Abstract

In this paper, resolution limits of laser spectroscopy absorption measurements with hollow capillary fibers are investigated. Furthermore, a concept of sensitive near-infrared sensing utilizing hollow fiber directly coupled with vertical-cavity surface-emitting lasers is developed. By performing wavelength modulation spectroscopy, the smallest absorbance that can be detected by the fiber sensor was determined to be 104, limited by a random modulation of the fiber transmission function (modal noise). By mechanically vibrating the fiber, a sensor resolution of 105 in absorbance is achieved. Because the random modulation on the fiber transmission function limits the detection sensitivity, its physical reasons are analyzed. One contribution is found to be the partial integration of the far field, and the amplitude of the spectral features is inversely proportional to the square root of the integrated speckle points number. Therefore, careful design of the fiber-detector outcoupling is necessary. It turned out that incoupling alignment is not of much influence with respect to the spectral background. The residual spectral background is caused by mode-dependent effects and can be lowered by vibrating the fiber mechanically.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Chen, A. Hangauer, R. Strzoda, and M.-C. Amann, “Laser spectroscopic oxygen sensor using diffuse reflector-based optical cell and advanced signal processing,” Appl. Phys. B 100, 417–425 (2010).
    [CrossRef]
  2. D. Herriott, H. Kogelnik, and R. Kompfner, “Off-axis paths in spherical mirror interferometers,” Appl. Opt. 3, 523–526(1964).
    [CrossRef]
  3. J. U. White, “Long paths of large aperture,” J. Opt. Soc. Am. 32, 285 (1942).
    [CrossRef]
  4. J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integr. Opt. 19, 211–217 (2000).
    [CrossRef]
  5. J. A. Harrington, C. Rabii, and D. Gibson, “Transmission properties of hollow glass waveguides for the delivery of CO2surgical laser power,” IEEE J. Sel. Top. Quantum Electron. 5, 948–953 (1999).
    [CrossRef]
  6. Y. Matsuura, T. Abel, and J. A. Harrington, “Optical properties of small-bore hollow glass waveguides,” Appl. Opt. 34, 6842–6847 (1995).
    [CrossRef] [PubMed]
  7. S. Lundqvist and P.-A. Thorsen, “Wavelength modulation spectroscopy method and system,” U.S. patent 7,193,718 (20 March 2007).
  8. S. Lundqvist and P. Kluczynski, “Method for improving the sensitivity in a fiber coupled diode laser spectrometer by selective predistortion,” in Book of Abstracts: Field Laser Applications in Industry and Research (FLAIR) (2007), p. 39, http://www.inoa.it/flair.
  9. S. Hartwig and A. Lambrecht, “Characterization of hollow fibres for compact infrared gas measurement cells,” Tech. Mess. 75, 555–564 (2008).
    [CrossRef]
  10. C. Young, S.-S. Kim, Y. Luzinova, M. Weida, D. Arnone, E. Takeuchi, T. Day, and B. Mizaikoff, “External cavity widely tunable quantum cascade laser based hollow waveguide gas sensors for multianalyte detection,” Sens. Actuators. B 140, 24–28 (2009).
    [CrossRef]
  11. C. A. Worrell and N. A. Gallen, “Trace-level detection of gases and vapours with mid-infrared hollow waveguides,” J. Phys. D 30, 1984–1995 (1997).
    [CrossRef]
  12. L. Hvozdara, S. Gianordoli, G. Strasser, W. Schrenk, K. Unterrainer, E. Gornik, C. S. S. S. Murthy, M. Kraft, V. Pustogow, B. Mizaikoff, A. Inberg, and N. Croitoru, “Spectroscopy in the gas phase with GaAs/AlGaAs quantum-cascade lasers,” Appl. Opt. 39, 6926–6930 (2000).
    [CrossRef]
  13. M.-C. Amann and M. Ortsiefer, “Long-wavelength (λ≥1.3 μm) InGaAlAs-InP vertical-cavity surface-emitting lasers for applications in optical communication and sensing,” Phys. Status Solidi A 203, 3538–3544 (2006).
    [CrossRef]
  14. M. Grabherr, D. Wiedenmann, R. Jaeger, and R. King, “Fabrication and performance of tunable single-mode VCSELs emitting in the 750 to 1000 nm range,” Proc. SPIE 5737, 120–128 (2005).
    [CrossRef]
  15. A. Bachmann, T. Lim, K. Kashani-Shirazi, O. Dier, C. Lauer, and M.-C. Amann, “Continuous-wave operation of electrically pumped GaSb-based vertical cavity surface emitting laser at 2.3 μm,” Electron. Lett. 44, 202–203 (2008).
    [CrossRef]
  16. R. K. Nubling and J. A. Harrington, “Launch conditions and mode coupling in hollow-glass waveguides,” Opt. Eng. 37, 2454–2458 (1998).
    [CrossRef]
  17. J. B. McManus, “Paraxial matrix description of astigmatic and cylindrical mirror resonators with twisted axes for laser spectroscopy,” Appl. Opt. 46, 472–482 (2007).
    [CrossRef] [PubMed]
  18. J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phy. B 26, 203–210 (1981).
    [CrossRef]
  19. P. Kluczynski, J. Gustafsson, Åsa M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry—an extensive scrutiny of the generation of signals,” Spectrochim. Acta Part B 56, 1277–1354 (2001).
    [CrossRef]
  20. A. Hangauer, J. Chen, and M.-C. Amann, “Modeling of the nth harmonic spectra used in wavelength modulation spectroscopy and their properties,” Appl. Phys. B 90, 249–254(2008).
    [CrossRef]
  21. “Manual of Model SR830 DSP Lock-In Amplifier,” Standford Research Systems.
  22. R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36, 2522–2524 (1965).
    [CrossRef]
  23. S. Schilt, L. Thévenaz, and P. Robert, “Wavelength modulation spectroscopy: combined frequency and intensity laser modulation,” Appl. Opt. 42, 6728–6738 (2003).
    [CrossRef] [PubMed]
  24. J. Chen, A. Hangauer, R. Strzoda, and M. C. Amann, “Tunable diode laser spectroscopy with optimum wavelength scanning,” Appl. Phys. B 100, 331–339 (2010). DOI 10.1007/s00340-010-3973-2.
    [CrossRef]
  25. J. Hodgkinson, D. Masiyano, and R. P. Tatam, “Gas cells for tunable diode laser absorption spectroscopy employing optical diffusers. Part 1: single and dual pass cells,” Appl. Phys. B 100, 291–302 (2010).
    [CrossRef]
  26. W. Freude, Optische Kommunikationstechnik (Springer-Verlag, 2002), Chap. 5.
  27. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J.C.Dainty, ed. (Springer, 1976), Chap. 2.
  28. J. Chen, A. Hangauer, R. Strzoda, and M.-C. Amann, “Low-level and ultra-low volume hollow waveguide based carbon monoxide sensor,” Opt. Lett. (to be published).
    [PubMed]

