Abstract

In this paper, we report on the fabrication of planar waveguides in z-cut Nd:SGG crystals, using 500keV He ion implantation with fluences of 3×1016 ions/cm2 at 77K 1×1016 ions/cm2 at room temperature, annealed at 260°C for 30min. The guiding modes of the planar waveguides were measured by the prism-coupling method at 633nm. The near-field intensity distribution and propagation loss of the light in the waveguides were measured by the end-fire coupling method. The absorption spectra were also measured. The refractive index profile was reconstructed using the intensity calculation method, and the light propagation mode was simulated with the finite-difference beam propagation method. The calculated results were in good agreement with the measured waveguide modes, indicating the feasibility of these designable devices.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Bao, C. Tao, and H. Yang, “Synthesis and luminescent properties of nanoparticles GdCaAl3O:RE3+ (RE=Eu, Tb) via the sol-gel method,” J. Lumin. 126, 859–865 (2007).
    [CrossRef]
  2. S. M. Kaczmarek, J. Wojtkowska, and Z. Moroz, “Valency change of Cr, Fe, Cu, Er, Ce dopants inside oxide compounds under proton irradiation,” J. Alloys Comp. 286, 167–173(1999).
    [CrossRef]
  3. M. Kaczkan and M. Malinowski, “Inhomogeneity of Ho3+ activated SrLaGa3O4 and SrLaGaO4 crystals studied by fluorescence line narrowing technique,” Opt. Mater. 28, 119–122(2006).
    [CrossRef]
  4. A. Moure, A. Castro, J. Tartaj, and C. Moure, “Single-phase ceramics with La1-xSrxGa1-yMgyO3-delta composition from precursors obtained by mechanosynthesis,” J. Power Sources 188, 489–497 (2009).
    [CrossRef]
  5. G. B. Slawomir and M. Kaczmarek, “The presence of different oxidation states of cations in optical hosts on the base of Co:SrLaGa3O7,” Opt. Mater. 24, 151–162 (2003).
    [CrossRef]
  6. X. M. Zhang, H. B. Liang, X. Ye. Y. Tao, and Q. Su, “Photoluminescence of SrGdGa3O7:RE (RE=Ce3+, Pr3+, Tb3+) under VUV-UV excitation,” J. Rare Earths 23, 1002–0721(2005).
  7. Y. Tan, F. Chen, J. R. Vazquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett. 97, 031119 (2010).
    [CrossRef]
  8. F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106, 081101 (2009).
    [CrossRef]
  9. F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: a review,” Opt. Mater. 29, 1523–1542 (2007).
    [CrossRef]
  10. K. Wang, F. Lu, M. Meng, B. Shi, W. Li, F. Wang, D. Shen, and N. Cue, “Optical waveguide of MeV hydrogen ion implanted KTiOPO4,” Jpn. J. Appl. Phys. 37, L1055–L1057 (1998).
    [CrossRef]
  11. R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum. 73, 1117–1121 (2002).
    [CrossRef]
  12. J. M. White and P. F. Heidrich, “Optical waveguide refractive index profiles determined from measurement of mode indices: a simple analysis,” Appl. Opt. 15, 151–155 (1976).
    [CrossRef] [PubMed]
  13. D. Fluck, D. H. Jundt, P. Gunter, M. Fleuster, and C. Buchal, “Modeling of refractive index profiles of He+ ion-implanted KNbO3 waveguides based on the irradiation parameters,” J. Appl. Phys. 74, 6023–6031 (1993).
    [CrossRef]
  14. X. Z. Liu, F. Lu, F. Chen, Y. Tan, R. Zhang, H. Liu, L. Wang, and L. L. Wang, “Reconstruction of extraordinary refractive index profiles of optical planar waveguides with single or double modes fabricated by O2+ ion implantation into lithium niobate,” Opt. Commun. 281, 1529–1533 (2008).
    [CrossRef]
  15. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University, 1994).
    [CrossRef]
  16. J. F. Ziegler, “The stopping and range of ions in matter,” http://www.srim.org.
  17. D. Yevick and W. Bardyszewski, “Correspondence of variational finite-difference (relaxation) and imaginary-distance propagation methods for modal analysis,” Opt. Lett. 17, 329–330 (1992).
    [CrossRef] [PubMed]
  18. J. F. Ziegler, Ion Implantation–2000: Science and Technology (Lattice, 2000).

