Abstract

We have already reported that after an injection for euthanasia, the signal intensity of optical coherence tomography (OCT) images are 2.7 times increased before cardiac arrest (CA) using OCT and rat brains without temperature control to show the potential of OCT to monitor tissue viability in brains [Appl. Opt. 48, 4354 (2009)]. In this paper, we similarly measured maintaining the primary temperature of rat brains. It was confirmed that when maintaining the primary temperature, the time courses of the ratios of signal intensity (RSIs) were almost the same as those without temperature control. RSIs after CA varied from 1.6 to 4.5 and depended on positions measured in tissues. These results mean that the OCT technique has clinical potential for applications to monitor or diagnose a focal degraded area, such as cerebral infarctions due to focal ischemia in brains.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. B. Bouma and J. Tearney, Eds., Handbook of Optical Coherence Tomography (Dekker, 2002).
  3. K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004).
    [CrossRef] [PubMed]
  4. K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex-vivo and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006 (2004).
    [CrossRef]
  5. Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama,” In vivo imaging of the rat cerebral microvesssels with optical coherence tomography,” Clin. Hemorheol. Microcirc. 31, 31–40(2004).
    [PubMed]
  6. M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe, “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271, 573–580 (2007).
    [CrossRef]
  7. R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. USA 87, 6082–6086 (1990).
    [CrossRef] [PubMed]
  8. R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202, 47–54 (2002).
    [CrossRef]
  9. R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124, 83–92 (2003).
    [CrossRef] [PubMed]
  10. A. D. Aguirre, Y. Chen, J. G. Fujimoto, L. Ruvinskaya, A. Devor, and D. A. Boas, “Depth-resolved imaging of functional activation in the rat cerebral cortex using optical coherence tomography,” Opt. Lett. 31, 3459–3461 (2006).
    [CrossRef] [PubMed]
  11. V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, “In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography,” Opt. Lett. 31, 2308–2310 (2006).
    [CrossRef] [PubMed]
  12. S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Simultaneous measurement of changes in light absorption due to the reduction of cytochrome c oxidase and light scattering in rat brains during loss of tissue viability,” Appl. Opt. 47, 4164–4176 (2008).
    [CrossRef] [PubMed]
  13. S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Light scattering change precedes loss of cerebral adenosine triphosphate in a rat global ischemic brain model,” Neurosci. Lett. Suppl. 459, 152–156 (2009).
    [CrossRef]
  14. M. Sato, M. S. Hrebesh, and I. Nishidate, “Measurement of signal intensity depth profiles in rat brains with cardiac arrest using wide-field optical coherence tomography,” Appl. Opt. 48, 4354–4364 (2009).
    [CrossRef] [PubMed]
  15. G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates (Elsevier, 2007).
  16. A. Ascenzi and C. Fabry, “Technique for dissection and measurement of refractive index of osteones,” J. Biophys. Biochem. Cytol. 6, 139–142 (1959).
    [CrossRef] [PubMed]
  17. E. Bordenave, E. Abraham, G. Jonusauskas, N. Tsurumachi, J. Oberle, C. Rulliere, P. E. Minot, M. Lassegues, and J. E. Surleve Bazeille, “Wide-field optical coherence tomography: imaging of biological tissues,” Appl. Opt. 41, 2059–2064(2002).
    [CrossRef] [PubMed]
  18. S. W. Jeon, M. A. Shure, K. B. Baker, D. Hung, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography,” J. Neurosci. Methods 154, 96–101(2006).
    [CrossRef] [PubMed]
  19. S. G. Lomber and B. R. Payne, “Translaminar differentiation of visually guided behaviors revealed by restricted cerebral cooling deactivation,” Cereb. Cortex 10, 1066–1077(2000).
    [CrossRef] [PubMed]
  20. F. Du, X. H. Zhu, Y. Zhang, M. Friedman, N. Zhang, K. Ugurbil, and W. Chen, “Tightly coupled brain activity and cerebral ATP metabolic rate,” Neurosci. Lett. Suppl. 105, 6409–6414 (2008).
    [CrossRef]
  21. K. A. Hossman, “Viability threshold and the penumbra of focal ischemia,” Ann. Neurol. 36, 557–565 (1994).
    [CrossRef]
  22. F. Fujii, Y. Nodasaka, G. Nishimura, and M. Tamura, “Anoxia induces matrix shrinkage accompanied by an increase in light scattering in isolated brain mitochondria,” Brain Res. 999, 29–39 (2004).
    [CrossRef] [PubMed]
  23. A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood,” Proc. SPIE 3252, 70–82 (1998).
    [CrossRef]
  24. D. G. Eglinton, M. K. Johnson, A. J. Thomson, P. E. Gooding, and C. Greenwood, “Near-infrared magnetic and natural circular dichroism of cytochrome c oxidase,” Biochem. J. 191, 319–331 (1980).
    [PubMed]

