Abstract

Coherent illumination enables not only integrated optics, but also miniaturized free-space optics that takes advantage of the amplitude and phase control afforded by optical microelectromechanical systems (MEMS) and photonic crystals. These technologies also provide a practical and cost-effective means for integration and packaging of optical systems. The properties of miniaturized optical systems based on optical MEMS and photonic crystals are described, and efficient analysis and design approaches to miniaturized optical scanners and tunable diffractive optical elements are demonstrated. The impact of photonic crystals on free-space micro-optics is discussed.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Hagerman, “Optimum spot size for raster-scanned monochrome CRT displays,” J. Soc. Inf. Disp. 1, 367–369 (1993).
    [CrossRef]
  2. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fuijimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef]
  3. S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429–1433 (2006).
  4. H. Ra, W. Piyawattanametha, M. J. Mandella, P.-L Hsiung, J. Hardy, T. D. Wang, C. H. Contag, G. S. Kino, and O. Solgaard, “Three-dimensional in vivo imaging by a handheld dual-axes confocal microscope,” Opt. Express 16, 7224–7232(2008).
    [CrossRef]
  5. W. Piyawattanametha, H. Ra, M. J. Mandella, K. Loewke, T. D. Wang, G. S. Kino, O. Solgaard, and C. H. Contag, “3-D Near-infrared fluorescence imaging using a MEMS-based miniature dual-axis confocal microscope,” IEEE J. Sel. Top. Quantum Electron. 15, 1344–1350 (2009).
    [CrossRef]
  6. W. Piyawattanametha, R. P. J. Barretto, T. H. Ko, B. A. Flusberg, E. D. Cocker, H. Ra, D. Lee, O. Solgaard, and M. J. Schnitzer, “Fast-scanning two-photon fluorescence imaging based on a microelectromechanical systems two-dimensional scanning mirror,” Opt. Lett. 31, 2018–2020(2006).
    [CrossRef]
  7. W. Piyawattanametha, E. D. Cocker, L. D. Burns, R. P. J. Barretto, J. C. Jung, H. Ra, O. Solgaard, and M. J. Schnitzer, “In vivo brain imaging using a portable 2.9g two-photon microscope based on a microelectromechanical systems scanning mirror,” Opt. Lett. 34, 2309–2311 (2009).
    [CrossRef]
  8. C. L. Hoy, N. J. Durr, P. Chen, W. Piyawattanametha, H. Ra, O. Solgaard, and A. Ben-Yakar, “Miniaturized probe for femtosecond laser microsurgery and two-photon imaging,” Opt. Express 16, 9996–10005 (2008).
    [CrossRef]
  9. E. M. Kim and D. L. Franzen, “Measurement of far-field and near-field radiation patterns from optical fibers,” Report NBS-TN-1032 (National Bureau of Standards, 1981).
  10. U. Krishnamoorthy, Design and fabrication of micromirrors for optical application,” Ph.D. thesis (University of California, Davis, 2002).
  11. E. L. Goldstein, L. Eskildsen, and A. F. Elrefaie, “Performance implications of component crosstalk in transparent lightwave networks,” IEEE Photonic Technol. Lett. 6, 657–660 (1994).
  12. T. Akiyama, D. Collard, and H. Fujita, “Scratch drive actuator with mechanical links for self-assembly of three-dimensional MEMS,” J. Microelectromech. Syst. 6, 10–17 (1997).
    [CrossRef]
  13. S.-S Lee, L.-S Huang, C.-J Kim, and M. C. Wu, “Free-space fiber-optic switches based on MEMS vertical torsion mirrors,” J. Lightwave Technol. 17, 7–13 (1999).
    [CrossRef]
  14. M. J. Daneman, N. C. Tien, O. Solgaard, A. P. Pisano, K. Y. Lau, and R. S. Muller, “Linear microvibromotor for positioning optical components,” J. Microelectromech. Syst. 5, 159–165 (1996).
    [CrossRef]
  15. E. Hecht, Optics, 2nd ed. (Addison-Wesley, 2001).
  16. O. Solgaard, Photonic Microsystems (Springer, 2009).
  17. L. J. Hornbeck, “Deformable-mirror spatial-light modulators,” Proc. SPIE 1150, 86–102 (1990).
  18. L. J. Hornbeck, “The DMD projection display chip: a MEMS-based technology,” Mater. Res. Bull. 26, 325–327(2001).
  19. E. Croffie, N. Eib, N. Callan, N. Baba Ali, A. Latypov, J. Hintersteiner, T. Sandstrom, A. Bleeker, and K. Cummings, “Application of rigorous electromagnetic simulation to SLM-based maskless lithography for 65nm node,” Proc. SPIE 5256, 842–850 (2003).
  20. V. A. Aksyuk, D. López, G. P. Watson, M. E. Simon, R. A. Cirelli, F. Pardo, F. Klemens, A. R. Papazian, C. Bolle, J. E. Bower, E. Ferry, W. M. Mansfield, J. Miner, T. W. Sorsch, and D. Tennant, “Mems spatial light modulator for optical maskless lithography,” Proceedings of the Solid-State Sensor and Actuator Workshop (IEEE, 2006), pp. 352–355.
  21. H. Lee, M. H. Miller, and T. G. Bifano, “CMOS chip planarization by chemical mechanical polishing for a vertically stacked metal MEMS integration,” J. Micromech. Microeng. 14, 108–115 (2004).
    [CrossRef]
  22. I. W. Jung, U. Krishnamoorthy, and O. Solgaard, “High fill-factor two-axis gimbaled tip-tilt-piston micromirror array actuated by self-aligned vertical comb drives,” J. Microelectromech. Syst. 15, 563–571 (2006).
    [CrossRef]
  23. O. Solgaard, F. S. A. Sandejas, and D. M. Bloom, “A deformable grating optical modulator,” Opt. Lett. 17, 688–690 (1992).
    [CrossRef]
  24. S. R. Kubota, “The grating light valve projector,” Opt. Photon. News 13, 50–53 (2002).
  25. A. Godil, “Diffractive MEMS technology offers a new platform for optical networks,” Laser Focus World (2002).
  26. J. P. Heritage, A. M. Weiner, and R. N. Thurston, “Picosecond pulse shaping by spectral phase and amplitude manipulation,” Opt. Lett. 10, 609–611 (1985).
    [CrossRef]
  27. A. M. Weiner, J. P. Heritage, and J. A. Salehi, “Encoding and decoding of femtosecond pulses,” Opt. Lett. 13, 300–302(1988).
    [CrossRef]
  28. G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–1813 (1997).
    [CrossRef]
  29. Y. Pan, H. Xie, and G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Opt. Lett. 26, 1966–1968 (2001).
    [CrossRef]
  30. K. T. Cornett, P. M. Hagelin, J. P. Heritage, O. Solgaard, and M. Everett, “Miniature variable optical delay using silicon micromachined scanning mirrors,” Conference on Lasers and Electro-Optics, 2000 (IEEE, 2000), pp. 383–384.
  31. P. M. Hagelin, U. Krishnamoorthy, J. P. Heritage, and O. Solgaard, “Scalable optical cross-connect switch using micromachined mirrors,” IEEE Photonics Technol. Lett. 12, 882–884(2000).
    [CrossRef]
  32. J. E. Ford, V. A. Aksyuk, D. J. Bishop, and J. A. Walker, “Wavelength add-drop switching using tilting micromirrors,” J. Lightwave Technol. 17, 904–11 (1999).
    [CrossRef]
  33. R. A. Deverse, R. M. Hammaker, and W. G. Fateley, “Realization of the Hadamard multiplex advantage using a programmable optical mask in a dispersive flat-field near-infrared spectrometer,” Appl. Spectrosc. 54, 1751–1758 (2000).