2010 (1)

Y. Tan, F. Chen, J. R. Vazquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett. 97, 031119 (2010).
[CrossRef]

2009 (2)

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106, 081101 (2009).
[CrossRef]

A. Moure, A. Castro, J. Tartaj, and C. Moure, “Single-phase ceramics with La1-xSrxGa1-yMgyO3-delta composition from precursors obtained by mechanosynthesis,” J. Power Sources 188, 489–497 (2009).
[CrossRef]

2008 (1)

X. Z. Liu, F. Lu, F. Chen, Y. Tan, R. Zhang, H. Liu, L. Wang, and L. L. Wang, “Reconstruction of extraordinary refractive index profiles of optical planar waveguides with single or double modes fabricated by O2+ ion implantation into lithium niobate,” Opt. Commun. 281, 1529–1533 (2008).
[CrossRef]

2007 (2)

A. Bao, C. Tao, and H. Yang, “Synthesis and luminescent properties of nanoparticles GdCaAl3O:RE3+ (RE=Eu, Tb) via the sol-gel method,” J. Lumin. 126, 859–865 (2007).
[CrossRef]

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: a review,” Opt. Mater. 29, 1523–1542 (2007).
[CrossRef]

2006 (1)

M. Kaczkan and M. Malinowski, “Inhomogeneity of Ho3+ activated SrLaGa3O4 and SrLaGaO4 crystals studied by fluorescence line narrowing technique,” Opt. Mater. 28, 119–122(2006).
[CrossRef]

2005 (1)

X. M. Zhang, H. B. Liang, X. Ye. Y. Tao, and Q. Su, “Photoluminescence of SrGdGa3O7:RE (RE=Ce3+, Pr3+, Tb3+) under VUV-UV excitation,” J. Rare Earths 23, 1002–0721(2005).

2003 (1)

G. B. Slawomir and M. Kaczmarek, “The presence of different oxidation states of cations in optical hosts on the base of Co:SrLaGa3O7,” Opt. Mater. 24, 151–162 (2003).
[CrossRef]

2002 (1)

R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum. 73, 1117–1121 (2002).
[CrossRef]

1999 (1)

S. M. Kaczmarek, J. Wojtkowska, and Z. Moroz, “Valency change of Cr, Fe, Cu, Er, Ce dopants inside oxide compounds under proton irradiation,” J. Alloys Comp. 286, 167–173(1999).
[CrossRef]

1998 (1)

K. Wang, F. Lu, M. Meng, B. Shi, W. Li, F. Wang, D. Shen, and N. Cue, “Optical waveguide of MeV hydrogen ion implanted KTiOPO4,” Jpn. J. Appl. Phys. 37, L1055–L1057 (1998).
[CrossRef]

1993 (1)

D. Fluck, D. H. Jundt, P. Gunter, M. Fleuster, and C. Buchal, “Modeling of refractive index profiles of He+ ion-implanted KNbO3 waveguides based on the irradiation parameters,” J. Appl. Phys. 74, 6023–6031 (1993).
[CrossRef]

1992 (1)

1976 (1)

Bao, A.

A. Bao, C. Tao, and H. Yang, “Synthesis and luminescent properties of nanoparticles GdCaAl3O:RE3+ (RE=Eu, Tb) via the sol-gel method,” J. Lumin. 126, 859–865 (2007).
[CrossRef]

Bardyszewski, W.

Benayas, A.

Y. Tan, F. Chen, J. R. Vazquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett. 97, 031119 (2010).
[CrossRef]

Buchal, C.

D. Fluck, D. H. Jundt, P. Gunter, M. Fleuster, and C. Buchal, “Modeling of refractive index profiles of He+ ion-implanted KNbO3 waveguides based on the irradiation parameters,” J. Appl. Phys. 74, 6023–6031 (1993).
[CrossRef]

Castro, A.

A. Moure, A. Castro, J. Tartaj, and C. Moure, “Single-phase ceramics with La1-xSrxGa1-yMgyO3-delta composition from precursors obtained by mechanosynthesis,” J. Power Sources 188, 489–497 (2009).
[CrossRef]

Chandler, P. J.

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University, 1994).
[CrossRef]

Chen, F.

