minot, Y. Todorov, D. Armand, F. Garet, and J. L. Coutaz, “Long-wavelength limit and Fano profiles of extraordinary transmission through metallic slit gratings in the THz range,” Phys. Rev. B 80, 153410 (2009).
[CrossRef]

D. Armand, Y. Todorov, F. Garet, C. Minot, and J. L. Coutaz, “Study of the transmission of subwavelength metallic grids in the THz frequency range,” IEEE J. Sel. Top. Quantum Electron. 14, 513–520 (2008).
[CrossRef]

Averitt, R. D.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nature Photonics 3, 148–151 (2009).
[CrossRef]

H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).
[CrossRef]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[CrossRef] [PubMed]

Azad, A. K.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nature Photonics 3, 148–151 (2009).
[CrossRef]

Bauer, T.

T. Bauer, J. S. Kolb, T. Loffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys. 92, 2210–2212 (2002).
[CrossRef]

Bingham, C. M.

H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).
[CrossRef]

Bonnet, E.

J. L. Coutaz, F. Garet, E. Bonnet, A. V. Tishchenko, O. Parriaux, and M. Nazarov, “Grating diffraction effects in the THz domain,” Acta Phys. Pol. A 107, 26–37 (2005).

Botten, L. C.

J. L. Adams and L. C. Botten, “Double gratings and their applications as Fabry–Perot interferometers,” J. Opt. 10, 109–117 (1979).
[CrossRef]

Brener, I.

W. L. Chan, H. T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[CrossRef]

Chan, W. L.

W. L. Chan, H. T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[CrossRef]

Chang, S. J.

Chao-Yuan, C.

T. Tsong-Ru, C. Chao-Yuan, P. Ru-Pin, P. Ci-Ling, and Z. Xi-Cheng, “Electrically controlled room temperature terahertz phase shifter with liquid crystal,” IEEE Microw. Wireless Comp. Lett. 14, 77–79 (2004).
[CrossRef]

Chen, C.-Y.

R.-P. Pan, C.-F. Hsieh, C.-L. Pan, and C.-Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys. 103, 093523 (2008).
[CrossRef]

C.-Y. Chen, C.-L. Pan, C.-F. Hsieh, Y.-F. Lin, and R.-P. Pan, “Liquid-crystal-based terahertz tunable Lyot filter,” Appl. Phys. Lett. 88, 101107 (2006).
[CrossRef]

C.-Y. Chen, C.-F. Hsieh, Y.-F. Lin, R.-P. Pan, and C.-L. Pan, “Magnetically tunable room-temperature 2 pi liquid crystal terahertz phase shifter,” Opt. Express 12, 2625–2630 (2004).
[CrossRef] [PubMed]

Chen, H. T.

W. L. Chan, H. T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[CrossRef]

Chen, H.-L.

Chen, H.-T.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nature Photonics 3, 148–151 (2009).
[CrossRef]

H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).
[CrossRef]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[CrossRef] [PubMed]

Chen, P.

Cich, M. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nature Photonics 3, 148–151 (2009).
[CrossRef]

W. L. Chan, H. T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[CrossRef]

Ci-Ling, P.

T. Tsong-Ru, C. Chao-Yuan, P. Ru-Pin, P. Ci-Ling, and Z. Xi-Cheng, “Electrically controlled room temperature terahertz phase shifter with liquid crystal,” IEEE Microw. Wireless Comp. Lett. 14, 77–79 (2004).
[CrossRef]

Coutaz, J. L.

C. Minot, Y. Todorov, D. Armand, F. Garet, and J. L. Coutaz, “Long-wavelength limit and Fano profiles of extraordinary transmission through metallic slit gratings in the THz range,” Phys. Rev. B 80, 153410 (2009).
[CrossRef]

D. Armand, Y. Todorov, F. Garet, C. Minot, and J. L. Coutaz, “Study of the transmission of subwavelength metallic grids in the THz frequency range,” IEEE J. Sel. Top. Quantum Electron. 14, 513–520 (2008).
[CrossRef]

J. L. Coutaz, F. Garet, E. Bonnet, A. V. Tishchenko, O. Parriaux, and M. Nazarov, “Grating diffraction effects in the THz domain,” Acta Phys. Pol. A 107, 26–37 (2005).

Dunbar, L. A.

Eckert, R.

Garcia-Vidal, F. J.

Garet, F.