2009 (2)

S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Light scattering change precedes loss of cerebral adenosine triphosphate in a rat global ischemic brain model,” Neurosci. Lett. Suppl. 459, 152–156 (2009).
[CrossRef]

M. Sato, M. S. Hrebesh, and I. Nishidate, “Measurement of signal intensity depth profiles in rat brains with cardiac arrest using wide-field optical coherence tomography,” Appl. Opt. 48, 4354–4364 (2009).
[CrossRef] [PubMed]

2008 (2)

2007 (1)

M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe, “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271, 573–580 (2007).
[CrossRef]

2006 (3)

2004 (4)

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004).
[CrossRef] [PubMed]

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex-vivo and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006 (2004).
[CrossRef]

Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama,” In vivo imaging of the rat cerebral microvesssels with optical coherence tomography,” Clin. Hemorheol. Microcirc. 31, 31–40(2004).
[PubMed]

F. Fujii, Y. Nodasaka, G. Nishimura, and M. Tamura, “Anoxia induces matrix shrinkage accompanied by an increase in light scattering in isolated brain mitochondria,” Brain Res. 999, 29–39 (2004).
[CrossRef] [PubMed]

2003 (1)

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124, 83–92 (2003).
[CrossRef] [PubMed]

2002 (2)

R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202, 47–54 (2002).
[CrossRef]

E. Bordenave, E. Abraham, G. Jonusauskas, N. Tsurumachi, J. Oberle, C. Rulliere, P. E. Minot, M. Lassegues, and J. E. Surleve Bazeille, “Wide-field optical coherence tomography: imaging of biological tissues,” Appl. Opt. 41, 2059–2064(2002).
[CrossRef] [PubMed]

2000 (1)

S. G. Lomber and B. R. Payne, “Translaminar differentiation of visually guided behaviors revealed by restricted cerebral cooling deactivation,” Cereb. Cortex 10, 1066–1077(2000).
[CrossRef] [PubMed]

1998 (1)

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood,” Proc. SPIE 3252, 70–82 (1998).
[CrossRef]

1994 (1)

K. A. Hossman, “Viability threshold and the penumbra of focal ischemia,” Ann. Neurol. 36, 557–565 (1994).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

1990 (1)

R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. USA 87, 6082–6086 (1990).
[CrossRef] [PubMed]

1980 (1)

D. G. Eglinton, M. K. Johnson, A. J. Thomson, P. E. Gooding, and C. Greenwood, “Near-infrared magnetic and natural circular dichroism of cytochrome c oxidase,” Biochem. J. 191, 319–331 (1980).
[PubMed]

1959 (1)

A. Ascenzi and C. Fabry, “Technique for dissection and measurement of refractive index of osteones,” J. Biophys. Biochem. Cytol. 6, 139–142 (1959).
[CrossRef] [PubMed]

Abraham, E.

Aguirre, A. D.

Ascenzi, A.

A. Ascenzi and C. Fabry, “Technique for dissection and measurement of refractive index of osteones,” J. Biophys. Biochem. Cytol. 6, 139–142 (1959).
[CrossRef] [PubMed]

Baker, K. B.

S. W. Jeon, M. A. Shure, K. B. Baker, D. Hung, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography,” J. Neurosci. Methods 154, 96–101(2006).
[CrossRef] [PubMed]

Bizheva, K.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004).
[CrossRef] [PubMed]

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex-vivo and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006 (2004).
[CrossRef]

Boas, D. A.