    [CrossRef]
  34. D. R. Day, M. A. Butler, M. C. Smith, A. McAllister, E. R. Deutsch, K. Zafiriou, and S. D. Senturia, “Diffractive-MEMS implementation of a Hadamard near-infrared spectrometer,” Transducers (IEEE, 2005), pp. 1246–1249.
  35. G. G. Yaralioglu, A. Atalar, S. R. Manalis, and C. F. Quate, “Analysis and design of an interdigital cantilever as a displacement sensor,” J. Appl. Phys. 83, 7405–7415 (1998).
    [CrossRef]
  36. A. F. Sarioglu and O. Solgaard, “Cantilevers with integrated sensor for time-resolved force measurement in tapping-mode atomic force microscopy,” Appl. Phys. Lett. 93, 023114 (2008).
    [CrossRef]
  37. N. C. Loh, M. A. Schmidt, and S. R. Manalis, “Sub-10cm3 interferometric accelerometer with nano-g resolution,” J. Microelectromech. Syst. 11, 182–187 (2002).
    [CrossRef]
  38. H. Sagberg, A. Sudbo, O. Solgaard, K. A. Hestnes Bakke, and I.-R. Johansen, “Optical microphone based on a modulated diffractive lens,” IEEE Photon. Technol. Lett. 15, 1431–1433(2003).
  39. N. A. Hall and F. L. Degertekin, “Self-calibrating micromachined microphones with integrated optical displacement detection,” Transducers 01 (IEEE, 2001, pp. 118–121.
  40. L. Wook, N. A. Hall, Z. Zhiping, and F. L. Degertekin, “Fabrication and characterization of a micromachined acoustic sensor with integrated optical readout,” IEEE J. Sel. Top. Quantum Electron. 10, 643–651 (2004).
    [CrossRef]
  41. S. R. Manalis, S. C. Minne, C. F. Quate, G. G. Yaralioglu, and A. Atalar, “Two-dimensional micromechanical bimorph arrays for detection of thermal radiation,” Appl. Phys. Lett. 70, 3311–3313 (1997).
    [CrossRef]
  42. Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: design, microfabrication, and performance,” J. Microelectromech. Syst. 11, 136–146 (2002).
    [CrossRef]
  43. C. A. Savran, T. P. Burg, J. Fritz, and S. R. Manalis, “Microfabricated mechanical biosensor with inherently differential readout,” Appl. Phys. Lett. 83, 1659–1661 (2003).
    [CrossRef]
  44. J. H. Jerman and S. R. Mallinson, “A miniature Fabry–Perot interferometer fabricated using silicon micromachining techniques,” 1988 Solid State Sensor and Actuator Workshop (IEEE, 1988), pp. 16–18.
  45. D. Hohlfeld and H. Zappe, “All-dielectric tunable optical filter based on the thermo-optic effect,” J. Opt. A: Pure Appl, Opt. 6, 504–511 (2004).
  46. M.-C. M. Lee, and M. C. Wu, “Variable bandwidth of dynamic add-drop filters based on coupling-controlled microdisk resonators,” Opt. Lett. 31, 2444–2446 (2006).
    [CrossRef]
  47. Q. Lin, J. Rosenberg, X. Jiang, Xiaoshun Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601–103604 (2009).
    [CrossRef]
  48. W. Suh, M. F. Yanik, O. Solgaard, and S.-H Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett. 82, 1999–2001 (2003).
    [CrossRef]
  49. C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16, 518–520 (2004).
    [CrossRef]
  50. O. Kilic, S. Kim, W. Suh, Y.-A Peter, A. S. Sudbø, M. F. Yanik, S. Fan, and O. Solgaard, “Photonic crystal slabs demonstrating strong broadband suppression of transmission in the presence of disorders,” Opt. Lett. 29, 2782–2784 (2004).
    [CrossRef]
  51. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
  52. S. Kim, S. Hadzialic, A. Sudbo, and O. Solgaard, “Single-film broadband photonic crystal micro-mirror with large angular range and low polarization dependence,” Conference on Lasers and Electro-Optics, 2007 (IEEE, 2007), paper CThP7.
  53. I. W. Jung, S. Kim, and O. Solgaard, “High-reflectivity broadband photonic crystal mirror MEMS scanner with low dependence on incident angle and polarization,” J. Microelectromech. Syst. 18, 924–932 (2009).
    [CrossRef]
  54. O. Kilic, S. Fan, and O. Solgaard, “Analysis of guided-resonance based polarization beam splitting in photonic crystal slabs,” J. Opt. Soc. Am. A 25, 2680–2692 (2008).
  55. W. Suh, O. Solgaard, and S. Fan, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys. 98, 033102(2005).
    [CrossRef]
  56. D. W. Carr, J. P. Sullivan, and T. A. Friedmann, “Laterally deformable nanomechanical zeroth-order gratings: anomalous diffraction studied by rigorous coupled-wave analysis,” Opt. Lett. 28, 1636–1638 (2003).
    [CrossRef]
  57. B. E. N. Keeler, D. W. Carr, J. P. Sullivan, T. A. Friedmann, and J. R. Wendt, “Experimental demonstration of a laterally deformable nanoelectromechanical system grating transducer,” Opt. Lett. 29, 1182–1184 (2004).
    [CrossRef]
  58. O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “External fibre Fabry–Perot acoustic sensor based on a photonic-crystal mirror,” Meas. Sci. Technol. 18, 3049–3054 (2007).
    [CrossRef]
  59. O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “Photonic-crystal-diaphragm-based fiber-tip hydrophone optimized for ocean acoustics,” Proc. SPIE 7004, 700405 (2008).
  60. I.-W. Jung, B. Park, J. Provine, R. T. Howe, and O. Solgaard, “Monolithic silicon photonic crystal slab fiber tip sensor,” IEEE/LEOS International Conference on Optical MEMS and Nanophotonics (IEEE, 2009), pp. 19–20.
  61. I.-W. Jung, B. Park, J. Provine, R. T. Howe, and O. Solgaard, “Photonic crystal fiber tip sensor for precision temperature sensing,” LEOS Annual Meeting Conference Proceedings, 2009 (IEEE, 2009), pp. 761–762.
  62. R. Magnusson and D. Wawro, “Guided-mode resonance sensors for biochemical screening,” The 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2007 (IEEE, 2008), pp. 228–229.
  63. X. Letartre, J. Mouette, J. L. Leclercq, P. Rojo Romeo, C. Seassal, and P. Viktorovitch, “Switching devices with spatial and spectral resolution combining photonic crystal and MOEMS structures,” J. Lightwave Technol. 21, 1691–1699 (2003).
    [CrossRef]
  64. M.-C. M. Lee, D. Hah, E. K. Lau, H. Toshiyoshi, and M. Wu, “MEMS-actuated photonic crystal switches,” IEEE Photonics Technol. Lett. 18, 358–360 (2006).
    [CrossRef]
  65. R. Magnusson and Y. Ding, “MEMS tunable resonant leaky mode filters,” IEEE Photics Technol. Lett. 18, 1479–1481(2006).
  66. W. Suh and S. Fan, “Mechanically switchable photonic crystal filter with either all-pass transmission or flat-top reflection characteristics,” Opt. Lett. 28, 1763–1765 (2003).
    [CrossRef]
  67. C. Seassal, C. Monat, J. Mouette, E. Touraille, B. Ben Bakir, H. Takashi, J.-L Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11, 395–407(2005).
    [CrossRef]
  68. F. Raineri, C. Cojocaru, R. Raj, P. Monnier, A. Levenson, C. Seassal, X. Letartre, and P. Viktorovitch, “Tuning a two-dimensional photonic crystal resonance via optical carrier injection,” Opt. Lett. 30, 64–66 (2005).
    [CrossRef]

