Abstract

This study explores the effect of particle size and surfactant on the chemical mechanical polishing (CMP) of glass using colloidal silica-based slurry. It was found that the material removal rate strongly depends on the particle size and the types of surfactants and that the rms roughness was independent of particle size and correlated to surfactants. On the basis of polishing results, it was concluded that the main polishing mechanism was changed from indentation mechanism to surface-area mechanism, with the variation of particle size. In addition, the molecular structure, charge type, and lubricating effect of the surfactants play an important role in the dispersion of abrasive particles and in the CMP performance.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Lei, H. Lu, P. Zhang, Z. Zhang, and B. Xiao, “Sub-nanometer precision polishing of glass substrate,” in 7th International Conference on Frontiers of Design and Manufacturing (National Natural Science Foundation of China, 2006), pp. 445–448.
  2. Z. F. Zhang and H. Lei, “Preparation of alpha-alumina/polymethacrylic acid composite abrasive and its CMP performance on glass substrate,” Microelectron. Eng. 85, 714–720(2008).
  3. H. L. Zhu, L. A. Tessaroto, R. Sabia, V. A. Greenhut, M. Smith, and D. E. Niesz, “Chemical mechanical polishing (CMP) anisotropy in sapphire,” Appl. Surf. Sci. 236, 120–130 (2004).
    [CrossRef]
  4. P. B. Zantye, A. Kumar, and A. K. Sikder, “Chemical mechanical planarization for microelectronics applications,” Mater. Sci. Eng. R 45, 89–220 (2004).
    [CrossRef]
  5. C. H. Lien and Y. H. Guu, “Optimization of the polishing parameters for the glass substrate of STN-LCD,” Mater. Manuf. Process. 23, 838–843 (2008).
    [CrossRef]
  6. M. J. Cumbo, D. Fairhurst, S. D. Jacobs, and B. E. Puchebner, “Slurry particle size evolution during the polishing of optical glass,” Appl. Opt. 34, 3743–3755 (1995).
    [CrossRef] [PubMed]
  7. S. H. Lee, Z. Y. Lu, S. V. Babu, and E. Matijevic, “Chemical mechanical polishing of thermal oxide films using silica particles coated with ceria,” J. Mater. Res. 17, 2744–2749 (2002).
    [CrossRef]
  8. Z. Zhang, W. Liu, and Z. Song, “Effect of abrasive particle concentration on preliminary chemical mechanical polishing of glass substrate,” Microelectron. Eng. 87, 2168–2172 (2010).
    [CrossRef]
  9. Z. Zhang, W. Liu, and Z. Song, “Effect of ammonium molybdate concentration on chemical mechanical polishing of glass substrate,” Chin. J. Semicond. (to be published).
  10. Z. Zhang, L. Yu, W. Liu, and Z. Song, “Surface modification of ceria nanoparticles and their chemical mechanical polishing behavior on glass substrate,” Appl. Surf. Sci. 256, 3856–3861(2010).
    [CrossRef]
  11. Z. Zhang, W. Liu, Z. Song, and X. Hu, “Two-step chemical mechanical polishing of sapphire substrate,” J. Electrochem. Soc. 157, H688–H691 (2010).
    [CrossRef]
  12. M. Bielmann, U. Mahajan, and R. K. Singh, “Effect of particle size during tungsten chemical mechanical polishing,” Electrochem. Solid-State Lett. 2, 401–403 (1999).
    [CrossRef]
  13. C. Zhou, L. Shan, S. H. Ng, R. Hight, A. J. Paszkowski, and S. Danyluk, “Effects of nano-scale colloidal abrasive particle size on SiO2 by chemical mechanical polishing,” Mater. Res. Soc. Symp. Proc. 671, M1.6.1–M1.6.7 (2001).
    [CrossRef]
  14. W. Choi and R. K. Singh, “Roles of colloidal silicon dioxide particles in chemical mechanical polishing of dielectric silicon dioxide,” Jpn. J. Appl. Phys. 44, 8383–8390 (2005).
    [CrossRef]
  15. W. S. Choi, J. Abiade, S. M. Lee, and R. K. Singh, “Effects of slurry particles on silicon dioxide CMP,” J. Electrochem. Soc. 151, G512–G522 (2004).
    [CrossRef]
  16. U. Mahajan, M. Bielmann, and R. K. Singh, “Abrasive effects in oxide chemical mechanical polishing,” Mater. Res. Soc. Symp. Proc. 566, 27–32 (2000).
    [CrossRef]
  17. A. Philipossian and S. Olsen, “Fundamental tribological and removal rate, studies of inter-layer dielectric chemical mechanical planarization,” Jpn. J. Appl. Phys. 42, 6371–6379(2003).
    [CrossRef]
  18. M. Bielmann, U. Mahajan, R. K. Singh, D. O. Shah, and B. J. Palla, “Enhanced tungsten chemical mechanical polishing using stable alumina slurries,” Electrochem. Solid-State Lett. 2, 148–150 (1999).
    [CrossRef]
  19. W.-C. Chen and C.-T. Yen, “Effects of slurry formulations on chemical-mechanical polishing of low dielectric constant polysiloxanes: hydrido-organo siloxane and methyl silsesquioxane,” J. Vac. Sci. Technol. B 18, 201–207 (2000).
    [CrossRef]
  20. W. Choi, U. Mahajan, S. M. Lee, J. Abiade, and R. K. Singh, “Effect of slurry ionic salts at dielectric silica CMP,” J. Electrochem. Soc. 151, G185–G189 (2004).
    [CrossRef]
  21. L. Wang, B. Liu, Z. Song, S. Feng, Y. Xiang, and F. Zhang, “Acid and surfactant effect on chemical mechanical polishing of Ge2Sb2Te5,” J. Electrochem. Soc. 156, H699–H702(2009).
    [CrossRef]
  22. W. Choi, S. M. Lee, and R. K. Singh, “pH and down load effects on silicon dioxide dielectric CMP,” Electrochem. Solid-State Lett. 7, G141–G144 (2004).
    [CrossRef]