Bordenave, E.

Bouma, B.

B. Bouma and J. Tearney, Eds., Handbook of Optical Coherence Tomography (Dekker, 2002).

Budka, H.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex-vivo and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006 (2004).
[CrossRef]

Chahlavi, A.

S. W. Jeon, M. A. Shure, K. B. Baker, D. Hung, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography,” J. Neurosci. Methods 154, 96–101(2006).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, W.

F. Du, X. H. Zhu, Y. Zhang, M. Friedman, N. Zhang, K. Ugurbil, and W. Chen, “Tightly coupled brain activity and cerebral ATP metabolic rate,” Neurosci. Lett. Suppl. 105, 6409–6414 (2008).
[CrossRef]

Chen, Y.

Cowey, A.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004).
[CrossRef] [PubMed]

Dabu, R.

M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe, “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271, 573–580 (2007).
[CrossRef]

Devor, A.

Dorschel, K.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood,” Proc. SPIE 3252, 70–82 (1998).
[CrossRef]

Drexler, W.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex-vivo and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006 (2004).
[CrossRef]

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004).
[CrossRef] [PubMed]

Du, F.

F. Du, X. H. Zhu, Y. Zhang, M. Friedman, N. Zhang, K. Ugurbil, and W. Chen, “Tightly coupled brain activity and cerebral ATP metabolic rate,” Neurosci. Lett. Suppl. 105, 6409–6414 (2008).
[CrossRef]

Duker, J. S.

Eglinton, D. G.

D. G. Eglinton, M. K. Johnson, A. J. Thomson, P. E. Gooding, and C. Greenwood, “Near-infrared magnetic and natural circular dichroism of cytochrome c oxidase,” Biochem. J. 191, 319–331 (1980).
[PubMed]

Fabry, C.

A. Ascenzi and C. Fabry, “Technique for dissection and measurement of refractive index of osteones,” J. Biophys. Biochem. Cytol. 6, 139–142 (1959).
[CrossRef] [PubMed]

Fercher, A. F.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex-vivo and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006 (2004).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Friebel, M.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood,” Proc. SPIE 3252, 70–82 (1998).
[CrossRef]

Friedman, M.

F. Du, X. H. Zhu, Y. Zhang, M. Friedman, N. Zhang, K. Ugurbil, and W. Chen, “Tightly coupled brain activity and cerebral ATP metabolic rate,” Neurosci. Lett. Suppl. 105, 6409–6414 (2008).
[CrossRef]

Frostig, R. D.

R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. USA 87, 6082–6086 (1990).
[CrossRef] [PubMed]

Fujii, F.

F. Fujii, Y. Nodasaka, G. Nishimura, and M. Tamura, “Anoxia induces matrix shrinkage accompanied by an increase in light scattering in isolated brain mitochondria,” Brain Res. 999, 29–39 (2004).
[CrossRef] [PubMed]

Fujimoto, J. G.

Gooding, P. E.

D. G. Eglinton, M. K. Johnson, A. J. Thomson, P. E. Gooding, and C. Greenwood, “Near-infrared magnetic and natural circular dichroism of cytochrome c oxidase,” Biochem. J. 191, 319–331 (1980).
[PubMed]

Greenwood, C.

D. G. Eglinton, M. K. Johnson, A. J. Thomson, P. E. Gooding, and C. Greenwood, “Near-infrared magnetic and natural circular dichroism of cytochrome c oxidase,” Biochem. J. 191, 319–331 (1980).
[PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Grinvald, A.

R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. USA 87, 6082–6086 (1990).
[CrossRef] [PubMed]

Hahn, A.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood,” Proc. SPIE 3252, 70–82 (1998).
[CrossRef]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hermann, B.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004).
[CrossRef] [PubMed]

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex-vivo and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006 (2004).
[CrossRef]

Holzwarth, R.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004).
[CrossRef] [PubMed]

Homma, R.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124, 83–92 (2003).
[CrossRef] [PubMed]

R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202, 47–54 (2002).
[CrossRef]

Hossman, K. A.