Y. Tan, F. Chen, J. R. Vazquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett. 97, 031119 (2010).
[CrossRef]

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106, 081101 (2009).
[CrossRef]

X. Z. Liu, F. Lu, F. Chen, Y. Tan, R. Zhang, H. Liu, L. Wang, and L. L. Wang, “Reconstruction of extraordinary refractive index profiles of optical planar waveguides with single or double modes fabricated by O2+ ion implantation into lithium niobate,” Opt. Commun. 281, 1529–1533 (2008).
[CrossRef]

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: a review,” Opt. Mater. 29, 1523–1542 (2007).
[CrossRef]

Cue, N.

K. Wang, F. Lu, M. Meng, B. Shi, W. Li, F. Wang, D. Shen, and N. Cue, “Optical waveguide of MeV hydrogen ion implanted KTiOPO4,” Jpn. J. Appl. Phys. 37, L1055–L1057 (1998).
[CrossRef]

de Aldana, J. R.

Y. Tan, F. Chen, J. R. Vazquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett. 97, 031119 (2010).
[CrossRef]

Fleuster, M.

D. Fluck, D. H. Jundt, P. Gunter, M. Fleuster, and C. Buchal, “Modeling of refractive index profiles of He+ ion-implanted KNbO3 waveguides based on the irradiation parameters,” J. Appl. Phys. 74, 6023–6031 (1993).
[CrossRef]

Fluck, D.

D. Fluck, D. H. Jundt, P. Gunter, M. Fleuster, and C. Buchal, “Modeling of refractive index profiles of He+ ion-implanted KNbO3 waveguides based on the irradiation parameters,” J. Appl. Phys. 74, 6023–6031 (1993).
[CrossRef]

Gunter, P.

D. Fluck, D. H. Jundt, P. Gunter, M. Fleuster, and C. Buchal, “Modeling of refractive index profiles of He+ ion-implanted KNbO3 waveguides based on the irradiation parameters,” J. Appl. Phys. 74, 6023–6031 (1993).
[CrossRef]

Heidrich, P. F.

Jaque, D.

Y. Tan, F. Chen, J. R. Vazquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett. 97, 031119 (2010).
[CrossRef]

Jundt, D. H.

D. Fluck, D. H. Jundt, P. Gunter, M. Fleuster, and C. Buchal, “Modeling of refractive index profiles of He+ ion-implanted KNbO3 waveguides based on the irradiation parameters,” J. Appl. Phys. 74, 6023–6031 (1993).
[CrossRef]

Kaczkan, M.

M. Kaczkan and M. Malinowski, “Inhomogeneity of Ho3+ activated SrLaGa3O4 and SrLaGaO4 crystals studied by fluorescence line narrowing technique,” Opt. Mater. 28, 119–122(2006).
[CrossRef]

Kaczmarek, M.

G. B. Slawomir and M. Kaczmarek, “The presence of different oxidation states of cations in optical hosts on the base of Co:SrLaGa3O7,” Opt. Mater. 24, 151–162 (2003).
[CrossRef]

Kaczmarek, S. M.

S. M. Kaczmarek, J. Wojtkowska, and Z. Moroz, “Valency change of Cr, Fe, Cu, Er, Ce dopants inside oxide compounds under proton irradiation,” J. Alloys Comp. 286, 167–173(1999).
[CrossRef]

Li, W.

K. Wang, F. Lu, M. Meng, B. Shi, W. Li, F. Wang, D. Shen, and N. Cue, “Optical waveguide of MeV hydrogen ion implanted KTiOPO4,” Jpn. J. Appl. Phys. 37, L1055–L1057 (1998).
[CrossRef]

Liang, H. B.

X. M. Zhang, H. B. Liang, X. Ye. Y. Tao, and Q. Su, “Photoluminescence of SrGdGa3O7:RE (RE=Ce3+, Pr3+, Tb3+) under VUV-UV excitation,” J. Rare Earths 23, 1002–0721(2005).

Liu, H.

X. Z. Liu, F. Lu, F. Chen, Y. Tan, R. Zhang, H. Liu, L. Wang, and L. L. Wang, “Reconstruction of extraordinary refractive index profiles of optical planar waveguides with single or double modes fabricated by O2+ ion implantation into lithium niobate,” Opt. Commun. 281, 1529–1533 (2008).
[CrossRef]

Liu, X. Z.