2009 (7)

W. Piyawattanametha, H. Ra, M. J. Mandella, K. Loewke, T. D. Wang, G. S. Kino, O. Solgaard, and C. H. Contag, “3-D Near-infrared fluorescence imaging using a MEMS-based miniature dual-axis confocal microscope,” IEEE J. Sel. Top. Quantum Electron. 15, 1344–1350 (2009).
[CrossRef]

W. Piyawattanametha, E. D. Cocker, L. D. Burns, R. P. J. Barretto, J. C. Jung, H. Ra, O. Solgaard, and M. J. Schnitzer, “In vivo brain imaging using a portable 2.9g two-photon microscope based on a microelectromechanical systems scanning mirror,” Opt. Lett. 34, 2309–2311 (2009).
[CrossRef]

O. Solgaard, Photonic Microsystems (Springer, 2009).

Q. Lin, J. Rosenberg, X. Jiang, Xiaoshun Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601–103604 (2009).
[CrossRef]

I. W. Jung, S. Kim, and O. Solgaard, “High-reflectivity broadband photonic crystal mirror MEMS scanner with low dependence on incident angle and polarization,” J. Microelectromech. Syst. 18, 924–932 (2009).
[CrossRef]

I.-W. Jung, B. Park, J. Provine, R. T. Howe, and O. Solgaard, “Monolithic silicon photonic crystal slab fiber tip sensor,” IEEE/LEOS International Conference on Optical MEMS and Nanophotonics (IEEE, 2009), pp. 19–20.

I.-W. Jung, B. Park, J. Provine, R. T. Howe, and O. Solgaard, “Photonic crystal fiber tip sensor for precision temperature sensing,” LEOS Annual Meeting Conference Proceedings, 2009 (IEEE, 2009), pp. 761–762.

2008 (6)

R. Magnusson and D. Wawro, “Guided-mode resonance sensors for biochemical screening,” The 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2007 (IEEE, 2008), pp. 228–229.

O. Kilic, S. Fan, and O. Solgaard, “Analysis of guided-resonance based polarization beam splitting in photonic crystal slabs,” J. Opt. Soc. Am. A 25, 2680–2692 (2008).

O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “Photonic-crystal-diaphragm-based fiber-tip hydrophone optimized for ocean acoustics,” Proc. SPIE 7004, 700405 (2008).

A. F. Sarioglu and O. Solgaard, “Cantilevers with integrated sensor for time-resolved force measurement in tapping-mode atomic force microscopy,” Appl. Phys. Lett. 93, 023114 (2008).
[CrossRef]

C. L. Hoy, N. J. Durr, P. Chen, W. Piyawattanametha, H. Ra, O. Solgaard, and A. Ben-Yakar, “Miniaturized probe for femtosecond laser microsurgery and two-photon imaging,” Opt. Express 16, 9996–10005 (2008).
[CrossRef]

H. Ra, W. Piyawattanametha, M. J. Mandella, P.-L Hsiung, J. Hardy, T. D. Wang, C. H. Contag, G. S. Kino, and O. Solgaard, “Three-dimensional in vivo imaging by a handheld dual-axes confocal microscope,” Opt. Express 16, 7224–7232(2008).
[CrossRef]

2007 (2)

O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “External fibre Fabry–Perot acoustic sensor based on a photonic-crystal mirror,” Meas. Sci. Technol. 18, 3049–3054 (2007).
[CrossRef]

S. Kim, S. Hadzialic, A. Sudbo, and O. Solgaard, “Single-film broadband photonic crystal micro-mirror with large angular range and low polarization dependence,” Conference on Lasers and Electro-Optics, 2007 (IEEE, 2007), paper CThP7.