C. Minot, Y. Todorov, D. Armand, F. Garet, and J. L. Coutaz, “Long-wavelength limit and Fano profiles of extraordinary transmission through metallic slit gratings in the THz range,” Phys. Rev. B 80, 153410 (2009).
[CrossRef]

D. Armand, Y. Todorov, F. Garet, C. Minot, and J. L. Coutaz, “Study of the transmission of subwavelength metallic grids in the THz frequency range,” IEEE J. Sel. Top. Quantum Electron. 14, 513–520 (2008).
[CrossRef]

J. L. Coutaz, F. Garet, E. Bonnet, A. V. Tishchenko, O. Parriaux, and M. Nazarov, “Grating diffraction effects in the THz domain,” Acta Phys. Pol. A 107, 26–37 (2005).

Ghattan, Z.

Z. Ghattan, T. Hasek, R. Wilk, M. Shahabadi, and M. Koch, “Sub-terahertz on–off switch based on a two-dimensional photonic crystal infiltrated by liquid crystals,” Opt. Commun. 281, 4623–4625 (2008).
[CrossRef]

Gossard, A. C.

H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).
[CrossRef]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[CrossRef] [PubMed]

Guillaumée, M.

Guo, P.

Hangyo, M.

Hasek, T.

R. Wilk, N. Vieweg, O. Kopschinski, T. Hasek, and M. Koch, “THz spectroscopy of liquid crystals from the CB family,” J. Infrared Millim. Terahz. Waves 30, 1139–1147 (2009).
[CrossRef]

Z. Ghattan, T. Hasek, R. Wilk, M. Shahabadi, and M. Koch, “Sub-terahertz on–off switch based on a two-dimensional photonic crystal infiltrated by liquid crystals,” Opt. Commun. 281, 4623–4625 (2008).
[CrossRef]

Hendry, E.

S. A. Jewell, E. Hendry, T. H. Isaac, and J. R. Sambles, “Tuneable Fabry–Perot etalon for terahertz radiation,” New J. Phys. 10, 033012 (2008).
[CrossRef]

Hsieh, C. F.

Hsieh, C.-F.

Isaac, T. H.

S. A. Jewell, E. Hendry, T. H. Isaac, and J. R. Sambles, “Tuneable Fabry–Perot etalon for terahertz radiation,” New J. Phys. 10, 033012 (2008).
[CrossRef]

Jewell, S. A.

S. A. Jewell, E. Hendry, T. H. Isaac, and J. R. Sambles, “Tuneable Fabry–Perot etalon for terahertz radiation,” New J. Phys. 10, 033012 (2008).
[CrossRef]

Jokerst, N. M.

H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).
[CrossRef]

Klein, M. J. K.

Koch, M.

R. Wilk, N. Vieweg, O. Kopschinski, T. Hasek, and M. Koch, “THz spectroscopy of liquid crystals from the CB family,” J. Infrared Millim. Terahz. Waves 30, 1139–1147 (2009).
[CrossRef]

R. Wilk, N. Vieweg, O. Kopschinski, and M. Koch, “Liquid crystal based electrically switchable Bragg structure for THz waves,” Opt. Express 17, 7377–7382 (2009).
[CrossRef] [PubMed]

Z. Ghattan, T. Hasek, R. Wilk, M. Shahabadi, and M. Koch, “Sub-terahertz on–off switch based on a two-dimensional photonic crystal infiltrated by liquid crystals,” Opt. Commun. 281, 4623–4625 (2008).
[CrossRef]

Kolb, J. S.

T. Bauer, J. S. Kolb, T. Loffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys. 92, 2210–2212 (2002).
[CrossRef]

Kopschinski, O.

R. Wilk, N. Vieweg, O. Kopschinski, and M. Koch, “Liquid crystal based electrically switchable Bragg structure for THz waves,” Opt. Express 17, 7377–7382 (2009).
[CrossRef] [PubMed]

R. Wilk, N. Vieweg, O. Kopschinski, T. Hasek, and M. Koch, “THz spectroscopy of liquid crystals from the CB family,” J. Infrared Millim. Terahz. Waves 30, 1139–1147 (2009).
[CrossRef]

Lai, Y.-C.

Lalanne, P.

P. Lalanne and D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43, 2063–2086 (1996).
[CrossRef]

Lemercier-Lalanne, D.