2010 (3)

J. Chen, A. Hangauer, R. Strzoda, and M.-C. Amann, “Laser spectroscopic oxygen sensor using diffuse reflector-based optical cell and advanced signal processing,” Appl. Phys. B 100, 417–425 (2010).
[CrossRef]

J. Chen, A. Hangauer, R. Strzoda, and M. C. Amann, “Tunable diode laser spectroscopy with optimum wavelength scanning,” Appl. Phys. B 100, 331–339 (2010). DOI 10.1007/s00340-010-3973-2.
[CrossRef]

J. Hodgkinson, D. Masiyano, and R. P. Tatam, “Gas cells for tunable diode laser absorption spectroscopy employing optical diffusers. Part 1: single and dual pass cells,” Appl. Phys. B 100, 291–302 (2010).
[CrossRef]

2009 (1)

C. Young, S.-S. Kim, Y. Luzinova, M. Weida, D. Arnone, E. Takeuchi, T. Day, and B. Mizaikoff, “External cavity widely tunable quantum cascade laser based hollow waveguide gas sensors for multianalyte detection,” Sens. Actuators. B 140, 24–28 (2009).
[CrossRef]

2008 (3)

A. Bachmann, T. Lim, K. Kashani-Shirazi, O. Dier, C. Lauer, and M.-C. Amann, “Continuous-wave operation of electrically pumped GaSb-based vertical cavity surface emitting laser at 2.3 μm,” Electron. Lett. 44, 202–203 (2008).
[CrossRef]

S. Hartwig and A. Lambrecht, “Characterization of hollow fibres for compact infrared gas measurement cells,” Tech. Mess. 75, 555–564 (2008).
[CrossRef]

A. Hangauer, J. Chen, and M.-C. Amann, “Modeling of the nth harmonic spectra used in wavelength modulation spectroscopy and their properties,” Appl. Phys. B 90, 249–254(2008).
[CrossRef]

2007 (1)

2006 (1)