2010

Z. Zhang, W. Liu, and Z. Song, “Effect of abrasive particle concentration on preliminary chemical mechanical polishing of glass substrate,” Microelectron. Eng. 87, 2168–2172 (2010).
[CrossRef]

Z. Zhang, L. Yu, W. Liu, and Z. Song, “Surface modification of ceria nanoparticles and their chemical mechanical polishing behavior on glass substrate,” Appl. Surf. Sci. 256, 3856–3861(2010).
[CrossRef]

Z. Zhang, W. Liu, Z. Song, and X. Hu, “Two-step chemical mechanical polishing of sapphire substrate,” J. Electrochem. Soc. 157, H688–H691 (2010).
[CrossRef]

2009

L. Wang, B. Liu, Z. Song, S. Feng, Y. Xiang, and F. Zhang, “Acid and surfactant effect on chemical mechanical polishing of Ge2Sb2Te5,” J. Electrochem. Soc. 156, H699–H702(2009).
[CrossRef]

2008

Z. F. Zhang and H. Lei, “Preparation of alpha-alumina/polymethacrylic acid composite abrasive and its CMP performance on glass substrate,” Microelectron. Eng. 85, 714–720(2008).

C. H. Lien and Y. H. Guu, “Optimization of the polishing parameters for the glass substrate of STN-LCD,” Mater. Manuf. Process. 23, 838–843 (2008).
[CrossRef]

2005

W. Choi and R. K. Singh, “Roles of colloidal silicon dioxide particles in chemical mechanical polishing of dielectric silicon dioxide,” Jpn. J. Appl. Phys. 44, 8383–8390 (2005).
[CrossRef]

2004

W. S. Choi, J. Abiade, S. M. Lee, and R. K. Singh, “Effects of slurry particles on silicon dioxide CMP,” J. Electrochem. Soc. 151, G512–G522 (2004).
[CrossRef]

W. Choi, U. Mahajan, S. M. Lee, J. Abiade, and R. K. Singh, “Effect of slurry ionic salts at dielectric silica CMP,” J. Electrochem. Soc. 151, G185–G189 (2004).
[CrossRef]

H. L. Zhu, L. A. Tessaroto, R. Sabia, V. A. Greenhut, M. Smith, and D. E. Niesz, “Chemical mechanical polishing (CMP) anisotropy in sapphire,” Appl. Surf. Sci. 236, 120–130 (2004).
[CrossRef]

P. B. Zantye, A. Kumar, and A. K. Sikder, “Chemical mechanical planarization for microelectronics applications,” Mater. Sci. Eng. R 45, 89–220 (2004).
[CrossRef]

W. Choi, S. M. Lee, and R. K. Singh, “pH and down load effects on silicon dioxide dielectric CMP,” Electrochem. Solid-State Lett. 7, G141–G144 (2004).
[CrossRef]

2003

A. Philipossian and S. Olsen, “Fundamental tribological and removal rate, studies of inter-layer dielectric chemical mechanical planarization,” Jpn. J. Appl. Phys. 42, 6371–6379(2003).
[CrossRef]

2002

S. H. Lee, Z. Y. Lu, S. V. Babu, and E. Matijevic, “Chemical mechanical polishing of thermal oxide films using silica particles coated with ceria,” J. Mater. Res. 17, 2744–2749 (2002).
[CrossRef]