P. Lalanne and D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43, 2063–2086 (1996).
[CrossRef]

Li, Y. T.

C. J. Lin, C. H. Lin, Y. T. Li, R. P. Pan, and C. L. Pan, “Electrically controlled liquid crystal phase grating for terahertz waves,” IEEE Photon. Technol. Lett. 21, 730–732 (2009).
[CrossRef]

C. J. Lin, Y. T. Li, C. F. Hsieh, R. P. Pan, and C. L. Pan, “Manipulating terahertz wave by a magnetically tunable liquid crystal phase grating,” Opt. Express 16, 2995–3001 (2008).
[CrossRef] [PubMed]

Lin, C. H.

C. J. Lin, C. H. Lin, Y. T. Li, R. P. Pan, and C. L. Pan, “Electrically controlled liquid crystal phase grating for terahertz waves,” IEEE Photon. Technol. Lett. 21, 730–732 (2009).
[CrossRef]

Lin, C. J.

C. J. Lin, C. H. Lin, Y. T. Li, R. P. Pan, and C. L. Pan, “Electrically controlled liquid crystal phase grating for terahertz waves,” IEEE Photon. Technol. Lett. 21, 730–732 (2009).
[CrossRef]

C. J. Lin, Y. T. Li, C. F. Hsieh, R. P. Pan, and C. L. Pan, “Manipulating terahertz wave by a magnetically tunable liquid crystal phase grating,” Opt. Express 16, 2995–3001 (2008).
[CrossRef] [PubMed]

Lin, Y.-F.

C.-Y. Chen, C.-L. Pan, C.-F. Hsieh, Y.-F. Lin, and R.-P. Pan, “Liquid-crystal-based terahertz tunable Lyot filter,” Appl. Phys. Lett. 88, 101107 (2006).
[CrossRef]

C.-Y. Chen, C.-F. Hsieh, Y.-F. Lin, R.-P. Pan, and C.-L. Pan, “Magnetically tunable room-temperature 2 pi liquid crystal terahertz phase shifter,” Opt. Express 12, 2625–2630 (2004).
[CrossRef] [PubMed]

Loffler, T.

T. Bauer, J. S. Kolb, T. Loffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys. 92, 2210–2212 (2002).
[CrossRef]

Martin-Moreno, L.

Mazumder, P.

K. Song and P. Mazumder, “Active terahertz spoof surface plasmon polariton switch comprising the perfect conductor metamaterial,” IEEE Trans. Electron. Dev. 56, 2792–2799(2009).
[CrossRef]

Minot, C.

C. Minot, Y. Todorov, D. Armand, F. Garet, and J. L. Coutaz, “Long-wavelength limit and Fano profiles of extraordinary transmission through metallic slit gratings in the THz range,” Phys. Rev. B 80, 153410 (2009).
[CrossRef]

D. Armand, Y. Todorov, F. Garet, C. Minot, and J. L. Coutaz, “Study of the transmission of subwavelength metallic grids in the THz frequency range,” IEEE J. Sel. Top. Quantum Electron. 14, 513–520 (2008).
[CrossRef]

Mittleman, D. M.

W. L. Chan, H. T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[CrossRef]

Miyamaru, F.

Mohler, E.

T. Bauer, J. S. Kolb, T. Loffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys. 92, 2210–2212 (2002).
[CrossRef]

Nazarov, M.

J. L. Coutaz, F. Garet, E. Bonnet, A. V. Tishchenko, O. Parriaux, and M. Nazarov, “Grating diffraction effects in the THz domain,” Acta Phys. Pol. A 107, 26–37 (2005).

Nikitin, A. Y.

O’Hara, J. F.

H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).
[CrossRef]

Padilla, W. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nature Photonics 3, 148–151 (2009).
[CrossRef]

H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).
[CrossRef]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[CrossRef] [PubMed]

Palit, S.

H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).
[CrossRef]

Pan, C. L.

C. J. Lin, C. H. Lin, Y. T. Li, R. P. Pan, and C. L. Pan, “Electrically controlled liquid crystal phase grating for terahertz waves,” IEEE Photon. Technol. Lett. 21, 730–732 (2009).
[CrossRef]

C. J. Lin, Y. T. Li, C. F. Hsieh, R. P. Pan, and C. L. Pan, “Manipulating terahertz wave by a magnetically tunable liquid crystal phase grating,” Opt. Express 16, 2995–3001 (2008).
[CrossRef] [PubMed]

Pan, C.-L.