M.-C. Amann and M. Ortsiefer, “Long-wavelength (λ≥1.3 μm) InGaAlAs-InP vertical-cavity surface-emitting lasers for applications in optical communication and sensing,” Phys. Status Solidi A 203, 3538–3544 (2006).
[CrossRef]

2005 (1)

M. Grabherr, D. Wiedenmann, R. Jaeger, and R. King, “Fabrication and performance of tunable single-mode VCSELs emitting in the 750 to 1000 nm range,” Proc. SPIE 5737, 120–128 (2005).
[CrossRef]

2003 (1)

2001 (1)

P. Kluczynski, J. Gustafsson, Åsa M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry—an extensive scrutiny of the generation of signals,” Spectrochim. Acta Part B 56, 1277–1354 (2001).
[CrossRef]

2000 (2)

1999 (1)

J. A. Harrington, C. Rabii, and D. Gibson, “Transmission properties of hollow glass waveguides for the delivery of CO2surgical laser power,” IEEE J. Sel. Top. Quantum Electron. 5, 948–953 (1999).
[CrossRef]

1998 (1)

R. K. Nubling and J. A. Harrington, “Launch conditions and mode coupling in hollow-glass waveguides,” Opt. Eng. 37, 2454–2458 (1998).
[CrossRef]

1997 (1)

C. A. Worrell and N. A. Gallen, “Trace-level detection of gases and vapours with mid-infrared hollow waveguides,” J. Phys. D 30, 1984–1995 (1997).
[CrossRef]

1995 (1)

1981 (1)

J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phy. B 26, 203–210 (1981).
[CrossRef]

1965 (1)

R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36, 2522–2524 (1965).
[CrossRef]

1964 (1)

1942 (1)

Abel, T.

Amann, M. C.

J. Chen, A. Hangauer, R. Strzoda, and M. C. Amann, “Tunable diode laser spectroscopy with optimum wavelength scanning,” Appl. Phys. B 100, 331–339 (2010). DOI 10.1007/s00340-010-3973-2.
[CrossRef]

Amann, M.-C.

J. Chen, A. Hangauer, R. Strzoda, and M.-C. Amann, “Laser spectroscopic oxygen sensor using diffuse reflector-based optical cell and advanced signal processing,” Appl. Phys. B 100, 417–425 (2010).
[CrossRef]

A. Hangauer, J. Chen, and M.-C. Amann, “Modeling of the nth harmonic spectra used in wavelength modulation spectroscopy and their properties,” Appl. Phys. B 90, 249–254(2008).
[CrossRef]

A. Bachmann, T. Lim, K. Kashani-Shirazi, O. Dier, C. Lauer, and M.-C. Amann, “Continuous-wave operation of electrically pumped GaSb-based vertical cavity surface emitting laser at 2.3 μm,” Electron. Lett. 44, 202–203 (2008).
[CrossRef]

M.-C. Amann and M. Ortsiefer, “Long-wavelength (λ≥1.3 μm) InGaAlAs-InP vertical-cavity surface-emitting lasers for applications in optical communication and sensing,” Phys. Status Solidi A 203, 3538–3544 (2006).
[CrossRef]

J. Chen, A. Hangauer, R. Strzoda, and M.-C. Amann, “Low-level and ultra-low volume hollow waveguide based carbon monoxide sensor,” Opt. Lett. (to be published).
[PubMed]

Arndt, R.

R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36, 2522–2524 (1965).
[CrossRef]

Arnone, D.

C. Young, S.-S. Kim, Y. Luzinova, M. Weida, D. Arnone, E. Takeuchi, T. Day, and B. Mizaikoff, “External cavity widely tunable quantum cascade laser based hollow waveguide gas sensors for multianalyte detection,” Sens. Actuators. B 140, 24–28 (2009).
[CrossRef]

Axner, O.

P. Kluczynski, J. Gustafsson, Åsa M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry—an extensive scrutiny of the generation of signals,” Spectrochim. Acta Part B 56, 1277–1354 (2001).
[CrossRef]

Bachmann, A.

A. Bachmann, T. Lim, K. Kashani-Shirazi, O. Dier, C. Lauer, and M.-C. Amann, “Continuous-wave operation of electrically pumped GaSb-based vertical cavity surface emitting laser at 2.3 μm,” Electron. Lett. 44, 202–203 (2008).
[CrossRef]

Chen, J.