2001

C. Zhou, L. Shan, S. H. Ng, R. Hight, A. J. Paszkowski, and S. Danyluk, “Effects of nano-scale colloidal abrasive particle size on SiO2 by chemical mechanical polishing,” Mater. Res. Soc. Symp. Proc. 671, M1.6.1–M1.6.7 (2001).
[CrossRef]

2000

U. Mahajan, M. Bielmann, and R. K. Singh, “Abrasive effects in oxide chemical mechanical polishing,” Mater. Res. Soc. Symp. Proc. 566, 27–32 (2000).
[CrossRef]

W.-C. Chen and C.-T. Yen, “Effects of slurry formulations on chemical-mechanical polishing of low dielectric constant polysiloxanes: hydrido-organo siloxane and methyl silsesquioxane,” J. Vac. Sci. Technol. B 18, 201–207 (2000).
[CrossRef]

1999

M. Bielmann, U. Mahajan, R. K. Singh, D. O. Shah, and B. J. Palla, “Enhanced tungsten chemical mechanical polishing using stable alumina slurries,” Electrochem. Solid-State Lett. 2, 148–150 (1999).
[CrossRef]

M. Bielmann, U. Mahajan, and R. K. Singh, “Effect of particle size during tungsten chemical mechanical polishing,” Electrochem. Solid-State Lett. 2, 401–403 (1999).
[CrossRef]

1995

Abiade, J.

W. Choi, U. Mahajan, S. M. Lee, J. Abiade, and R. K. Singh, “Effect of slurry ionic salts at dielectric silica CMP,” J. Electrochem. Soc. 151, G185–G189 (2004).
[CrossRef]

W. S. Choi, J. Abiade, S. M. Lee, and R. K. Singh, “Effects of slurry particles on silicon dioxide CMP,” J. Electrochem. Soc. 151, G512–G522 (2004).
[CrossRef]

Babu, S. V.

S. H. Lee, Z. Y. Lu, S. V. Babu, and E. Matijevic, “Chemical mechanical polishing of thermal oxide films using silica particles coated with ceria,” J. Mater. Res. 17, 2744–2749 (2002).
[CrossRef]

Bielmann, M.

U. Mahajan, M. Bielmann, and R. K. Singh, “Abrasive effects in oxide chemical mechanical polishing,” Mater. Res. Soc. Symp. Proc. 566, 27–32 (2000).
[CrossRef]

M. Bielmann, U. Mahajan, R. K. Singh, D. O. Shah, and B. J. Palla, “Enhanced tungsten chemical mechanical polishing using stable alumina slurries,” Electrochem. Solid-State Lett. 2, 148–150 (1999).
[CrossRef]

M. Bielmann, U. Mahajan, and R. K. Singh, “Effect of particle size during tungsten chemical mechanical polishing,” Electrochem. Solid-State Lett. 2, 401–403 (1999).
[CrossRef]

Chen, W.-C.

W.-C. Chen and C.-T. Yen, “Effects of slurry formulations on chemical-mechanical polishing of low dielectric constant polysiloxanes: hydrido-organo siloxane and methyl silsesquioxane,” J. Vac. Sci. Technol. B 18, 201–207 (2000).
[CrossRef]

Choi, W.

W. Choi and R. K. Singh, “Roles of colloidal silicon dioxide particles in chemical mechanical polishing of dielectric silicon dioxide,” Jpn. J. Appl. Phys. 44, 8383–8390 (2005).
[CrossRef]

W. Choi, U. Mahajan, S. M. Lee, J. Abiade, and R. K. Singh, “Effect of slurry ionic salts at dielectric silica CMP,” J. Electrochem. Soc. 151, G185–G189 (2004).
[CrossRef]

W. Choi, S. M. Lee, and R. K. Singh, “pH and down load effects on silicon dioxide dielectric CMP,” Electrochem. Solid-State Lett. 7, G141–G144 (2004).
[CrossRef]

Choi, W. S.

W. S. Choi, J. Abiade, S. M. Lee, and R. K. Singh, “Effects of slurry particles on silicon dioxide CMP,” J. Electrochem. Soc. 151, G512–G522 (2004).
[CrossRef]

Cumbo, M. J.

Danyluk, S.

C. Zhou, L. Shan, S. H. Ng, R. Hight, A. J. Paszkowski, and S. Danyluk, “Effects of nano-scale colloidal abrasive particle size on SiO2 by chemical mechanical polishing,” Mater. Res. Soc. Symp. Proc. 671, M1.6.1–M1.6.7 (2001).
[CrossRef]

Fairhurst, D.

Feng, S.

L. Wang, B. Liu, Z. Song, S. Feng, Y. Xiang, and F. Zhang, “Acid and surfactant effect on chemical mechanical polishing of Ge2Sb2Te5,” J. Electrochem. Soc. 156, H699–H702(2009).
[CrossRef]

Greenhut, V. A.