Pan, R. P.

C. J. Lin, C. H. Lin, Y. T. Li, R. P. Pan, and C. L. Pan, “Electrically controlled liquid crystal phase grating for terahertz waves,” IEEE Photon. Technol. Lett. 21, 730–732 (2009).
[CrossRef]

C. J. Lin, Y. T. Li, C. F. Hsieh, R. P. Pan, and C. L. Pan, “Manipulating terahertz wave by a magnetically tunable liquid crystal phase grating,” Opt. Express 16, 2995–3001 (2008).
[CrossRef] [PubMed]

Pan, R.-P.

Parriaux, O.

J. L. Coutaz, F. Garet, E. Bonnet, A. V. Tishchenko, O. Parriaux, and M. Nazarov, “Grating diffraction effects in the THz domain,” Acta Phys. Pol. A 107, 26–37 (2005).

Pernisz, U. C.

T. Bauer, J. S. Kolb, T. Loffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys. 92, 2210–2212 (2002).
[CrossRef]

Roskos, H. G.

T. Bauer, J. S. Kolb, T. Loffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys. 92, 2210–2212 (2002).
[CrossRef]

Ru-Pin, P.

T. Tsong-Ru, C. Chao-Yuan, P. Ru-Pin, P. Ci-Ling, and Z. Xi-Cheng, “Electrically controlled room temperature terahertz phase shifter with liquid crystal,” IEEE Microw. Wireless Comp. Lett. 14, 77–79 (2004).
[CrossRef]

Sakoda, K.

K. Sakoda, Optical Properties of Photonic Crystals, 1st ed. (Springer-Verlag, 2001), pp. 177–185.

Sambles, J. R.

S. A. Jewell, E. Hendry, T. H. Isaac, and J. R. Sambles, “Tuneable Fabry–Perot etalon for terahertz radiation,” New J. Phys. 10, 033012 (2008).
[CrossRef]

Shahabadi, M.

Z. Ghattan, T. Hasek, R. Wilk, M. Shahabadi, and M. Koch, “Sub-terahertz on–off switch based on a two-dimensional photonic crystal infiltrated by liquid crystals,” Opt. Commun. 281, 4623–4625 (2008).
[CrossRef]

Smith, D. R.

H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).
[CrossRef]

Song, K.

K. Song and P. Mazumder, “Active terahertz spoof surface plasmon polariton switch comprising the perfect conductor metamaterial,” IEEE Trans. Electron. Dev. 56, 2792–2799(2009).
[CrossRef]

Spassov, V.

Stanley, R. P.

Tanaka, M.

Tang, T.-T.

Tani, M.

Taylor, A. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nature Photonics 3, 148–151 (2009).
[CrossRef]

W. L. Chan, H. T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[CrossRef]

H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).
[CrossRef]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[CrossRef] [PubMed]

Tishchenko, A. V.

J. L. Coutaz, F. Garet, E. Bonnet, A. V. Tishchenko, O. Parriaux, and M. Nazarov, “Grating diffraction effects in the THz domain,” Acta Phys. Pol. A 107, 26–37 (2005).

Todorov, Y.

C. Minot, Y. Todorov, D. Armand, F. Garet, and J. L. Coutaz, “Long-wavelength limit and Fano profiles of extraordinary transmission through metallic slit gratings in the THz range,” Phys. Rev. B 80, 153410 (2009).
[CrossRef]

D. Armand, Y. Todorov, F. Garet, C. Minot, and J. L. Coutaz, “Study of the transmission of subwavelength metallic grids in the THz frequency range,” IEEE J. Sel. Top. Quantum Electron. 14, 513–520 (2008).
[CrossRef]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photonics 1, 97–105 (2007).
[CrossRef]

Tsong-Ru, T.

T. Tsong-Ru, C. Chao-Yuan, P. Ru-Pin, P. Ci-Ling, and Z. Xi-Cheng, “Electrically controlled room temperature terahertz phase shifter with liquid crystal,” IEEE Microw. Wireless Comp. Lett. 14, 77–79 (2004).
[CrossRef]

Tyler, T.

H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).
[CrossRef]

Vieweg, N.