K. A. Hossman, “Viability threshold and the penumbra of focal ischemia,” Ann. Neurol. 36, 557–565 (1994).
[CrossRef]

Hrebesh, M. S.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hung, D.

S. W. Jeon, M. A. Shure, K. B. Baker, D. Hung, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography,” J. Neurosci. Methods 154, 96–101(2006).
[CrossRef] [PubMed]

Ishihara, M.

S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Light scattering change precedes loss of cerebral adenosine triphosphate in a rat global ischemic brain model,” Neurosci. Lett. Suppl. 459, 152–156 (2009).
[CrossRef]

S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Simultaneous measurement of changes in light absorption due to the reduction of cytochrome c oxidase and light scattering in rat brains during loss of tissue viability,” Appl. Opt. 47, 4164–4176 (2008).
[CrossRef] [PubMed]

Jeon, S. W.

S. W. Jeon, M. A. Shure, K. B. Baker, D. Hung, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography,” J. Neurosci. Methods 154, 96–101(2006).
[CrossRef] [PubMed]

Johnson, M. K.

D. G. Eglinton, M. K. Johnson, A. J. Thomson, P. E. Gooding, and C. Greenwood, “Near-infrared magnetic and natural circular dichroism of cytochrome c oxidase,” Biochem. J. 191, 319–331 (1980).
[PubMed]

Jonusauskas, G.

Kadono, H.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124, 83–92 (2003).
[CrossRef] [PubMed]

R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202, 47–54 (2002).
[CrossRef]

Kawauchi, S.

S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Light scattering change precedes loss of cerebral adenosine triphosphate in a rat global ischemic brain model,” Neurosci. Lett. Suppl. 459, 152–156 (2009).
[CrossRef]

S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Simultaneous measurement of changes in light absorption due to the reduction of cytochrome c oxidase and light scattering in rat brains during loss of tissue viability,” Appl. Opt. 47, 4164–4176 (2008).
[CrossRef] [PubMed]

Kikuchi, M.

S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Light scattering change precedes loss of cerebral adenosine triphosphate in a rat global ischemic brain model,” Neurosci. Lett. Suppl. 459, 152–156 (2009).
[CrossRef]

S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Simultaneous measurement of changes in light absorption due to the reduction of cytochrome c oxidase and light scattering in rat brains during loss of tissue viability,” Appl. Opt. 47, 4164–4176 (2008).
[CrossRef] [PubMed]

Lassegues, M.

Le, A. S. T.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004).
[CrossRef] [PubMed]

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex-vivo and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006 (2004).
[CrossRef]

Lieke, E. E.

R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. USA 87, 6082–6086 (1990).
[CrossRef] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Lomber, S. G.

S. G. Lomber and B. R. Payne, “Translaminar differentiation of visually guided behaviors revealed by restricted cerebral cooling deactivation,” Cereb. Cortex 10, 1066–1077(2000).
[CrossRef] [PubMed]

Maheswari, R. U.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124, 83–92 (2003).
[CrossRef] [PubMed]

R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202, 47–54 (2002).
[CrossRef]

Mei, M.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004).
[CrossRef] [PubMed]

Minot, P. E.

Morgan, J. E.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004).
[CrossRef] [PubMed]

Muller, G.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood,” Proc. SPIE 3252, 70–82 (1998).
[CrossRef]

Nagata, T.

M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe, “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271, 573–580 (2007).
[CrossRef]

Nawashiro, H.

S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Light scattering change precedes loss of cerebral adenosine triphosphate in a rat global ischemic brain model,” Neurosci. Lett. Suppl. 459, 152–156 (2009).
[CrossRef]

S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Simultaneous measurement of changes in light absorption due to the reduction of cytochrome c oxidase and light scattering in rat brains during loss of tissue viability,” Appl. Opt. 47, 4164–4176 (2008).
[CrossRef] [PubMed]

Neagu, L.

M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe, “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271, 573–580 (2007).
[CrossRef]

Niizuma, T.

M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe, “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271, 573–580 (2007).
[CrossRef]

Nishidate, I.

Nishimura, G.