H. L. Zhu, L. A. Tessaroto, R. Sabia, V. A. Greenhut, M. Smith, and D. E. Niesz, “Chemical mechanical polishing (CMP) anisotropy in sapphire,” Appl. Surf. Sci. 236, 120–130 (2004).
[CrossRef]

Guu, Y. H.

C. H. Lien and Y. H. Guu, “Optimization of the polishing parameters for the glass substrate of STN-LCD,” Mater. Manuf. Process. 23, 838–843 (2008).
[CrossRef]

Hight, R.

C. Zhou, L. Shan, S. H. Ng, R. Hight, A. J. Paszkowski, and S. Danyluk, “Effects of nano-scale colloidal abrasive particle size on SiO2 by chemical mechanical polishing,” Mater. Res. Soc. Symp. Proc. 671, M1.6.1–M1.6.7 (2001).
[CrossRef]

Hu, X.

Z. Zhang, W. Liu, Z. Song, and X. Hu, “Two-step chemical mechanical polishing of sapphire substrate,” J. Electrochem. Soc. 157, H688–H691 (2010).
[CrossRef]

Jacobs, S. D.

Kumar, A.

P. B. Zantye, A. Kumar, and A. K. Sikder, “Chemical mechanical planarization for microelectronics applications,” Mater. Sci. Eng. R 45, 89–220 (2004).
[CrossRef]

Lee, S. H.

S. H. Lee, Z. Y. Lu, S. V. Babu, and E. Matijevic, “Chemical mechanical polishing of thermal oxide films using silica particles coated with ceria,” J. Mater. Res. 17, 2744–2749 (2002).
[CrossRef]

Lee, S. M.

W. Choi, U. Mahajan, S. M. Lee, J. Abiade, and R. K. Singh, “Effect of slurry ionic salts at dielectric silica CMP,” J. Electrochem. Soc. 151, G185–G189 (2004).
[CrossRef]

W. S. Choi, J. Abiade, S. M. Lee, and R. K. Singh, “Effects of slurry particles on silicon dioxide CMP,” J. Electrochem. Soc. 151, G512–G522 (2004).
[CrossRef]

W. Choi, S. M. Lee, and R. K. Singh, “pH and down load effects on silicon dioxide dielectric CMP,” Electrochem. Solid-State Lett. 7, G141–G144 (2004).
[CrossRef]

Lei, H.

Z. F. Zhang and H. Lei, “Preparation of alpha-alumina/polymethacrylic acid composite abrasive and its CMP performance on glass substrate,” Microelectron. Eng. 85, 714–720(2008).

H. Lei, H. Lu, P. Zhang, Z. Zhang, and B. Xiao, “Sub-nanometer precision polishing of glass substrate,” in 7th International Conference on Frontiers of Design and Manufacturing (National Natural Science Foundation of China, 2006), pp. 445–448.

Lien, C. H.

C. H. Lien and Y. H. Guu, “Optimization of the polishing parameters for the glass substrate of STN-LCD,” Mater. Manuf. Process. 23, 838–843 (2008).
[CrossRef]

Liu, B.

L. Wang, B. Liu, Z. Song, S. Feng, Y. Xiang, and F. Zhang, “Acid and surfactant effect on chemical mechanical polishing of Ge2Sb2Te5,” J. Electrochem. Soc. 156, H699–H702(2009).
[CrossRef]

Liu, W.

Z. Zhang, L. Yu, W. Liu, and Z. Song, “Surface modification of ceria nanoparticles and their chemical mechanical polishing behavior on glass substrate,” Appl. Surf. Sci. 256, 3856–3861(2010).
[CrossRef]

Z. Zhang, W. Liu, and Z. Song, “Effect of abrasive particle concentration on preliminary chemical mechanical polishing of glass substrate,” Microelectron. Eng. 87, 2168–2172 (2010).
[CrossRef]

Z. Zhang, W. Liu, Z. Song, and X. Hu, “Two-step chemical mechanical polishing of sapphire substrate,” J. Electrochem. Soc. 157, H688–H691 (2010).
[CrossRef]

Z. Zhang, W. Liu, and Z. Song, “Effect of ammonium molybdate concentration on chemical mechanical polishing of glass substrate,” Chin. J. Semicond. (to be published).

Lu, H.

H. Lei, H. Lu, P. Zhang, Z. Zhang, and B. Xiao, “Sub-nanometer precision polishing of glass substrate,” in 7th International Conference on Frontiers of Design and Manufacturing (National Natural Science Foundation of China, 2006), pp. 445–448.

Lu, Z. Y.