R. Wilk, N. Vieweg, O. Kopschinski, T. Hasek, and M. Koch, “THz spectroscopy of liquid crystals from the CB family,” J. Infrared Millim. Terahz. Waves 30, 1139–1147 (2009).
[CrossRef]

R. Wilk, N. Vieweg, O. Kopschinski, and M. Koch, “Liquid crystal based electrically switchable Bragg structure for THz waves,” Opt. Express 17, 7377–7382 (2009).
[CrossRef] [PubMed]

Wilk, R.

R. Wilk, N. Vieweg, O. Kopschinski, and M. Koch, “Liquid crystal based electrically switchable Bragg structure for THz waves,” Opt. Express 17, 7377–7382 (2009).
[CrossRef] [PubMed]

R. Wilk, N. Vieweg, O. Kopschinski, T. Hasek, and M. Koch, “THz spectroscopy of liquid crystals from the CB family,” J. Infrared Millim. Terahz. Waves 30, 1139–1147 (2009).
[CrossRef]

Z. Ghattan, T. Hasek, R. Wilk, M. Shahabadi, and M. Koch, “Sub-terahertz on–off switch based on a two-dimensional photonic crystal infiltrated by liquid crystals,” Opt. Commun. 281, 4623–4625 (2008).
[CrossRef]

Xi-Cheng, Z.

T. Tsong-Ru, C. Chao-Yuan, P. Ru-Pin, P. Ci-Ling, and Z. Xi-Cheng, “Electrically controlled room temperature terahertz phase shifter with liquid crystal,” IEEE Microw. Wireless Comp. Lett. 14, 77–79 (2004).
[CrossRef]

Yuan, J. H.

Zhang, H.

Zide, J. M. O.

H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).
[CrossRef]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[CrossRef] [PubMed]

Acta Phys. Pol. A

J. L. Coutaz, F. Garet, E. Bonnet, A. V. Tishchenko, O. Parriaux, and M. Nazarov, “Grating diffraction effects in the THz domain,” Acta Phys. Pol. A 107, 26–37 (2005).

Appl. Phys. Lett.

W. L. Chan, H. T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[CrossRef]

H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).
[CrossRef]

C.-Y. Chen, C.-L. Pan, C.-F. Hsieh, Y.-F. Lin, and R.-P. Pan, “Liquid-crystal-based terahertz tunable Lyot filter,” Appl. Phys. Lett. 88, 101107 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

D. Armand, Y. Todorov, F. Garet, C. Minot, and J. L. Coutaz, “Study of the transmission of subwavelength metallic grids in the THz frequency range,” IEEE J. Sel. Top. Quantum Electron. 14, 513–520 (2008).
[CrossRef]

IEEE Microw. Wireless Comp. Lett.

T. Tsong-Ru, C. Chao-Yuan, P. Ru-Pin, P. Ci-Ling, and Z. Xi-Cheng, “Electrically controlled room temperature terahertz phase shifter with liquid crystal,” IEEE Microw. Wireless Comp. Lett. 14, 77–79 (2004).
[CrossRef]

IEEE Photon. Technol. Lett.

C. J. Lin, C. H. Lin, Y. T. Li, R. P. Pan, and C. L. Pan, “Electrically controlled liquid crystal phase grating for terahertz waves,” IEEE Photon. Technol. Lett. 21, 730–732 (2009).
[CrossRef]

IEEE Trans. Electron. Dev.

K. Song and P. Mazumder, “Active terahertz spoof surface plasmon polariton switch comprising the perfect conductor metamaterial,” IEEE Trans. Electron. Dev. 56, 2792–2799(2009).
[CrossRef]

J. Appl. Phys.

T. Bauer, J. S. Kolb, T. Loffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys. 92, 2210–2212 (2002).
[CrossRef]

R.-P. Pan, C.-F. Hsieh, C.-L. Pan, and C.-Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys. 103, 093523 (2008).
[CrossRef]

J. Infrared Millim. Terahz. Waves

R. Wilk, N. Vieweg, O. Kopschinski, T. Hasek, and M. Koch, “THz spectroscopy of liquid crystals from the CB family,” J. Infrared Millim. Terahz. Waves 30, 1139–1147 (2009).
[CrossRef]

J. Mod. Opt.

P. Lalanne and D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43, 2063–2086 (1996).
[CrossRef]

J. Opt.

J. L. Adams and L. C. Botten, “Double gratings and their applications as Fabry–Perot interferometers,” J. Opt. 10, 109–117 (1979).
[CrossRef]

J. Opt. Soc. Am. B

Nature

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[CrossRef] [PubMed]

Nature Photonics

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nature Photonics 3, 148–151 (2009).
[CrossRef]

M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photonics 1, 97–105 (2007).
[CrossRef]

New J. Phys.