2006 (7)

M.-C. M. Lee, D. Hah, E. K. Lau, H. Toshiyoshi, and M. Wu, “MEMS-actuated photonic crystal switches,” IEEE Photonics Technol. Lett. 18, 358–360 (2006).
[CrossRef]

R. Magnusson and Y. Ding, “MEMS tunable resonant leaky mode filters,” IEEE Photics Technol. Lett. 18, 1479–1481(2006).

M.-C. M. Lee, and M. C. Wu, “Variable bandwidth of dynamic add-drop filters based on coupling-controlled microdisk resonators,” Opt. Lett. 31, 2444–2446 (2006).
[CrossRef]

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429–1433 (2006).

W. Piyawattanametha, R. P. J. Barretto, T. H. Ko, B. A. Flusberg, E. D. Cocker, H. Ra, D. Lee, O. Solgaard, and M. J. Schnitzer, “Fast-scanning two-photon fluorescence imaging based on a microelectromechanical systems two-dimensional scanning mirror,” Opt. Lett. 31, 2018–2020(2006).
[CrossRef]

V. A. Aksyuk, D. López, G. P. Watson, M. E. Simon, R. A. Cirelli, F. Pardo, F. Klemens, A. R. Papazian, C. Bolle, J. E. Bower, E. Ferry, W. M. Mansfield, J. Miner, T. W. Sorsch, and D. Tennant, “Mems spatial light modulator for optical maskless lithography,” Proceedings of the Solid-State Sensor and Actuator Workshop (IEEE, 2006), pp. 352–355.

I. W. Jung, U. Krishnamoorthy, and O. Solgaard, “High fill-factor two-axis gimbaled tip-tilt-piston micromirror array actuated by self-aligned vertical comb drives,” J. Microelectromech. Syst. 15, 563–571 (2006).
[CrossRef]

2005 (4)

D. R. Day, M. A. Butler, M. C. Smith, A. McAllister, E. R. Deutsch, K. Zafiriou, and S. D. Senturia, “Diffractive-MEMS implementation of a Hadamard near-infrared spectrometer,” Transducers (IEEE, 2005), pp. 1246–1249.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. Ben Bakir, H. Takashi, J.-L Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11, 395–407(2005).
[CrossRef]

F. Raineri, C. Cojocaru, R. Raj, P. Monnier, A. Levenson, C. Seassal, X. Letartre, and P. Viktorovitch, “Tuning a two-dimensional photonic crystal resonance via optical carrier injection,” Opt. Lett. 30, 64–66 (2005).
[CrossRef]

W. Suh, O. Solgaard, and S. Fan, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys. 98, 033102(2005).
[CrossRef]

2004 (6)

B. E. N. Keeler, D. W. Carr, J. P. Sullivan, T. A. Friedmann, and J. R. Wendt, “Experimental demonstration of a laterally deformable nanoelectromechanical system grating transducer,” Opt. Lett. 29, 1182–1184 (2004).
[CrossRef]

D. Hohlfeld and H. Zappe, “All-dielectric tunable optical filter based on the thermo-optic effect,” J. Opt. A: Pure Appl, Opt. 6, 504–511 (2004).

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16, 518–520 (2004).
[CrossRef]

O. Kilic, S. Kim, W. Suh, Y.-A Peter, A. S. Sudbø, M. F. Yanik, S. Fan, and O. Solgaard, “Photonic crystal slabs demonstrating strong broadband suppression of transmission in the presence of disorders,” Opt. Lett. 29, 2782–2784 (2004).
[CrossRef]

L. Wook, N. A. Hall, Z. Zhiping, and F. L. Degertekin, “Fabrication and characterization of a micromachined acoustic sensor with integrated optical readout,” IEEE J. Sel. Top. Quantum Electron. 10, 643–651 (2004).
[CrossRef]

H. Lee, M. H. Miller, and T. G. Bifano, “CMOS chip planarization by chemical mechanical polishing for a vertically stacked metal MEMS integration,” J. Micromech. Microeng. 14, 108–115 (2004).
[CrossRef]

2003 (7)

E. Croffie, N. Eib, N. Callan, N. Baba Ali, A. Latypov, J. Hintersteiner, T. Sandstrom, A. Bleeker, and K. Cummings, “Application of rigorous electromagnetic simulation to SLM-based maskless lithography for 65nm node,” Proc. SPIE 5256, 842–850 (2003).

H. Sagberg, A. Sudbo, O. Solgaard, K. A. Hestnes Bakke, and I.-R. Johansen, “Optical microphone based on a modulated diffractive lens,” IEEE Photon. Technol. Lett. 15, 1431–1433(2003).

W. Suh, M. F. Yanik, O. Solgaard, and S.-H Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett. 82, 1999–2001 (2003).
[CrossRef]

C. A. Savran, T. P. Burg, J. Fritz, and S. R. Manalis, “Microfabricated mechanical biosensor with inherently differential readout,” Appl. Phys. Lett. 83, 1659–1661 (2003).
[CrossRef]

D. W. Carr, J. P. Sullivan, and T. A. Friedmann, “Laterally deformable nanomechanical zeroth-order gratings: anomalous diffraction studied by rigorous coupled-wave analysis,” Opt. Lett. 28, 1636–1638 (2003).
[CrossRef]

W. Suh and S. Fan, “Mechanically switchable photonic crystal filter with either all-pass transmission or flat-top reflection characteristics,” Opt. Lett. 28, 1763–1765 (2003).
[CrossRef]

X. Letartre, J. Mouette, J. L. Leclercq, P. Rojo Romeo, C. Seassal, and P. Viktorovitch, “Switching devices with spatial and spectral resolution combining photonic crystal and MOEMS structures,” J. Lightwave Technol. 21, 1691–1699 (2003).
[CrossRef]

2002 (6)

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).

N. C. Loh, M. A. Schmidt, and S. R. Manalis, “Sub-10cm3 interferometric accelerometer with nano-g resolution,” J. Microelectromech. Syst. 11, 182–187 (2002).
[CrossRef]

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: design, microfabrication, and performance,” J. Microelectromech. Syst. 11, 136–146 (2002).
[CrossRef]

S. R. Kubota, “The grating light valve projector,” Opt. Photon. News 13, 50–53 (2002).

A. Godil, “Diffractive MEMS technology offers a new platform for optical networks,” Laser Focus World (2002).

U. Krishnamoorthy, Design and fabrication of micromirrors for optical application,” Ph.D. thesis (University of California, Davis, 2002).