X. Z. Liu, F. Lu, F. Chen, Y. Tan, R. Zhang, H. Liu, L. Wang, and L. L. Wang, “Reconstruction of extraordinary refractive index profiles of optical planar waveguides with single or double modes fabricated by O2+ ion implantation into lithium niobate,” Opt. Commun. 281, 1529–1533 (2008).
[CrossRef]

Lu, F.

X. Z. Liu, F. Lu, F. Chen, Y. Tan, R. Zhang, H. Liu, L. Wang, and L. L. Wang, “Reconstruction of extraordinary refractive index profiles of optical planar waveguides with single or double modes fabricated by O2+ ion implantation into lithium niobate,” Opt. Commun. 281, 1529–1533 (2008).
[CrossRef]

K. Wang, F. Lu, M. Meng, B. Shi, W. Li, F. Wang, D. Shen, and N. Cue, “Optical waveguide of MeV hydrogen ion implanted KTiOPO4,” Jpn. J. Appl. Phys. 37, L1055–L1057 (1998).
[CrossRef]

Malinowski, M.

M. Kaczkan and M. Malinowski, “Inhomogeneity of Ho3+ activated SrLaGa3O4 and SrLaGaO4 crystals studied by fluorescence line narrowing technique,” Opt. Mater. 28, 119–122(2006).
[CrossRef]

Marangoni, M.

R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum. 73, 1117–1121 (2002).
[CrossRef]

Meng, M.

K. Wang, F. Lu, M. Meng, B. Shi, W. Li, F. Wang, D. Shen, and N. Cue, “Optical waveguide of MeV hydrogen ion implanted KTiOPO4,” Jpn. J. Appl. Phys. 37, L1055–L1057 (1998).
[CrossRef]

Moroz, Z.

S. M. Kaczmarek, J. Wojtkowska, and Z. Moroz, “Valency change of Cr, Fe, Cu, Er, Ce dopants inside oxide compounds under proton irradiation,” J. Alloys Comp. 286, 167–173(1999).
[CrossRef]

Moure, A.

A. Moure, A. Castro, J. Tartaj, and C. Moure, “Single-phase ceramics with La1-xSrxGa1-yMgyO3-delta composition from precursors obtained by mechanosynthesis,” J. Power Sources 188, 489–497 (2009).
[CrossRef]

Moure, C.

A. Moure, A. Castro, J. Tartaj, and C. Moure, “Single-phase ceramics with La1-xSrxGa1-yMgyO3-delta composition from precursors obtained by mechanosynthesis,” J. Power Sources 188, 489–497 (2009).
[CrossRef]

Osellame, R.

R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum. 73, 1117–1121 (2002).
[CrossRef]

Ramponi, R.

R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum. 73, 1117–1121 (2002).
[CrossRef]

Shen, D.

K. Wang, F. Lu, M. Meng, B. Shi, W. Li, F. Wang, D. Shen, and N. Cue, “Optical waveguide of MeV hydrogen ion implanted KTiOPO4,” Jpn. J. Appl. Phys. 37, L1055–L1057 (1998).
[CrossRef]

Shi, B.

K. Wang, F. Lu, M. Meng, B. Shi, W. Li, F. Wang, D. Shen, and N. Cue, “Optical waveguide of MeV hydrogen ion implanted KTiOPO4,” Jpn. J. Appl. Phys. 37, L1055–L1057 (1998).
[CrossRef]

Slawomir, G. B.

G. B. Slawomir and M. Kaczmarek, “The presence of different oxidation states of cations in optical hosts on the base of Co:SrLaGa3O7,” Opt. Mater. 24, 151–162 (2003).
[CrossRef]

Su, Q.

X. M. Zhang, H. B. Liang, X. Ye. Y. Tao, and Q. Su, “Photoluminescence of SrGdGa3O7:RE (RE=Ce3+, Pr3+, Tb3+) under VUV-UV excitation,” J. Rare Earths 23, 1002–0721(2005).

Tan, Y.

Y. Tan, F. Chen, J. R. Vazquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett. 97, 031119 (2010).
[CrossRef]

X. Z. Liu, F. Lu, F. Chen, Y. Tan, R. Zhang, H. Liu, L. Wang, and L. L. Wang, “Reconstruction of extraordinary refractive index profiles of optical planar waveguides with single or double modes fabricated by O2+ ion implantation into lithium niobate,” Opt. Commun. 281, 1529–1533 (2008).
[CrossRef]

Tao, C.