J. Chen, A. Hangauer, R. Strzoda, and M. C. Amann, “Tunable diode laser spectroscopy with optimum wavelength scanning,” Appl. Phys. B 100, 331–339 (2010). DOI 10.1007/s00340-010-3973-2.
[CrossRef]

J. Chen, A. Hangauer, R. Strzoda, and M.-C. Amann, “Laser spectroscopic oxygen sensor using diffuse reflector-based optical cell and advanced signal processing,” Appl. Phys. B 100, 417–425 (2010).
[CrossRef]

A. Hangauer, J. Chen, and M.-C. Amann, “Modeling of the nth harmonic spectra used in wavelength modulation spectroscopy and their properties,” Appl. Phys. B 90, 249–254(2008).
[CrossRef]

J. Chen, A. Hangauer, R. Strzoda, and M.-C. Amann, “Low-level and ultra-low volume hollow waveguide based carbon monoxide sensor,” Opt. Lett. (to be published).
[PubMed]

Croitoru, N.

Day, T.

C. Young, S.-S. Kim, Y. Luzinova, M. Weida, D. Arnone, E. Takeuchi, T. Day, and B. Mizaikoff, “External cavity widely tunable quantum cascade laser based hollow waveguide gas sensors for multianalyte detection,” Sens. Actuators. B 140, 24–28 (2009).
[CrossRef]

Dier, O.

A. Bachmann, T. Lim, K. Kashani-Shirazi, O. Dier, C. Lauer, and M.-C. Amann, “Continuous-wave operation of electrically pumped GaSb-based vertical cavity surface emitting laser at 2.3 μm,” Electron. Lett. 44, 202–203 (2008).
[CrossRef]

Freude, W.

W. Freude, Optische Kommunikationstechnik (Springer-Verlag, 2002), Chap. 5.

Gallen, N. A.

C. A. Worrell and N. A. Gallen, “Trace-level detection of gases and vapours with mid-infrared hollow waveguides,” J. Phys. D 30, 1984–1995 (1997).
[CrossRef]

Gianordoli, S.

Gibson, D.

J. A. Harrington, C. Rabii, and D. Gibson, “Transmission properties of hollow glass waveguides for the delivery of CO2surgical laser power,” IEEE J. Sel. Top. Quantum Electron. 5, 948–953 (1999).
[CrossRef]

Goodman, J. W.

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J.C.Dainty, ed. (Springer, 1976), Chap. 2.

Gornik, E.

Grabherr, M.

M. Grabherr, D. Wiedenmann, R. Jaeger, and R. King, “Fabrication and performance of tunable single-mode VCSELs emitting in the 750 to 1000 nm range,” Proc. SPIE 5737, 120–128 (2005).
[CrossRef]

Gustafsson, J.

P. Kluczynski, J. Gustafsson, Åsa M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry—an extensive scrutiny of the generation of signals,” Spectrochim. Acta Part B 56, 1277–1354 (2001).
[CrossRef]

Hangauer, A.

J. Chen, A. Hangauer, R. Strzoda, and M. C. Amann, “Tunable diode laser spectroscopy with optimum wavelength scanning,” Appl. Phys. B 100, 331–339 (2010). DOI 10.1007/s00340-010-3973-2.
[CrossRef]

J. Chen, A. Hangauer, R. Strzoda, and M.-C. Amann, “Laser spectroscopic oxygen sensor using diffuse reflector-based optical cell and advanced signal processing,” Appl. Phys. B 100, 417–425 (2010).
[CrossRef]

A. Hangauer, J. Chen, and M.-C. Amann, “Modeling of the nth harmonic spectra used in wavelength modulation spectroscopy and their properties,” Appl. Phys. B 90, 249–254(2008).
[CrossRef]

J. Chen, A. Hangauer, R. Strzoda, and M.-C. Amann, “Low-level and ultra-low volume hollow waveguide based carbon monoxide sensor,” Opt. Lett. (to be published).
[PubMed]

Harrington, J. A.

J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integr. Opt. 19, 211–217 (2000).
[CrossRef]

J. A. Harrington, C. Rabii, and D. Gibson, “Transmission properties of hollow glass waveguides for the delivery of CO2surgical laser power,” IEEE J. Sel. Top. Quantum Electron. 5, 948–953 (1999).
[CrossRef]

R. K. Nubling and J. A. Harrington, “Launch conditions and mode coupling in hollow-glass waveguides,” Opt. Eng. 37, 2454–2458 (1998).
[CrossRef]

Y. Matsuura, T. Abel, and J. A. Harrington, “Optical properties of small-bore hollow glass waveguides,” Appl. Opt. 34, 6842–6847 (1995).
[CrossRef] [PubMed]

Hartwig, S.