2001 (4)

E. Hecht, Optics, 2nd ed. (Addison-Wesley, 2001).

L. J. Hornbeck, “The DMD projection display chip: a MEMS-based technology,” Mater. Res. Bull. 26, 325–327(2001).

Y. Pan, H. Xie, and G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Opt. Lett. 26, 1966–1968 (2001).
[CrossRef]

N. A. Hall and F. L. Degertekin, “Self-calibrating micromachined microphones with integrated optical displacement detection,” Transducers 01 (IEEE, 2001, pp. 118–121.

2000 (3)

R. A. Deverse, R. M. Hammaker, and W. G. Fateley, “Realization of the Hadamard multiplex advantage using a programmable optical mask in a dispersive flat-field near-infrared spectrometer,” Appl. Spectrosc. 54, 1751–1758 (2000).
[CrossRef]

K. T. Cornett, P. M. Hagelin, J. P. Heritage, O. Solgaard, and M. Everett, “Miniature variable optical delay using silicon micromachined scanning mirrors,” Conference on Lasers and Electro-Optics, 2000 (IEEE, 2000), pp. 383–384.

P. M. Hagelin, U. Krishnamoorthy, J. P. Heritage, and O. Solgaard, “Scalable optical cross-connect switch using micromachined mirrors,” IEEE Photonics Technol. Lett. 12, 882–884(2000).
[CrossRef]

1999 (2)

1998 (1)

G. G. Yaralioglu, A. Atalar, S. R. Manalis, and C. F. Quate, “Analysis and design of an interdigital cantilever as a displacement sensor,” J. Appl. Phys. 83, 7405–7415 (1998).
[CrossRef]

1997 (3)

G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–1813 (1997).
[CrossRef]

T. Akiyama, D. Collard, and H. Fujita, “Scratch drive actuator with mechanical links for self-assembly of three-dimensional MEMS,” J. Microelectromech. Syst. 6, 10–17 (1997).
[CrossRef]

S. R. Manalis, S. C. Minne, C. F. Quate, G. G. Yaralioglu, and A. Atalar, “Two-dimensional micromechanical bimorph arrays for detection of thermal radiation,” Appl. Phys. Lett. 70, 3311–3313 (1997).
[CrossRef]

1996 (1)

M. J. Daneman, N. C. Tien, O. Solgaard, A. P. Pisano, K. Y. Lau, and R. S. Muller, “Linear microvibromotor for positioning optical components,” J. Microelectromech. Syst. 5, 159–165 (1996).
[CrossRef]

1994 (1)

E. L. Goldstein, L. Eskildsen, and A. F. Elrefaie, “Performance implications of component crosstalk in transparent lightwave networks,” IEEE Photonic Technol. Lett. 6, 657–660 (1994).

1993 (1)

J. Hagerman, “Optimum spot size for raster-scanned monochrome CRT displays,” J. Soc. Inf. Disp. 1, 367–369 (1993).
[CrossRef]

1992 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fuijimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

1990 (1)

L. J. Hornbeck, “Deformable-mirror spatial-light modulators,” Proc. SPIE 1150, 86–102 (1990).

1988 (2)

A. M. Weiner, J. P. Heritage, and J. A. Salehi, “Encoding and decoding of femtosecond pulses,” Opt. Lett. 13, 300–302(1988).
[CrossRef]

J. H. Jerman and S. R. Mallinson, “A miniature Fabry–Perot interferometer fabricated using silicon micromachining techniques,” 1988 Solid State Sensor and Actuator Workshop (IEEE, 1988), pp. 16–18.

1985 (1)

1981 (1)

E. M. Kim and D. L. Franzen, “Measurement of far-field and near-field radiation patterns from optical fibers,” Report NBS-TN-1032 (National Bureau of Standards, 1981).

Akiyama, T.

T. Akiyama, D. Collard, and H. Fujita, “Scratch drive actuator with mechanical links for self-assembly of three-dimensional MEMS,” J. Microelectromech. Syst. 6, 10–17 (1997).
[CrossRef]

Aksyuk, V. A.

V. A. Aksyuk, D. López, G. P. Watson, M. E. Simon, R. A. Cirelli, F. Pardo, F. Klemens, A. R. Papazian, C. Bolle, J. E. Bower, E. Ferry, W. M. Mansfield, J. Miner, T. W. Sorsch, and D. Tennant, “Mems spatial light modulator for optical maskless lithography,” Proceedings of the Solid-State Sensor and Actuator Workshop (IEEE, 2006), pp. 352–355.

J. E. Ford, V. A. Aksyuk, D. J. Bishop, and J. A. Walker, “Wavelength add-drop switching using tilting micromirrors,” J. Lightwave Technol. 17, 904–11 (1999).
[CrossRef]

Atalar, A.

G. G. Yaralioglu, A. Atalar, S. R. Manalis, and C. F. Quate, “Analysis and design of an interdigital cantilever as a displacement sensor,” J. Appl. Phys. 83, 7405–7415 (1998).
[CrossRef]

S. R. Manalis, S. C. Minne, C. F. Quate, G. G. Yaralioglu, and A. Atalar, “Two-dimensional micromechanical bimorph arrays for detection of thermal radiation,” Appl. Phys. Lett. 70, 3311–3313 (1997).
[CrossRef]

Baba Ali, N.

E. Croffie, N. Eib, N. Callan, N. Baba Ali, A. Latypov, J. Hintersteiner, T. Sandstrom, A. Bleeker, and K. Cummings, “Application of rigorous electromagnetic simulation to SLM-based maskless lithography for 65nm node,” Proc. SPIE 5256, 842–850 (2003).

Barretto, R. P. J.

Ben Bakir, B.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. Ben Bakir, H. Takashi, J.-L Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11, 395–407(2005).
[CrossRef]

Ben-Yakar, A.

Bifano, T. G.

H. Lee, M. H. Miller, and T. G. Bifano, “CMOS chip planarization by chemical mechanical polishing for a vertically stacked metal MEMS integration,” J. Micromech. Microeng. 14, 108–115 (2004).
[CrossRef]

Bishop, D. J.