S. A. Jewell, E. Hendry, T. H. Isaac, and J. R. Sambles, “Tuneable Fabry–Perot etalon for terahertz radiation,” New J. Phys. 10, 033012 (2008).
[CrossRef]

Opt. Commun.

Z. Ghattan, T. Hasek, R. Wilk, M. Shahabadi, and M. Koch, “Sub-terahertz on–off switch based on a two-dimensional photonic crystal infiltrated by liquid crystals,” Opt. Commun. 281, 4623–4625 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

C. Minot, Y. Todorov, D. Armand, F. Garet, and J. L. Coutaz, “Long-wavelength limit and Fano profiles of extraordinary transmission through metallic slit gratings in the THz range,” Phys. Rev. B 80, 153410 (2009).
[CrossRef]

Other

COMSOL Multiphysics, “Multiphysics modeling and simulation software—COMSOL” (COMSOL, Inc., retrieved 19 September 2010), http://www.comsol.com.

K. Sakoda, Optical Properties of Photonic Crystals, 1st ed. (Springer-Verlag, 2001), pp. 177–185.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the MG-LC-MG structures. The space in the two MGs is filled with LC. The LC seal method will be illustrated in Section 3.

Fig. 2
Fig. 2

Calculated transmittances of the MG-LC-MG structures as a function of spacing and wavelength by the 2D RCWA method. The refractive indices of LC for (a) and (b) are chosen as n e = 1.77 and n o = 1.58 , respectively. The loss of the LC is neglected. The white curves are the calculated positions of the FP interference maxima using Eq. (4). The p-polarized terahertz beam is normally incident.

Fig. 3
Fig. 3

Close-up of Fig. 2 within the wavelength range of 100 to 200 μm . The white dotted curves are the guided modes calculated of the single LC layer.

Fig. 4
Fig. 4

Calculated transmittances of the MG-LC-MG structures versus frequency for different angles of incidence and refractive indices of LC (solid curve, n LC = n e = 1.77 ; dotted curve, n LC = n o = 1.58 ) by the 2D RCWA method. The loss of the LC is neglected. The spacing is 400 μm . When the angle is increased by 10 ° , the plot is shifted by 1 in amplitude for clarity. The incident terahertz beam is p polarized.

Fig. 5
Fig. 5

Schematic of the proposed electrically controlled terahertz switch device based on the MG-LC-MG structures.

Fig. 6
Fig. 6

Simulated electric field distribution in the LC cell in the case of different bias voltage configuration: (a) V 1 = 0 , V 2 = 12 V and (b) V 1 = 1.5 V , V 2 = 0 . The height and width of the LC cell are S = 400 μm and w = 5 mm , respectively. The arrow lengths are proportional to the strength of the electric field.

Fig. 7
Fig. 7

Simulated transmittances of the proposed device based on the 2D FEM for the two different bias voltage configurations described in Fig. 6. The effective indices of the LC are n e = 1.77 + j 0.02 and n o = 1.58 + j 0.02 for the solid and dotted curves, respectively [2]. The vertical lines are some reasonable operating frequencies for the terahertz switch application. In the simulation, the MG periodicity is p = 100 μm , the width and thickness of the metal stripes are a = 50 μm and h = 0.32 μm , respectively. The thickness and width of the LC cell are S = 400 μm and w = 5 mm , respectively. The thickness and relative permittivity of the silicon wafers are H = 25 μm and ε si = 11.36 + j 0.067 [20], respectively. The p-polarized terahertz beam is normally incident.

Fig. 8
Fig. 8

The largest EXT that can be obtained in theory as a function of the thickness of LC over the frequency range from 0.2 to 1 THz . The simulation method and parameters are the same as those in Fig. 7.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

τ = T 0 2 1 R 0 2 exp ( 2 i φ ) .
φ = 2 π ( S + h ) λ n LC ,
2 π ( S + h ) λ n LC + arg ( R 0 ) = l π ,
λ FP ( l ) 2 S l n LC ,
k i + m 2 π p = k guide ( q ) = 2 π f c n eff ( q ) ,

Metrics