S. Hartwig and A. Lambrecht, “Characterization of hollow fibres for compact infrared gas measurement cells,” Tech. Mess. 75, 555–564 (2008).
[CrossRef]

Herriott, D.

Hodgkinson, J.

J. Hodgkinson, D. Masiyano, and R. P. Tatam, “Gas cells for tunable diode laser absorption spectroscopy employing optical diffusers. Part 1: single and dual pass cells,” Appl. Phys. B 100, 291–302 (2010).
[CrossRef]

Hvozdara, L.

Inberg, A.

Jaeger, R.

M. Grabherr, D. Wiedenmann, R. Jaeger, and R. King, “Fabrication and performance of tunable single-mode VCSELs emitting in the 750 to 1000 nm range,” Proc. SPIE 5737, 120–128 (2005).
[CrossRef]

Kashani-Shirazi, K.

A. Bachmann, T. Lim, K. Kashani-Shirazi, O. Dier, C. Lauer, and M.-C. Amann, “Continuous-wave operation of electrically pumped GaSb-based vertical cavity surface emitting laser at 2.3 μm,” Electron. Lett. 44, 202–203 (2008).
[CrossRef]

Kim, S.-S.

C. Young, S.-S. Kim, Y. Luzinova, M. Weida, D. Arnone, E. Takeuchi, T. Day, and B. Mizaikoff, “External cavity widely tunable quantum cascade laser based hollow waveguide gas sensors for multianalyte detection,” Sens. Actuators. B 140, 24–28 (2009).
[CrossRef]

King, R.

M. Grabherr, D. Wiedenmann, R. Jaeger, and R. King, “Fabrication and performance of tunable single-mode VCSELs emitting in the 750 to 1000 nm range,” Proc. SPIE 5737, 120–128 (2005).
[CrossRef]

Kluczynski, P.

P. Kluczynski, J. Gustafsson, Åsa M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry—an extensive scrutiny of the generation of signals,” Spectrochim. Acta Part B 56, 1277–1354 (2001).
[CrossRef]

S. Lundqvist and P. Kluczynski, “Method for improving the sensitivity in a fiber coupled diode laser spectrometer by selective predistortion,” in Book of Abstracts: Field Laser Applications in Industry and Research (FLAIR) (2007), p. 39, http://www.inoa.it/flair.

Kogelnik, H.

Kompfner, R.

Kraft, M.

Labrie, D.

J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phy. B 26, 203–210 (1981).
[CrossRef]

Lambrecht, A.

S. Hartwig and A. Lambrecht, “Characterization of hollow fibres for compact infrared gas measurement cells,” Tech. Mess. 75, 555–564 (2008).
[CrossRef]

Lauer, C.

A. Bachmann, T. Lim, K. Kashani-Shirazi, O. Dier, C. Lauer, and M.-C. Amann, “Continuous-wave operation of electrically pumped GaSb-based vertical cavity surface emitting laser at 2.3 μm,” Electron. Lett. 44, 202–203 (2008).
[CrossRef]

Lim, T.

A. Bachmann, T. Lim, K. Kashani-Shirazi, O. Dier, C. Lauer, and M.-C. Amann, “Continuous-wave operation of electrically pumped GaSb-based vertical cavity surface emitting laser at 2.3 μm,” Electron. Lett. 44, 202–203 (2008).
[CrossRef]

Lindberg, Åsa M.

P. Kluczynski, J. Gustafsson, Åsa M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry—an extensive scrutiny of the generation of signals,” Spectrochim. Acta Part B 56, 1277–1354 (2001).
[CrossRef]

Lundqvist, S.

S. Lundqvist and P. Kluczynski, “Method for improving the sensitivity in a fiber coupled diode laser spectrometer by selective predistortion,” in Book of Abstracts: Field Laser Applications in Industry and Research (FLAIR) (2007), p. 39, http://www.inoa.it/flair.

S. Lundqvist and P.-A. Thorsen, “Wavelength modulation spectroscopy method and system,” U.S. patent 7,193,718 (20 March 2007).

Luzinova, Y.

C. Young, S.-S. Kim, Y. Luzinova, M. Weida, D. Arnone, E. Takeuchi, T. Day, and B. Mizaikoff, “External cavity widely tunable quantum cascade laser based hollow waveguide gas sensors for multianalyte detection,” Sens. Actuators. B 140, 24–28 (2009).
[CrossRef]

Masiyano, D.