Bleeker, A.

E. Croffie, N. Eib, N. Callan, N. Baba Ali, A. Latypov, J. Hintersteiner, T. Sandstrom, A. Bleeker, and K. Cummings, “Application of rigorous electromagnetic simulation to SLM-based maskless lithography for 65nm node,” Proc. SPIE 5256, 842–850 (2003).

Bloom, D. M.

Bolle, C.

V. A. Aksyuk, D. López, G. P. Watson, M. E. Simon, R. A. Cirelli, F. Pardo, F. Klemens, A. R. Papazian, C. Bolle, J. E. Bower, E. Ferry, W. M. Mansfield, J. Miner, T. W. Sorsch, and D. Tennant, “Mems spatial light modulator for optical maskless lithography,” Proceedings of the Solid-State Sensor and Actuator Workshop (IEEE, 2006), pp. 352–355.

Bouma, B. E.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429–1433 (2006).

G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–1813 (1997).
[CrossRef]

Bower, J. E.

V. A. Aksyuk, D. López, G. P. Watson, M. E. Simon, R. A. Cirelli, F. Pardo, F. Klemens, A. R. Papazian, C. Bolle, J. E. Bower, E. Ferry, W. M. Mansfield, J. Miner, T. W. Sorsch, and D. Tennant, “Mems spatial light modulator for optical maskless lithography,” Proceedings of the Solid-State Sensor and Actuator Workshop (IEEE, 2006), pp. 352–355.

Burg, T. P.

C. A. Savran, T. P. Burg, J. Fritz, and S. R. Manalis, “Microfabricated mechanical biosensor with inherently differential readout,” Appl. Phys. Lett. 83, 1659–1661 (2003).
[CrossRef]

Burns, L. D.

Butler, M. A.

D. R. Day, M. A. Butler, M. C. Smith, A. McAllister, E. R. Deutsch, K. Zafiriou, and S. D. Senturia, “Diffractive-MEMS implementation of a Hadamard near-infrared spectrometer,” Transducers (IEEE, 2005), pp. 1246–1249.

Callan, N.

E. Croffie, N. Eib, N. Callan, N. Baba Ali, A. Latypov, J. Hintersteiner, T. Sandstrom, A. Bleeker, and K. Cummings, “Application of rigorous electromagnetic simulation to SLM-based maskless lithography for 65nm node,” Proc. SPIE 5256, 842–850 (2003).

Carr, D. W.

Chan, R. C.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429–1433 (2006).

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fuijimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Chang-Hasnain, C. J.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16, 518–520 (2004).
[CrossRef]

Chen, P.

Cirelli, R. A.

V. A. Aksyuk, D. López, G. P. Watson, M. E. Simon, R. A. Cirelli, F. Pardo, F. Klemens, A. R. Papazian, C. Bolle, J. E. Bower, E. Ferry, W. M. Mansfield, J. Miner, T. W. Sorsch, and D. Tennant, “Mems spatial light modulator for optical maskless lithography,” Proceedings of the Solid-State Sensor and Actuator Workshop (IEEE, 2006), pp. 352–355.

Cocker, E. D.

Cojocaru, C.

Collard, D.

T. Akiyama, D. Collard, and H. Fujita, “Scratch drive actuator with mechanical links for self-assembly of three-dimensional MEMS,” J. Microelectromech. Syst. 6, 10–17 (1997).
[CrossRef]

Contag, C. H.

W. Piyawattanametha, H. Ra, M. J. Mandella, K. Loewke, T. D. Wang, G. S. Kino, O. Solgaard, and C. H. Contag, “3-D Near-infrared fluorescence imaging using a MEMS-based miniature dual-axis confocal microscope,” IEEE J. Sel. Top. Quantum Electron. 15, 1344–1350 (2009).
[CrossRef]

H. Ra, W. Piyawattanametha, M. J. Mandella, P.-L Hsiung, J. Hardy, T. D. Wang, C. H. Contag, G. S. Kino, and O. Solgaard, “Three-dimensional in vivo imaging by a handheld dual-axes confocal microscope,” Opt. Express 16, 7224–7232(2008).
[CrossRef]

Cornett, K. T.

K. T. Cornett, P. M. Hagelin, J. P. Heritage, O. Solgaard, and M. Everett, “Miniature variable optical delay using silicon micromachined scanning mirrors,” Conference on Lasers and Electro-Optics, 2000 (IEEE, 2000), pp. 383–384.

Croffie, E.

E. Croffie, N. Eib, N. Callan, N. Baba Ali, A. Latypov, J. Hintersteiner, T. Sandstrom, A. Bleeker, and K. Cummings, “Application of rigorous electromagnetic simulation to SLM-based maskless lithography for 65nm node,” Proc. SPIE 5256, 842–850 (2003).

Cummings, K.

E. Croffie, N. Eib, N. Callan, N. Baba Ali, A. Latypov, J. Hintersteiner, T. Sandstrom, A. Bleeker, and K. Cummings, “Application of rigorous electromagnetic simulation to SLM-based maskless lithography for 65nm node,” Proc. SPIE 5256, 842–850 (2003).

Daneman, M. J.

M. J. Daneman, N. C. Tien, O. Solgaard, A. P. Pisano, K. Y. Lau, and R. S. Muller, “Linear microvibromotor for positioning optical components,” J. Microelectromech. Syst. 5, 159–165 (1996).
[CrossRef]

Day, D. R.

D. R. Day, M. A. Butler, M. C. Smith, A. McAllister, E. R. Deutsch, K. Zafiriou, and S. D. Senturia, “Diffractive-MEMS implementation of a Hadamard near-infrared spectrometer,” Transducers (IEEE, 2005), pp. 1246–1249.

de Boer, J. F.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429–1433 (2006).

Degertekin, F. L.

L. Wook, N. A. Hall, Z. Zhiping, and F. L. Degertekin, “Fabrication and characterization of a micromachined acoustic sensor with integrated optical readout,” IEEE J. Sel. Top. Quantum Electron. 10, 643–651 (2004).
[CrossRef]

N. A. Hall and F. L. Degertekin, “Self-calibrating micromachined microphones with integrated optical displacement detection,” Transducers 01 (IEEE, 2001, pp. 118–121.