A. Bao, C. Tao, and H. Yang, “Synthesis and luminescent properties of nanoparticles GdCaAl3O:RE3+ (RE=Eu, Tb) via the sol-gel method,” J. Lumin. 126, 859–865 (2007).
[CrossRef]

Tao, X. Ye. Y.

X. M. Zhang, H. B. Liang, X. Ye. Y. Tao, and Q. Su, “Photoluminescence of SrGdGa3O7:RE (RE=Ce3+, Pr3+, Tb3+) under VUV-UV excitation,” J. Rare Earths 23, 1002–0721(2005).

Tartaj, J.

A. Moure, A. Castro, J. Tartaj, and C. Moure, “Single-phase ceramics with La1-xSrxGa1-yMgyO3-delta composition from precursors obtained by mechanosynthesis,” J. Power Sources 188, 489–497 (2009).
[CrossRef]

Torchia, G. A.

Y. Tan, F. Chen, J. R. Vazquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett. 97, 031119 (2010).
[CrossRef]

Townsend, P. D.

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University, 1994).
[CrossRef]

Wang, F.

K. Wang, F. Lu, M. Meng, B. Shi, W. Li, F. Wang, D. Shen, and N. Cue, “Optical waveguide of MeV hydrogen ion implanted KTiOPO4,” Jpn. J. Appl. Phys. 37, L1055–L1057 (1998).
[CrossRef]

Wang, K.

K. Wang, F. Lu, M. Meng, B. Shi, W. Li, F. Wang, D. Shen, and N. Cue, “Optical waveguide of MeV hydrogen ion implanted KTiOPO4,” Jpn. J. Appl. Phys. 37, L1055–L1057 (1998).
[CrossRef]

Wang, K. M.

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: a review,” Opt. Mater. 29, 1523–1542 (2007).
[CrossRef]

Wang, L.

X. Z. Liu, F. Lu, F. Chen, Y. Tan, R. Zhang, H. Liu, L. Wang, and L. L. Wang, “Reconstruction of extraordinary refractive index profiles of optical planar waveguides with single or double modes fabricated by O2+ ion implantation into lithium niobate,” Opt. Commun. 281, 1529–1533 (2008).
[CrossRef]

Wang, L. L.

X. Z. Liu, F. Lu, F. Chen, Y. Tan, R. Zhang, H. Liu, L. Wang, and L. L. Wang, “Reconstruction of extraordinary refractive index profiles of optical planar waveguides with single or double modes fabricated by O2+ ion implantation into lithium niobate,” Opt. Commun. 281, 1529–1533 (2008).
[CrossRef]

Wang, X. L.

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: a review,” Opt. Mater. 29, 1523–1542 (2007).
[CrossRef]

White, J. M.

Wojtkowska, J.

S. M. Kaczmarek, J. Wojtkowska, and Z. Moroz, “Valency change of Cr, Fe, Cu, Er, Ce dopants inside oxide compounds under proton irradiation,” J. Alloys Comp. 286, 167–173(1999).
[CrossRef]

Yang, H.

A. Bao, C. Tao, and H. Yang, “Synthesis and luminescent properties of nanoparticles GdCaAl3O:RE3+ (RE=Eu, Tb) via the sol-gel method,” J. Lumin. 126, 859–865 (2007).
[CrossRef]

Yevick, D.

Zhang, L.

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University, 1994).
[CrossRef]

Zhang, R.

X. Z. Liu, F. Lu, F. Chen, Y. Tan, R. Zhang, H. Liu, L. Wang, and L. L. Wang, “Reconstruction of extraordinary refractive index profiles of optical planar waveguides with single or double modes fabricated by O2+ ion implantation into lithium niobate,” Opt. Commun. 281, 1529–1533 (2008).
[CrossRef]

Zhang, X. M.

X. M. Zhang, H. B. Liang, X. Ye. Y. Tao, and Q. Su, “Photoluminescence of SrGdGa3O7:RE (RE=Ce3+, Pr3+, Tb3+) under VUV-UV excitation,” J. Rare Earths 23, 1002–0721(2005).

Ziegler, J. F.