J. Hodgkinson, D. Masiyano, and R. P. Tatam, “Gas cells for tunable diode laser absorption spectroscopy employing optical diffusers. Part 1: single and dual pass cells,” Appl. Phys. B 100, 291–302 (2010).
[CrossRef]

Matsuura, Y.

McManus, J. B.

Mizaikoff, B.

C. Young, S.-S. Kim, Y. Luzinova, M. Weida, D. Arnone, E. Takeuchi, T. Day, and B. Mizaikoff, “External cavity widely tunable quantum cascade laser based hollow waveguide gas sensors for multianalyte detection,” Sens. Actuators. B 140, 24–28 (2009).
[CrossRef]

L. Hvozdara, S. Gianordoli, G. Strasser, W. Schrenk, K. Unterrainer, E. Gornik, C. S. S. S. Murthy, M. Kraft, V. Pustogow, B. Mizaikoff, A. Inberg, and N. Croitoru, “Spectroscopy in the gas phase with GaAs/AlGaAs quantum-cascade lasers,” Appl. Opt. 39, 6926–6930 (2000).
[CrossRef]

Murthy, C. S. S. S.

Nubling, R. K.

R. K. Nubling and J. A. Harrington, “Launch conditions and mode coupling in hollow-glass waveguides,” Opt. Eng. 37, 2454–2458 (1998).
[CrossRef]

Ortsiefer, M.

M.-C. Amann and M. Ortsiefer, “Long-wavelength (λ≥1.3 μm) InGaAlAs-InP vertical-cavity surface-emitting lasers for applications in optical communication and sensing,” Phys. Status Solidi A 203, 3538–3544 (2006).
[CrossRef]

Pustogow, V.

Rabii, C.

J. A. Harrington, C. Rabii, and D. Gibson, “Transmission properties of hollow glass waveguides for the delivery of CO2surgical laser power,” IEEE J. Sel. Top. Quantum Electron. 5, 948–953 (1999).
[CrossRef]

Reid, J.

J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phy. B 26, 203–210 (1981).
[CrossRef]

Robert, P.

Schilt, S.

Schrenk, W.

Strasser, G.

Strzoda, R.

J. Chen, A. Hangauer, R. Strzoda, and M.-C. Amann, “Laser spectroscopic oxygen sensor using diffuse reflector-based optical cell and advanced signal processing,” Appl. Phys. B 100, 417–425 (2010).
[CrossRef]

J. Chen, A. Hangauer, R. Strzoda, and M. C. Amann, “Tunable diode laser spectroscopy with optimum wavelength scanning,” Appl. Phys. B 100, 331–339 (2010). DOI 10.1007/s00340-010-3973-2.
[CrossRef]

J. Chen, A. Hangauer, R. Strzoda, and M.-C. Amann, “Low-level and ultra-low volume hollow waveguide based carbon monoxide sensor,” Opt. Lett. (to be published).
[PubMed]

Takeuchi, E.

C. Young, S.-S. Kim, Y. Luzinova, M. Weida, D. Arnone, E. Takeuchi, T. Day, and B. Mizaikoff, “External cavity widely tunable quantum cascade laser based hollow waveguide gas sensors for multianalyte detection,” Sens. Actuators. B 140, 24–28 (2009).
[CrossRef]

Tatam, R. P.

J. Hodgkinson, D. Masiyano, and R. P. Tatam, “Gas cells for tunable diode laser absorption spectroscopy employing optical diffusers. Part 1: single and dual pass cells,” Appl. Phys. B 100, 291–302 (2010).
[CrossRef]

Thévenaz, L.

Thorsen, P.-A.

S. Lundqvist and P.-A. Thorsen, “Wavelength modulation spectroscopy method and system,” U.S. patent 7,193,718 (20 March 2007).

Unterrainer, K.

Weida, M.

C. Young, S.-S. Kim, Y. Luzinova, M. Weida, D. Arnone, E. Takeuchi, T. Day, and B. Mizaikoff, “External cavity widely tunable quantum cascade laser based hollow waveguide gas sensors for multianalyte detection,” Sens. Actuators. B 140, 24–28 (2009).
[CrossRef]

White, J. U.

Wiedenmann, D.

M. Grabherr, D. Wiedenmann, R. Jaeger, and R. King, “Fabrication and performance of tunable single-mode VCSELs emitting in the 750 to 1000 nm range,” Proc. SPIE 5737, 120–128 (2005).
[CrossRef]

Worrell, C. A.