S. H. Lee, Z. Y. Lu, S. V. Babu, and E. Matijevic, “Chemical mechanical polishing of thermal oxide films using silica particles coated with ceria,” J. Mater. Res. 17, 2744–2749 (2002).
[CrossRef]

Mahajan, U.

W. Choi, U. Mahajan, S. M. Lee, J. Abiade, and R. K. Singh, “Effect of slurry ionic salts at dielectric silica CMP,” J. Electrochem. Soc. 151, G185–G189 (2004).
[CrossRef]

U. Mahajan, M. Bielmann, and R. K. Singh, “Abrasive effects in oxide chemical mechanical polishing,” Mater. Res. Soc. Symp. Proc. 566, 27–32 (2000).
[CrossRef]

M. Bielmann, U. Mahajan, R. K. Singh, D. O. Shah, and B. J. Palla, “Enhanced tungsten chemical mechanical polishing using stable alumina slurries,” Electrochem. Solid-State Lett. 2, 148–150 (1999).
[CrossRef]

M. Bielmann, U. Mahajan, and R. K. Singh, “Effect of particle size during tungsten chemical mechanical polishing,” Electrochem. Solid-State Lett. 2, 401–403 (1999).
[CrossRef]

Matijevic, E.

S. H. Lee, Z. Y. Lu, S. V. Babu, and E. Matijevic, “Chemical mechanical polishing of thermal oxide films using silica particles coated with ceria,” J. Mater. Res. 17, 2744–2749 (2002).
[CrossRef]

Ng, S. H.

C. Zhou, L. Shan, S. H. Ng, R. Hight, A. J. Paszkowski, and S. Danyluk, “Effects of nano-scale colloidal abrasive particle size on SiO2 by chemical mechanical polishing,” Mater. Res. Soc. Symp. Proc. 671, M1.6.1–M1.6.7 (2001).
[CrossRef]

Niesz, D. E.

H. L. Zhu, L. A. Tessaroto, R. Sabia, V. A. Greenhut, M. Smith, and D. E. Niesz, “Chemical mechanical polishing (CMP) anisotropy in sapphire,” Appl. Surf. Sci. 236, 120–130 (2004).
[CrossRef]

Olsen, S.

A. Philipossian and S. Olsen, “Fundamental tribological and removal rate, studies of inter-layer dielectric chemical mechanical planarization,” Jpn. J. Appl. Phys. 42, 6371–6379(2003).
[CrossRef]

Palla, B. J.

M. Bielmann, U. Mahajan, R. K. Singh, D. O. Shah, and B. J. Palla, “Enhanced tungsten chemical mechanical polishing using stable alumina slurries,” Electrochem. Solid-State Lett. 2, 148–150 (1999).
[CrossRef]

Paszkowski, A. J.

C. Zhou, L. Shan, S. H. Ng, R. Hight, A. J. Paszkowski, and S. Danyluk, “Effects of nano-scale colloidal abrasive particle size on SiO2 by chemical mechanical polishing,” Mater. Res. Soc. Symp. Proc. 671, M1.6.1–M1.6.7 (2001).
[CrossRef]

Philipossian, A.

A. Philipossian and S. Olsen, “Fundamental tribological and removal rate, studies of inter-layer dielectric chemical mechanical planarization,” Jpn. J. Appl. Phys. 42, 6371–6379(2003).
[CrossRef]

Puchebner, B. E.

Sabia, R.

H. L. Zhu, L. A. Tessaroto, R. Sabia, V. A. Greenhut, M. Smith, and D. E. Niesz, “Chemical mechanical polishing (CMP) anisotropy in sapphire,” Appl. Surf. Sci. 236, 120–130 (2004).
[CrossRef]

Shah, D. O.

M. Bielmann, U. Mahajan, R. K. Singh, D. O. Shah, and B. J. Palla, “Enhanced tungsten chemical mechanical polishing using stable alumina slurries,” Electrochem. Solid-State Lett. 2, 148–150 (1999).
[CrossRef]

Shan, L.

C. Zhou, L. Shan, S. H. Ng, R. Hight, A. J. Paszkowski, and S. Danyluk, “Effects of nano-scale colloidal abrasive particle size on SiO2 by chemical mechanical polishing,” Mater. Res. Soc. Symp. Proc. 671, M1.6.1–M1.6.7 (2001).
[CrossRef]

Sikder, A. K.

P. B. Zantye, A. Kumar, and A. K. Sikder, “Chemical mechanical planarization for microelectronics applications,” Mater. Sci. Eng. R 45, 89–220 (2004).
[CrossRef]

Singh, R. K.