F. Fujii, Y. Nodasaka, G. Nishimura, and M. Tamura, “Anoxia induces matrix shrinkage accompanied by an increase in light scattering in isolated brain mitochondria,” Brain Res. 999, 29–39 (2004).
[CrossRef] [PubMed]

Nodasaka, Y.

F. Fujii, Y. Nodasaka, G. Nishimura, and M. Tamura, “Anoxia induces matrix shrinkage accompanied by an increase in light scattering in isolated brain mitochondria,” Brain Res. 999, 29–39 (2004).
[CrossRef] [PubMed]

Oberle, J.

Ooi, Y.

Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama,” In vivo imaging of the rat cerebral microvesssels with optical coherence tomography,” Clin. Hemorheol. Microcirc. 31, 31–40(2004).
[PubMed]

Ooigawa, H.

S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Light scattering change precedes loss of cerebral adenosine triphosphate in a rat global ischemic brain model,” Neurosci. Lett. Suppl. 459, 152–156 (2009).
[CrossRef]

S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Simultaneous measurement of changes in light absorption due to the reduction of cytochrome c oxidase and light scattering in rat brains during loss of tissue viability,” Appl. Opt. 47, 4164–4176 (2008).
[CrossRef] [PubMed]

Paxinos, G.

G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates (Elsevier, 2007).

Payne, B. R.

S. G. Lomber and B. R. Payne, “Translaminar differentiation of visually guided behaviors revealed by restricted cerebral cooling deactivation,” Cereb. Cortex 10, 1066–1077(2000).
[CrossRef] [PubMed]

Povazay, B.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex-vivo and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006 (2004).
[CrossRef]

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004).
[CrossRef] [PubMed]

Preusser, M.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex-vivo and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006 (2004).
[CrossRef]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Reitsamer, H. A.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004).
[CrossRef] [PubMed]

Rezai, A. R.

S. W. Jeon, M. A. Shure, K. B. Baker, D. Hung, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography,” J. Neurosci. Methods 154, 96–101(2006).
[CrossRef] [PubMed]

Roggan, A.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood,” Proc. SPIE 3252, 70–82 (1998).
[CrossRef]

Rollins, A. M.

S. W. Jeon, M. A. Shure, K. B. Baker, D. Hung, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography,” J. Neurosci. Methods 154, 96–101(2006).
[CrossRef] [PubMed]

Rulliere, C.

Ruvinskaya, L.

Sato, M.

M. Sato, M. S. Hrebesh, and I. Nishidate, “Measurement of signal intensity depth profiles in rat brains with cardiac arrest using wide-field optical coherence tomography,” Appl. Opt. 48, 4354–4364 (2009).
[CrossRef] [PubMed]

M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe, “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271, 573–580 (2007).
[CrossRef]

Sato, S.

S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Light scattering change precedes loss of cerebral adenosine triphosphate in a rat global ischemic brain model,” Neurosci. Lett. Suppl. 459, 152–156 (2009).
[CrossRef]

S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Simultaneous measurement of changes in light absorption due to the reduction of cytochrome c oxidase and light scattering in rat brains during loss of tissue viability,” Appl. Opt. 47, 4164–4176 (2008).
[CrossRef] [PubMed]

Satomura, Y.

Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama,” In vivo imaging of the rat cerebral microvesssels with optical coherence tomography,” Clin. Hemorheol. Microcirc. 31, 31–40(2004).
[PubMed]

Sattman, H.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex-vivo and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006 (2004).
[CrossRef]

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Seiyama, A.

Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama,” In vivo imaging of the rat cerebral microvesssels with optical coherence tomography,” Clin. Hemorheol. Microcirc. 31, 31–40(2004).
[PubMed]

Seki, J.

Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama,” In vivo imaging of the rat cerebral microvesssels with optical coherence tomography,” Clin. Hemorheol. Microcirc. 31, 31–40(2004).
[PubMed]

Shure, M. A.

S. W. Jeon, M. A. Shure, K. B. Baker, D. Hung, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography,” J. Neurosci. Methods 154, 96–101(2006).
[CrossRef] [PubMed]

Srinivasan, V. J.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Surleve Bazeille, J. E.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Takaoka, H.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124, 83–92 (2003).
[CrossRef] [PubMed]

R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202, 47–54 (2002).
[CrossRef]

Tamura, M.