C. A. Worrell and N. A. Gallen, “Trace-level detection of gases and vapours with mid-infrared hollow waveguides,” J. Phys. D 30, 1984–1995 (1997).
[CrossRef]

Young, C.

C. Young, S.-S. Kim, Y. Luzinova, M. Weida, D. Arnone, E. Takeuchi, T. Day, and B. Mizaikoff, “External cavity widely tunable quantum cascade laser based hollow waveguide gas sensors for multianalyte detection,” Sens. Actuators. B 140, 24–28 (2009).
[CrossRef]

Appl. Opt. (5)

Appl. Phy. B (1)

J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phy. B 26, 203–210 (1981).
[CrossRef]

Appl. Phys. B (4)

J. Chen, A. Hangauer, R. Strzoda, and M. C. Amann, “Tunable diode laser spectroscopy with optimum wavelength scanning,” Appl. Phys. B 100, 331–339 (2010). DOI 10.1007/s00340-010-3973-2.
[CrossRef]

J. Hodgkinson, D. Masiyano, and R. P. Tatam, “Gas cells for tunable diode laser absorption spectroscopy employing optical diffusers. Part 1: single and dual pass cells,” Appl. Phys. B 100, 291–302 (2010).
[CrossRef]

J. Chen, A. Hangauer, R. Strzoda, and M.-C. Amann, “Laser spectroscopic oxygen sensor using diffuse reflector-based optical cell and advanced signal processing,” Appl. Phys. B 100, 417–425 (2010).
[CrossRef]

A. Hangauer, J. Chen, and M.-C. Amann, “Modeling of the nth harmonic spectra used in wavelength modulation spectroscopy and their properties,” Appl. Phys. B 90, 249–254(2008).
[CrossRef]

Electron. Lett. (1)

A. Bachmann, T. Lim, K. Kashani-Shirazi, O. Dier, C. Lauer, and M.-C. Amann, “Continuous-wave operation of electrically pumped GaSb-based vertical cavity surface emitting laser at 2.3 μm,” Electron. Lett. 44, 202–203 (2008).
[CrossRef]

Fiber Integr. Opt. (1)

J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integr. Opt. 19, 211–217 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. A. Harrington, C. Rabii, and D. Gibson, “Transmission properties of hollow glass waveguides for the delivery of CO2surgical laser power,” IEEE J. Sel. Top. Quantum Electron. 5, 948–953 (1999).
[CrossRef]

J. Appl. Phys. (1)

R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36, 2522–2524 (1965).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. D (1)

C. A. Worrell and N. A. Gallen, “Trace-level detection of gases and vapours with mid-infrared hollow waveguides,” J. Phys. D 30, 1984–1995 (1997).
[CrossRef]

Opt. Eng. (1)

R. K. Nubling and J. A. Harrington, “Launch conditions and mode coupling in hollow-glass waveguides,” Opt. Eng. 37, 2454–2458 (1998).
[CrossRef]

Opt. Lett. (1)

J. Chen, A. Hangauer, R. Strzoda, and M.-C. Amann, “Low-level and ultra-low volume hollow waveguide based carbon monoxide sensor,” Opt. Lett. (to be published).
[PubMed]

Phys. Status Solidi A (1)

M.-C. Amann and M. Ortsiefer, “Long-wavelength (λ≥1.3 μm) InGaAlAs-InP vertical-cavity surface-emitting lasers for applications in optical communication and sensing,” Phys. Status Solidi A 203, 3538–3544 (2006).
[CrossRef]

Proc. SPIE (1)

M. Grabherr, D. Wiedenmann, R. Jaeger, and R. King, “Fabrication and performance of tunable single-mode VCSELs emitting in the 750 to 1000 nm range,” Proc. SPIE 5737, 120–128 (2005).
[CrossRef]

Sens. Actuators. B (1)

C. Young, S.-S. Kim, Y. Luzinova, M. Weida, D. Arnone, E. Takeuchi, T. Day, and B. Mizaikoff, “External cavity widely tunable quantum cascade laser based hollow waveguide gas sensors for multianalyte detection,” Sens. Actuators. B 140, 24–28 (2009).
[CrossRef]

Spectrochim. Acta Part B (1)

P. Kluczynski, J. Gustafsson, Åsa M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry—an extensive scrutiny of the generation of signals,” Spectrochim. Acta Part B 56, 1277–1354 (2001).
[CrossRef]

Tech. Mess. (1)

S. Hartwig and A. Lambrecht, “Characterization of hollow fibres for compact infrared gas measurement cells,” Tech. Mess. 75, 555–564 (2008).
[CrossRef]

Other (5)

S. Lundqvist and P.-A. Thorsen, “Wavelength modulation spectroscopy method and system,” U.S. patent 7,193,718 (20 March 2007).