W. Choi and R. K. Singh, “Roles of colloidal silicon dioxide particles in chemical mechanical polishing of dielectric silicon dioxide,” Jpn. J. Appl. Phys. 44, 8383–8390 (2005).
[CrossRef]

W. Choi, U. Mahajan, S. M. Lee, J. Abiade, and R. K. Singh, “Effect of slurry ionic salts at dielectric silica CMP,” J. Electrochem. Soc. 151, G185–G189 (2004).
[CrossRef]

W. S. Choi, J. Abiade, S. M. Lee, and R. K. Singh, “Effects of slurry particles on silicon dioxide CMP,” J. Electrochem. Soc. 151, G512–G522 (2004).
[CrossRef]

W. Choi, S. M. Lee, and R. K. Singh, “pH and down load effects on silicon dioxide dielectric CMP,” Electrochem. Solid-State Lett. 7, G141–G144 (2004).
[CrossRef]

U. Mahajan, M. Bielmann, and R. K. Singh, “Abrasive effects in oxide chemical mechanical polishing,” Mater. Res. Soc. Symp. Proc. 566, 27–32 (2000).
[CrossRef]

M. Bielmann, U. Mahajan, R. K. Singh, D. O. Shah, and B. J. Palla, “Enhanced tungsten chemical mechanical polishing using stable alumina slurries,” Electrochem. Solid-State Lett. 2, 148–150 (1999).
[CrossRef]

M. Bielmann, U. Mahajan, and R. K. Singh, “Effect of particle size during tungsten chemical mechanical polishing,” Electrochem. Solid-State Lett. 2, 401–403 (1999).
[CrossRef]

Smith, M.

H. L. Zhu, L. A. Tessaroto, R. Sabia, V. A. Greenhut, M. Smith, and D. E. Niesz, “Chemical mechanical polishing (CMP) anisotropy in sapphire,” Appl. Surf. Sci. 236, 120–130 (2004).
[CrossRef]

Song, Z.

Z. Zhang, L. Yu, W. Liu, and Z. Song, “Surface modification of ceria nanoparticles and their chemical mechanical polishing behavior on glass substrate,” Appl. Surf. Sci. 256, 3856–3861(2010).
[CrossRef]

Z. Zhang, W. Liu, and Z. Song, “Effect of abrasive particle concentration on preliminary chemical mechanical polishing of glass substrate,” Microelectron. Eng. 87, 2168–2172 (2010).
[CrossRef]

Z. Zhang, W. Liu, Z. Song, and X. Hu, “Two-step chemical mechanical polishing of sapphire substrate,” J. Electrochem. Soc. 157, H688–H691 (2010).
[CrossRef]

L. Wang, B. Liu, Z. Song, S. Feng, Y. Xiang, and F. Zhang, “Acid and surfactant effect on chemical mechanical polishing of Ge2Sb2Te5,” J. Electrochem. Soc. 156, H699–H702(2009).
[CrossRef]

Z. Zhang, W. Liu, and Z. Song, “Effect of ammonium molybdate concentration on chemical mechanical polishing of glass substrate,” Chin. J. Semicond. (to be published).

Tessaroto, L. A.

H. L. Zhu, L. A. Tessaroto, R. Sabia, V. A. Greenhut, M. Smith, and D. E. Niesz, “Chemical mechanical polishing (CMP) anisotropy in sapphire,” Appl. Surf. Sci. 236, 120–130 (2004).
[CrossRef]

Wang, L.

L. Wang, B. Liu, Z. Song, S. Feng, Y. Xiang, and F. Zhang, “Acid and surfactant effect on chemical mechanical polishing of Ge2Sb2Te5,” J. Electrochem. Soc. 156, H699–H702(2009).
[CrossRef]

Xiang, Y.

L. Wang, B. Liu, Z. Song, S. Feng, Y. Xiang, and F. Zhang, “Acid and surfactant effect on chemical mechanical polishing of Ge2Sb2Te5,” J. Electrochem. Soc. 156, H699–H702(2009).
[CrossRef]

Xiao, B.

H. Lei, H. Lu, P. Zhang, Z. Zhang, and B. Xiao, “Sub-nanometer precision polishing of glass substrate,” in 7th International Conference on Frontiers of Design and Manufacturing (National Natural Science Foundation of China, 2006), pp. 445–448.

Yen, C.-T.

W.-C. Chen and C.-T. Yen, “Effects of slurry formulations on chemical-mechanical polishing of low dielectric constant polysiloxanes: hydrido-organo siloxane and methyl silsesquioxane,” J. Vac. Sci. Technol. B 18, 201–207 (2000).
[CrossRef]

Yu, L.

Z. Zhang, L. Yu, W. Liu, and Z. Song, “Surface modification of ceria nanoparticles and their chemical mechanical polishing behavior on glass substrate,” Appl. Surf. Sci. 256, 3856–3861(2010).
[CrossRef]

Zantye, P. B.