J. F. Ziegler, “The stopping and range of ions in matter,” http://www.srim.org.

J. F. Ziegler, Ion Implantation–2000: Science and Technology (Lattice, 2000).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. Tan, F. Chen, J. R. Vazquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett. 97, 031119 (2010).
[CrossRef]

J. Alloys Comp. (1)

S. M. Kaczmarek, J. Wojtkowska, and Z. Moroz, “Valency change of Cr, Fe, Cu, Er, Ce dopants inside oxide compounds under proton irradiation,” J. Alloys Comp. 286, 167–173(1999).
[CrossRef]

J. Appl. Phys. (2)

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106, 081101 (2009).
[CrossRef]

D. Fluck, D. H. Jundt, P. Gunter, M. Fleuster, and C. Buchal, “Modeling of refractive index profiles of He+ ion-implanted KNbO3 waveguides based on the irradiation parameters,” J. Appl. Phys. 74, 6023–6031 (1993).
[CrossRef]

J. Lumin. (1)

A. Bao, C. Tao, and H. Yang, “Synthesis and luminescent properties of nanoparticles GdCaAl3O:RE3+ (RE=Eu, Tb) via the sol-gel method,” J. Lumin. 126, 859–865 (2007).
[CrossRef]

J. Power Sources (1)

A. Moure, A. Castro, J. Tartaj, and C. Moure, “Single-phase ceramics with La1-xSrxGa1-yMgyO3-delta composition from precursors obtained by mechanosynthesis,” J. Power Sources 188, 489–497 (2009).
[CrossRef]

J. Rare Earths (1)

X. M. Zhang, H. B. Liang, X. Ye. Y. Tao, and Q. Su, “Photoluminescence of SrGdGa3O7:RE (RE=Ce3+, Pr3+, Tb3+) under VUV-UV excitation,” J. Rare Earths 23, 1002–0721(2005).

Jpn. J. Appl. Phys. (1)

K. Wang, F. Lu, M. Meng, B. Shi, W. Li, F. Wang, D. Shen, and N. Cue, “Optical waveguide of MeV hydrogen ion implanted KTiOPO4,” Jpn. J. Appl. Phys. 37, L1055–L1057 (1998).
[CrossRef]

Opt. Commun. (1)

X. Z. Liu, F. Lu, F. Chen, Y. Tan, R. Zhang, H. Liu, L. Wang, and L. L. Wang, “Reconstruction of extraordinary refractive index profiles of optical planar waveguides with single or double modes fabricated by O2+ ion implantation into lithium niobate,” Opt. Commun. 281, 1529–1533 (2008).
[CrossRef]

Opt. Lett. (1)

Opt. Mater. (3)

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: a review,” Opt. Mater. 29, 1523–1542 (2007).
[CrossRef]

G. B. Slawomir and M. Kaczmarek, “The presence of different oxidation states of cations in optical hosts on the base of Co:SrLaGa3O7,” Opt. Mater. 24, 151–162 (2003).
[CrossRef]

M. Kaczkan and M. Malinowski, “Inhomogeneity of Ho3+ activated SrLaGa3O4 and SrLaGaO4 crystals studied by fluorescence line narrowing technique,” Opt. Mater. 28, 119–122(2006).
[CrossRef]

Rev. Sci. Instrum. (1)

R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum. 73, 1117–1121 (2002).
[CrossRef]

Other (3)

J. F. Ziegler, Ion Implantation–2000: Science and Technology (Lattice, 2000).

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University, 1994).
[CrossRef]

J. F. Ziegler, “The stopping and range of ions in matter,” http://www.srim.org.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Relative intensity of the incident light versus the effective refractive index of the Nd:SGG waveguide. (a) TE and (b) TM modes of sample S1. (c) TE and (d) TM modes of sample S2.

Fig. 2
Fig. 2

Relative intensity of the incident light versus the effective refractive index of the TM mode in S1 before and after annealing at 260 ° C for 30 min .

Fig. 3
Fig. 3

Refractive index profiles of the S1 and S2 waveguides for the TM mode.

Fig. 4
Fig. 4

Normalized nuclear energy deposition and electronic energy loss versus the penetration depth for S2.

Fig. 5
Fig. 5

(a), (c) Measured near-field intensity distributions of the TM mode for S2. (b), (d) Calculated results of the TM mode for S2.

Fig. 6
Fig. 6

Absorption spectra of the Nd:SGG substrate, S1 and S2.

Tables (1)

Tables Icon

Table 1 Experimental Conditions for 500 keV He Ion Implantation in Nd:SGG Crystals

Metrics