S. Lundqvist and P. Kluczynski, “Method for improving the sensitivity in a fiber coupled diode laser spectrometer by selective predistortion,” in Book of Abstracts: Field Laser Applications in Industry and Research (FLAIR) (2007), p. 39, http://www.inoa.it/flair.

W. Freude, Optische Kommunikationstechnik (Springer-Verlag, 2002), Chap. 5.

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J.C.Dainty, ed. (Springer, 1976), Chap. 2.

“Manual of Model SR830 DSP Lock-In Amplifier,” Standford Research Systems.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic figure of the hollow capillary waveguide with an inner diameter of 750 μm . It has a silica cladding and a thin metallic film of Ag and a single dielectric film of AgI, both deposited inside the cladding [4].

Fig. 2
Fig. 2

Filtering achieved by WMS with a modulation amplitude of 5 GHz (blue curve with circles) and by the filter inside the lock-in amplifier in a typical system (green curve with rectangles). The product of both (red curve with diamonds) gives the relationship between the measured second harmonic and the transmission spectrum in the frequency domain.

Fig. 3
Fig. 3

Direct coupling of the VCSEL and the HGW. The fiber is filled with gas through the gas inlet. The couple element is sealed to the photodetector, gas inlet, and fiber end. For the spectral background measurement, the fiber is filled with nitrogen.

Fig. 4
Fig. 4

Spectral background of (a) a standard spherical mirror based single-reflection cell including laser background (peak to peak 10 5 ) and (b) a HGW fiber (peak to peak 2 × 10 4 , standard deviation σ ( I 2 ) / I 0 is 6 × 10 5 ).

Fig. 5
Fig. 5

Far field of hollow fibers directly coupled with VCSELs.

Fig. 6
Fig. 6

Spatial intensity distribution of the observed far field of a 3 m bent fiber (red solid curve) and the theoretical spatial intensity distribution of a speckle pattern (blue dashed line). The area of far field being evaluated is indicated by a circle in the inset. The y axis is in logarithmic scale. The noise at high intensity is because of the small number of measurement data.

Fig. 7
Fig. 7

Incoupling experiment with a 20 cm straight fiber, where the lateral displacement between the VCSEL and the fiber center Δ r is varied.

Fig. 8
Fig. 8

σ ( I 2 ) / I 0 versus Δ r (lateral laser displacement) in μm . The insets show the fiber far fields for Δ r = 0 μm and 100 μm .

Fig. 9
Fig. 9

Outcoupling experiment with 20 cm straight fiber: the area of the integrated far field by photodiode is varied by changing Δ z .

Fig. 10
Fig. 10

σ ( I 2 ) / I 0 against the diameter ratio between the detector and the integrated speckle pattern, which is varied by changing Δ z . A 20 cm straight fiber was investigated. At Δ z = 1 cm , the speckle pattern diameter is approximately equal to the detector diameter and the background level goes to a threshold. These residual spectral backgrounds are caused by mode- dependent losses.

Fig. 11
Fig. 11

Outcoupling experiment with a 3 m bent fiber: the integrated far-field area is varied by changing Δ z . The experiments were done for stationary and mechanically vibrated fibers.

Fig. 12
Fig. 12

Standard deviation of the interference structure σ ( I 2 ) / I 0 against Δ z : a 3 m bent fiber is investigated in stationary (diamond) and vibration condition (circle). For comparison, the result of a 20 cm straight fiber is also indicated by a cross (Fig. 10). The y-axis is in logarithmic scale.

Fig. 13
Fig. 13

Schematic figure of the fiber sensor: the 3 m hollow capillary fiber is directly coupled to the VCSELs and vibrated mechanically.

Fig. 14
Fig. 14

(a) Second harmonic spectrum without fiber vibration at 2365 nm . (b) Second harmonic spectrum at 2365 nm with additional mechanical vibration of the fiber. The laser wavelength is tuned with current, which is shown on the x axis. The wavelength tuning range is approximately 3 nm .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F { I 2 ( λ ) I 0 ( λ ) , k } = F { I ( λ ) I 0 ( λ ) , k } · ( 2 ) J 2 ( 2 π Δ λ k ) · 1 ( 1 + i 2 π k τ β ) n ,
M = ( 2 π λ tan ( θ ) a ) 2 ,
P ( I ) = exp ( I / I ) ,

Metrics