P. B. Zantye, A. Kumar, and A. K. Sikder, “Chemical mechanical planarization for microelectronics applications,” Mater. Sci. Eng. R 45, 89–220 (2004).
[CrossRef]

Zhang, F.

L. Wang, B. Liu, Z. Song, S. Feng, Y. Xiang, and F. Zhang, “Acid and surfactant effect on chemical mechanical polishing of Ge2Sb2Te5,” J. Electrochem. Soc. 156, H699–H702(2009).
[CrossRef]

Zhang, P.

H. Lei, H. Lu, P. Zhang, Z. Zhang, and B. Xiao, “Sub-nanometer precision polishing of glass substrate,” in 7th International Conference on Frontiers of Design and Manufacturing (National Natural Science Foundation of China, 2006), pp. 445–448.

Zhang, Z.

Z. Zhang, W. Liu, and Z. Song, “Effect of abrasive particle concentration on preliminary chemical mechanical polishing of glass substrate,” Microelectron. Eng. 87, 2168–2172 (2010).
[CrossRef]

Z. Zhang, W. Liu, Z. Song, and X. Hu, “Two-step chemical mechanical polishing of sapphire substrate,” J. Electrochem. Soc. 157, H688–H691 (2010).
[CrossRef]

Z. Zhang, L. Yu, W. Liu, and Z. Song, “Surface modification of ceria nanoparticles and their chemical mechanical polishing behavior on glass substrate,” Appl. Surf. Sci. 256, 3856–3861(2010).
[CrossRef]

Z. Zhang, W. Liu, and Z. Song, “Effect of ammonium molybdate concentration on chemical mechanical polishing of glass substrate,” Chin. J. Semicond. (to be published).

H. Lei, H. Lu, P. Zhang, Z. Zhang, and B. Xiao, “Sub-nanometer precision polishing of glass substrate,” in 7th International Conference on Frontiers of Design and Manufacturing (National Natural Science Foundation of China, 2006), pp. 445–448.

Zhang, Z. F.

Z. F. Zhang and H. Lei, “Preparation of alpha-alumina/polymethacrylic acid composite abrasive and its CMP performance on glass substrate,” Microelectron. Eng. 85, 714–720(2008).

Zhou, C.

C. Zhou, L. Shan, S. H. Ng, R. Hight, A. J. Paszkowski, and S. Danyluk, “Effects of nano-scale colloidal abrasive particle size on SiO2 by chemical mechanical polishing,” Mater. Res. Soc. Symp. Proc. 671, M1.6.1–M1.6.7 (2001).
[CrossRef]

Zhu, H. L.

H. L. Zhu, L. A. Tessaroto, R. Sabia, V. A. Greenhut, M. Smith, and D. E. Niesz, “Chemical mechanical polishing (CMP) anisotropy in sapphire,” Appl. Surf. Sci. 236, 120–130 (2004).
[CrossRef]

Appl. Opt.

Appl. Surf. Sci.

H. L. Zhu, L. A. Tessaroto, R. Sabia, V. A. Greenhut, M. Smith, and D. E. Niesz, “Chemical mechanical polishing (CMP) anisotropy in sapphire,” Appl. Surf. Sci. 236, 120–130 (2004).
[CrossRef]

Z. Zhang, L. Yu, W. Liu, and Z. Song, “Surface modification of ceria nanoparticles and their chemical mechanical polishing behavior on glass substrate,” Appl. Surf. Sci. 256, 3856–3861(2010).
[CrossRef]

Electrochem. Solid-State Lett.

M. Bielmann, U. Mahajan, and R. K. Singh, “Effect of particle size during tungsten chemical mechanical polishing,” Electrochem. Solid-State Lett. 2, 401–403 (1999).
[CrossRef]

M. Bielmann, U. Mahajan, R. K. Singh, D. O. Shah, and B. J. Palla, “Enhanced tungsten chemical mechanical polishing using stable alumina slurries,” Electrochem. Solid-State Lett. 2, 148–150 (1999).
[CrossRef]

W. Choi, S. M. Lee, and R. K. Singh, “pH and down load effects on silicon dioxide dielectric CMP,” Electrochem. Solid-State Lett. 7, G141–G144 (2004).
[CrossRef]

J. Electrochem. Soc.

W. Choi, U. Mahajan, S. M. Lee, J. Abiade, and R. K. Singh, “Effect of slurry ionic salts at dielectric silica CMP,” J. Electrochem. Soc. 151, G185–G189 (2004).
[CrossRef]