Deng, Y.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16, 518–520 (2004).
[CrossRef]

Desjardins, A. E.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429–1433 (2006).

Deutsch, E. R.

D. R. Day, M. A. Butler, M. C. Smith, A. McAllister, E. R. Deutsch, K. Zafiriou, and S. D. Senturia, “Diffractive-MEMS implementation of a Hadamard near-infrared spectrometer,” Transducers (IEEE, 2005), pp. 1246–1249.

Deverse, R. A.

Digonnet, M.

O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “Photonic-crystal-diaphragm-based fiber-tip hydrophone optimized for ocean acoustics,” Proc. SPIE 7004, 700405 (2008).

O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “External fibre Fabry–Perot acoustic sensor based on a photonic-crystal mirror,” Meas. Sci. Technol. 18, 3049–3054 (2007).
[CrossRef]

Ding, Y.

R. Magnusson and Y. Ding, “MEMS tunable resonant leaky mode filters,” IEEE Photics Technol. Lett. 18, 1479–1481(2006).

Durr, N. J.

Eib, N.

E. Croffie, N. Eib, N. Callan, N. Baba Ali, A. Latypov, J. Hintersteiner, T. Sandstrom, A. Bleeker, and K. Cummings, “Application of rigorous electromagnetic simulation to SLM-based maskless lithography for 65nm node,” Proc. SPIE 5256, 842–850 (2003).

Elrefaie, A. F.

E. L. Goldstein, L. Eskildsen, and A. F. Elrefaie, “Performance implications of component crosstalk in transparent lightwave networks,” IEEE Photonic Technol. Lett. 6, 657–660 (1994).

Eskildsen, L.

E. L. Goldstein, L. Eskildsen, and A. F. Elrefaie, “Performance implications of component crosstalk in transparent lightwave networks,” IEEE Photonic Technol. Lett. 6, 657–660 (1994).

Evans, J. A.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429–1433 (2006).

Everett, M.

K. T. Cornett, P. M. Hagelin, J. P. Heritage, O. Solgaard, and M. Everett, “Miniature variable optical delay using silicon micromachined scanning mirrors,” Conference on Lasers and Electro-Optics, 2000 (IEEE, 2000), pp. 383–384.

Fan, S.

Fan, S.-H

W. Suh, M. F. Yanik, O. Solgaard, and S.-H Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett. 82, 1999–2001 (2003).
[CrossRef]

Fateley, W. G.

Fedder, G. K.

Ferry, E.

V. A. Aksyuk, D. López, G. P. Watson, M. E. Simon, R. A. Cirelli, F. Pardo, F. Klemens, A. R. Papazian, C. Bolle, J. E. Bower, E. Ferry, W. M. Mansfield, J. Miner, T. W. Sorsch, and D. Tennant, “Mems spatial light modulator for optical maskless lithography,” Proceedings of the Solid-State Sensor and Actuator Workshop (IEEE, 2006), pp. 352–355.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fuijimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Flusberg, B. A.

Ford, J. E.

Franzen, D. L.

E. M. Kim and D. L. Franzen, “Measurement of far-field and near-field radiation patterns from optical fibers,” Report NBS-TN-1032 (National Bureau of Standards, 1981).

Friedmann, T. A.

Fritz, J.

C. A. Savran, T. P. Burg, J. Fritz, and S. R. Manalis, “Microfabricated mechanical biosensor with inherently differential readout,” Appl. Phys. Lett. 83, 1659–1661 (2003).
[CrossRef]

Fuijimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fuijimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Fujimoto, J. G.

Fujita, H.

T. Akiyama, D. Collard, and H. Fujita, “Scratch drive actuator with mechanical links for self-assembly of three-dimensional MEMS,” J. Microelectromech. Syst. 6, 10–17 (1997).
[CrossRef]

Godil, A.

A. Godil, “Diffractive MEMS technology offers a new platform for optical networks,” Laser Focus World (2002).

Goldstein, E. L.

E. L. Goldstein, L. Eskildsen, and A. F. Elrefaie, “Performance implications of component crosstalk in transparent lightwave networks,” IEEE Photonic Technol. Lett. 6, 657–660 (1994).

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fuijimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Hadzialic, S.

S. Kim, S. Hadzialic, A. Sudbo, and O. Solgaard, “Single-film broadband photonic crystal micro-mirror with large angular range and low polarization dependence,” Conference on Lasers and Electro-Optics, 2007 (IEEE, 2007), paper CThP7.

Hagelin, P. M.

K. T. Cornett, P. M. Hagelin, J. P. Heritage, O. Solgaard, and M. Everett, “Miniature variable optical delay using silicon micromachined scanning mirrors,” Conference on Lasers and Electro-Optics, 2000 (IEEE, 2000), pp. 383–384.

P. M. Hagelin, U. Krishnamoorthy, J. P. Heritage, and O. Solgaard, “Scalable optical cross-connect switch using micromachined mirrors,” IEEE Photonics Technol. Lett. 12, 882–884(2000).
[CrossRef]

Hagerman, J.

J. Hagerman, “Optimum spot size for raster-scanned monochrome CRT displays,” J. Soc. Inf. Disp. 1, 367–369 (1993).
[CrossRef]

Hah, D.

M.-C. M. Lee, D. Hah, E. K. Lau, H. Toshiyoshi, and M. Wu, “MEMS-actuated photonic crystal switches,” IEEE Photonics Technol. Lett. 18, 358–360 (2006).
[CrossRef]

Hall, N. A.

L. Wook, N. A. Hall, Z. Zhiping, and F. L. Degertekin, “Fabrication and characterization of a micromachined acoustic sensor with integrated optical readout,” IEEE J. Sel. Top. Quantum Electron. 10, 643–651 (2004).
[CrossRef]

N. A. Hall and F. L. Degertekin, “Self-calibrating micromachined microphones with integrated optical displacement detection,” Transducers 01 (IEEE, 2001, pp. 118–121.

Hammaker, R. M.

Hardy, J.

Hecht, E.

E. Hecht, Optics, 2nd ed. (Addison-Wesley, 2001).

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fuijimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Heritage, J. P.

P. M. Hagelin, U. Krishnamoorthy, J. P. Heritage, and O. Solgaard, “Scalable optical cross-connect switch using micromachined mirrors,” IEEE Photonics Technol. Lett. 12, 882–884(2000).
[CrossRef]

K. T. Cornett, P. M. Hagelin, J. P. Heritage, O. Solgaard, and M. Everett, “Miniature variable optical delay using silicon micromachined scanning mirrors,” Conference on Lasers and Electro-Optics, 2000 (IEEE, 2000), pp. 383–384.