F. Fujii, Y. Nodasaka, G. Nishimura, and M. Tamura, “Anoxia induces matrix shrinkage accompanied by an increase in light scattering in isolated brain mitochondria,” Brain Res. 999, 29–39 (2004).
[CrossRef] [PubMed]

Tanifuji, M.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124, 83–92 (2003).
[CrossRef] [PubMed]

R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202, 47–54 (2002).
[CrossRef]

Tearney, J.

B. Bouma and J. Tearney, Eds., Handbook of Optical Coherence Tomography (Dekker, 2002).

Thomson, A. J.

D. G. Eglinton, M. K. Johnson, A. J. Thomson, P. E. Gooding, and C. Greenwood, “Near-infrared magnetic and natural circular dichroism of cytochrome c oxidase,” Biochem. J. 191, 319–331 (1980).
[PubMed]

Ts’o, D. Y.

R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. USA 87, 6082–6086 (1990).
[CrossRef] [PubMed]

Tsurumachi, N.

Ugurbil, K.

F. Du, X. H. Zhu, Y. Zhang, M. Friedman, N. Zhang, K. Ugurbil, and W. Chen, “Tightly coupled brain activity and cerebral ATP metabolic rate,” Neurosci. Lett. Suppl. 105, 6409–6414 (2008).
[CrossRef]

Unterhuber, A.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004).
[CrossRef] [PubMed]

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex-vivo and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006 (2004).
[CrossRef]

Watanabe, Y.

M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe, “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271, 573–580 (2007).
[CrossRef]

Watson, C.

G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates (Elsevier, 2007).

Wojtkowski, M.

Yanagida, T.

Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama,” In vivo imaging of the rat cerebral microvesssels with optical coherence tomography,” Clin. Hemorheol. Microcirc. 31, 31–40(2004).
[PubMed]

Zhang, N.

F. Du, X. H. Zhu, Y. Zhang, M. Friedman, N. Zhang, K. Ugurbil, and W. Chen, “Tightly coupled brain activity and cerebral ATP metabolic rate,” Neurosci. Lett. Suppl. 105, 6409–6414 (2008).
[CrossRef]

Zhang, Y.

F. Du, X. H. Zhu, Y. Zhang, M. Friedman, N. Zhang, K. Ugurbil, and W. Chen, “Tightly coupled brain activity and cerebral ATP metabolic rate,” Neurosci. Lett. Suppl. 105, 6409–6414 (2008).
[CrossRef]

Zhu, X. H.

F. Du, X. H. Zhu, Y. Zhang, M. Friedman, N. Zhang, K. Ugurbil, and W. Chen, “Tightly coupled brain activity and cerebral ATP metabolic rate,” Neurosci. Lett. Suppl. 105, 6409–6414 (2008).
[CrossRef]

Ann. Neurol. (1)

K. A. Hossman, “Viability threshold and the penumbra of focal ischemia,” Ann. Neurol. 36, 557–565 (1994).
[CrossRef]

Appl. Opt. (3)

Biochem. J. (1)

D. G. Eglinton, M. K. Johnson, A. J. Thomson, P. E. Gooding, and C. Greenwood, “Near-infrared magnetic and natural circular dichroism of cytochrome c oxidase,” Biochem. J. 191, 319–331 (1980).
[PubMed]

Brain Res. (1)

F. Fujii, Y. Nodasaka, G. Nishimura, and M. Tamura, “Anoxia induces matrix shrinkage accompanied by an increase in light scattering in isolated brain mitochondria,” Brain Res. 999, 29–39 (2004).
[CrossRef] [PubMed]

Cereb. Cortex (1)

S. G. Lomber and B. R. Payne, “Translaminar differentiation of visually guided behaviors revealed by restricted cerebral cooling deactivation,” Cereb. Cortex 10, 1066–1077(2000).
[CrossRef] [PubMed]

Clin. Hemorheol. Microcirc. (1)

Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama,” In vivo imaging of the rat cerebral microvesssels with optical coherence tomography,” Clin. Hemorheol. Microcirc. 31, 31–40(2004).
[PubMed]