L. Wang, B. Liu, Z. Song, S. Feng, Y. Xiang, and F. Zhang, “Acid and surfactant effect on chemical mechanical polishing of Ge2Sb2Te5,” J. Electrochem. Soc. 156, H699–H702(2009).
[CrossRef]

W. S. Choi, J. Abiade, S. M. Lee, and R. K. Singh, “Effects of slurry particles on silicon dioxide CMP,” J. Electrochem. Soc. 151, G512–G522 (2004).
[CrossRef]

Z. Zhang, W. Liu, Z. Song, and X. Hu, “Two-step chemical mechanical polishing of sapphire substrate,” J. Electrochem. Soc. 157, H688–H691 (2010).
[CrossRef]

J. Mater. Res.

S. H. Lee, Z. Y. Lu, S. V. Babu, and E. Matijevic, “Chemical mechanical polishing of thermal oxide films using silica particles coated with ceria,” J. Mater. Res. 17, 2744–2749 (2002).
[CrossRef]

J. Vac. Sci. Technol. B

W.-C. Chen and C.-T. Yen, “Effects of slurry formulations on chemical-mechanical polishing of low dielectric constant polysiloxanes: hydrido-organo siloxane and methyl silsesquioxane,” J. Vac. Sci. Technol. B 18, 201–207 (2000).
[CrossRef]

Jpn. J. Appl. Phys.

W. Choi and R. K. Singh, “Roles of colloidal silicon dioxide particles in chemical mechanical polishing of dielectric silicon dioxide,” Jpn. J. Appl. Phys. 44, 8383–8390 (2005).
[CrossRef]

A. Philipossian and S. Olsen, “Fundamental tribological and removal rate, studies of inter-layer dielectric chemical mechanical planarization,” Jpn. J. Appl. Phys. 42, 6371–6379(2003).
[CrossRef]

Mater. Manuf. Process.

C. H. Lien and Y. H. Guu, “Optimization of the polishing parameters for the glass substrate of STN-LCD,” Mater. Manuf. Process. 23, 838–843 (2008).
[CrossRef]

Mater. Res. Soc. Symp. Proc.

U. Mahajan, M. Bielmann, and R. K. Singh, “Abrasive effects in oxide chemical mechanical polishing,” Mater. Res. Soc. Symp. Proc. 566, 27–32 (2000).
[CrossRef]

C. Zhou, L. Shan, S. H. Ng, R. Hight, A. J. Paszkowski, and S. Danyluk, “Effects of nano-scale colloidal abrasive particle size on SiO2 by chemical mechanical polishing,” Mater. Res. Soc. Symp. Proc. 671, M1.6.1–M1.6.7 (2001).
[CrossRef]

Mater. Sci. Eng. R

P. B. Zantye, A. Kumar, and A. K. Sikder, “Chemical mechanical planarization for microelectronics applications,” Mater. Sci. Eng. R 45, 89–220 (2004).
[CrossRef]

Microelectron. Eng.

Z. F. Zhang and H. Lei, “Preparation of alpha-alumina/polymethacrylic acid composite abrasive and its CMP performance on glass substrate,” Microelectron. Eng. 85, 714–720(2008).

Z. Zhang, W. Liu, and Z. Song, “Effect of abrasive particle concentration on preliminary chemical mechanical polishing of glass substrate,” Microelectron. Eng. 87, 2168–2172 (2010).
[CrossRef]

Other

Z. Zhang, W. Liu, and Z. Song, “Effect of ammonium molybdate concentration on chemical mechanical polishing of glass substrate,” Chin. J. Semicond. (to be published).

H. Lei, H. Lu, P. Zhang, Z. Zhang, and B. Xiao, “Sub-nanometer precision polishing of glass substrate,” in 7th International Conference on Frontiers of Design and Manufacturing (National Natural Science Foundation of China, 2006), pp. 445–448.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

SEM images of silica particles: (a) SIM 40, (b) SIM 60, (c) SIM (90), and (d) SIM 120.

Fig. 2
Fig. 2

Particle size distributions for different types of silica particles diluted in DI water at pH 10.

Fig. 3
Fig. 3

Root-mean-square roughness as a function of mean particle size.

Fig. 4
Fig. 4

MRR as a function of mean particle size.

Fig. 5
Fig. 5

Particle size distributions as a function of surfactants.

Fig. 6
Fig. 6

Zeta potential as a function of surfactants.

Fig. 7
Fig. 7

COF values as a function of polishing time for different surfactants.

Fig. 8
Fig. 8

MRR as a function of surfactants.

Fig. 9
Fig. 9

Root-mean-square roughness as a function of surfactants.

Tables (1)

Tables Icon

Table 1 Variations in Particle Size of Supplied Abrasives

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R A C 0 1 / 3 d 1 / 3 ,
R V C 0 1 / 3 d 4 / 3 .

Metrics