J. Biomed. Opt. (2)

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004).
[CrossRef] [PubMed]

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex-vivo and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006 (2004).
[CrossRef]

J. Biophys. Biochem. Cytol. (1)

A. Ascenzi and C. Fabry, “Technique for dissection and measurement of refractive index of osteones,” J. Biophys. Biochem. Cytol. 6, 139–142 (1959).
[CrossRef] [PubMed]

J. Neurosci. Methods (2)

S. W. Jeon, M. A. Shure, K. B. Baker, D. Hung, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography,” J. Neurosci. Methods 154, 96–101(2006).
[CrossRef] [PubMed]

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124, 83–92 (2003).
[CrossRef] [PubMed]

Neurosci. Lett. Suppl. (2)

S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Light scattering change precedes loss of cerebral adenosine triphosphate in a rat global ischemic brain model,” Neurosci. Lett. Suppl. 459, 152–156 (2009).
[CrossRef]

F. Du, X. H. Zhu, Y. Zhang, M. Friedman, N. Zhang, K. Ugurbil, and W. Chen, “Tightly coupled brain activity and cerebral ATP metabolic rate,” Neurosci. Lett. Suppl. 105, 6409–6414 (2008).
[CrossRef]

Opt. Commun. (2)

R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202, 47–54 (2002).
[CrossRef]

M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe, “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271, 573–580 (2007).
[CrossRef]

Opt. Lett. (2)

Proc. Natl. Acad. Sci. USA (1)

R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. USA 87, 6082–6086 (1990).
[CrossRef] [PubMed]

Proc. SPIE (1)

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood,” Proc. SPIE 3252, 70–82 (1998).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Other (2)

B. Bouma and J. Tearney, Eds., Handbook of Optical Coherence Tomography (Dekker, 2002).

G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates (Elsevier, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of the measurement system consisting of QF WF OCT, a bioamplifier, digital multimeter for thermocoupling, and temperature controller.

Fig. 2
Fig. 2

Schematic of the measurement system consisting of QF WF OCT; SLD; CL, collimator lens; P, polarizer; BS, beam splitter; HM, hot mirror; QWP, quarter wave plate; and WP, Wollaston prism.

Fig. 3
Fig. 3

Variations of temperature with time measured by thermocouple.

Fig. 4
Fig. 4

Variations of heart rate with time obtained by bioelectric amplifier.

Fig. 5
Fig. 5

Photograph of a thinned skull. The dotted rectangle area is 4 mm × 4 mm : M, medial and R, rostral.

Fig. 6
Fig. 6

Averaged image by 400 en face X Y OCT images measured from the surface to a depth of 2.8 mm . The image area is 4 mm × 4 mm , and points 1, 2, and 3 correspond to those in Fig. 5, respectively.

Fig. 7
Fig. 7

Resliced sectional images in the Y Z plane through point C in Fig. 6 (a) at the first measurement and (b) at 210 min . Dotted lines correspond to point C, and the two white bars are scales of 1 mm along the Y and Z axes.

Fig. 8
Fig. 8

(a) Depth profiles of signal intensity at point A in Fig. 6. Here, (b) to (e) correspond to points B to E.

Fig. 9
Fig. 9

Variations of RSI with time in (a) Region I and (b) Region II with Rat 1. Curves A to E correspond to points A to E in Fig. 6, and subsurface region corresponds to that in Fig. 8d.

Fig. 10
Fig. 10

Variations of RSI with time in (a) Region I and (b) Region II with Rat 2. Curves A to E correspond to coordinates of (X, 1000 μm ; Y, 1000 μm ), ( 2625 μm , 1250 μm ), ( 2000 μm , 2000 μm ), ( 1000 μm , 2875 μm ), and ( 2850 μm , 2850 μm ), respectively.

Tables (1)

Tables Icon

Table 1 Times of Intraperitoneal Injection for Euthanasia, RRSI, Cardiac Arrest, and Ratio of Signal Intensity in Ref. [14], Rats 1 and 2

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

| I I , I I I BG | 210 MIN | I I , I I I BG | START .

Metrics