A. M. Weiner, J. P. Heritage, and J. A. Salehi, “Encoding and decoding of femtosecond pulses,” Opt. Lett. 13, 300–302(1988).
[CrossRef]

J. P. Heritage, A. M. Weiner, and R. N. Thurston, “Picosecond pulse shaping by spectral phase and amplitude manipulation,” Opt. Lett. 10, 609–611 (1985).
[CrossRef]

Hestnes Bakke, K. A.

H. Sagberg, A. Sudbo, O. Solgaard, K. A. Hestnes Bakke, and I.-R. Johansen, “Optical microphone based on a modulated diffractive lens,” IEEE Photon. Technol. Lett. 15, 1431–1433(2003).

Hintersteiner, J.

E. Croffie, N. Eib, N. Callan, N. Baba Ali, A. Latypov, J. Hintersteiner, T. Sandstrom, A. Bleeker, and K. Cummings, “Application of rigorous electromagnetic simulation to SLM-based maskless lithography for 65nm node,” Proc. SPIE 5256, 842–850 (2003).

Hohlfeld, D.

D. Hohlfeld and H. Zappe, “All-dielectric tunable optical filter based on the thermo-optic effect,” J. Opt. A: Pure Appl, Opt. 6, 504–511 (2004).

Hornbeck, L. J.

L. J. Hornbeck, “The DMD projection display chip: a MEMS-based technology,” Mater. Res. Bull. 26, 325–327(2001).

L. J. Hornbeck, “Deformable-mirror spatial-light modulators,” Proc. SPIE 1150, 86–102 (1990).

Horowitz, R.

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: design, microfabrication, and performance,” J. Microelectromech. Syst. 11, 136–146 (2002).
[CrossRef]

Howe, R. T.

I.-W. Jung, B. Park, J. Provine, R. T. Howe, and O. Solgaard, “Photonic crystal fiber tip sensor for precision temperature sensing,” LEOS Annual Meeting Conference Proceedings, 2009 (IEEE, 2009), pp. 761–762.

I.-W. Jung, B. Park, J. Provine, R. T. Howe, and O. Solgaard, “Monolithic silicon photonic crystal slab fiber tip sensor,” IEEE/LEOS International Conference on Optical MEMS and Nanophotonics (IEEE, 2009), pp. 19–20.

Hoy, C. L.

Hsiung, P.-L

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fuijimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Huang, L.-S

Huang, M. C. Y.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16, 518–520 (2004).
[CrossRef]

Jang, I.-K.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429–1433 (2006).

Jerman, J. H.

J. H. Jerman and S. R. Mallinson, “A miniature Fabry–Perot interferometer fabricated using silicon micromachining techniques,” 1988 Solid State Sensor and Actuator Workshop (IEEE, 1988), pp. 16–18.

Jiang, X.

Q. Lin, J. Rosenberg, X. Jiang, Xiaoshun Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601–103604 (2009).
[CrossRef]

Jiang, Xiaoshun

Q. Lin, J. Rosenberg, X. Jiang, Xiaoshun Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601–103604 (2009).
[CrossRef]

Joannopoulos, J. D.

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).

Johansen, I.-R.

H. Sagberg, A. Sudbo, O. Solgaard, K. A. Hestnes Bakke, and I.-R. Johansen, “Optical microphone based on a modulated diffractive lens,” IEEE Photon. Technol. Lett. 15, 1431–1433(2003).

Jung, I. W.

I. W. Jung, S. Kim, and O. Solgaard, “High-reflectivity broadband photonic crystal mirror MEMS scanner with low dependence on incident angle and polarization,” J. Microelectromech. Syst. 18, 924–932 (2009).
[CrossRef]

I. W. Jung, U. Krishnamoorthy, and O. Solgaard, “High fill-factor two-axis gimbaled tip-tilt-piston micromirror array actuated by self-aligned vertical comb drives,” J. Microelectromech. Syst. 15, 563–571 (2006).
[CrossRef]

Jung, I.-W.

I.-W. Jung, B. Park, J. Provine, R. T. Howe, and O. Solgaard, “Monolithic silicon photonic crystal slab fiber tip sensor,” IEEE/LEOS International Conference on Optical MEMS and Nanophotonics (IEEE, 2009), pp. 19–20.

I.-W. Jung, B. Park, J. Provine, R. T. Howe, and O. Solgaard, “Photonic crystal fiber tip sensor for precision temperature sensing,” LEOS Annual Meeting Conference Proceedings, 2009 (IEEE, 2009), pp. 761–762.

Jung, J. C.

Keeler, B. E. N.

Kilic, O.

O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “Photonic-crystal-diaphragm-based fiber-tip hydrophone optimized for ocean acoustics,” Proc. SPIE 7004, 700405 (2008).

O. Kilic, S. Fan, and O. Solgaard, “Analysis of guided-resonance based polarization beam splitting in photonic crystal slabs,” J. Opt. Soc. Am. A 25, 2680–2692 (2008).

O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “External fibre Fabry–Perot acoustic sensor based on a photonic-crystal mirror,” Meas. Sci. Technol. 18, 3049–3054 (2007).
[CrossRef]

O. Kilic, S. Kim, W. Suh, Y.-A Peter, A. S. Sudbø, M. F. Yanik, S. Fan, and O. Solgaard, “Photonic crystal slabs demonstrating strong broadband suppression of transmission in the presence of disorders,” Opt. Lett. 29, 2782–2784 (2004).
[CrossRef]

Kim, C.-J

Kim, E. M.

E. M. Kim and D. L. Franzen, “Measurement of far-field and near-field radiation patterns from optical fibers,” Report NBS-TN-1032 (National Bureau of Standards, 1981).

Kim, S.

I. W. Jung, S. Kim, and O. Solgaard, “High-reflectivity broadband photonic crystal mirror MEMS scanner with low dependence on incident angle and polarization,” J. Microelectromech. Syst. 18, 924–932 (2009).
[CrossRef]

S. Kim, S. Hadzialic, A. Sudbo, and O. Solgaard, “Single-film broadband photonic crystal micro-mirror with large angular range and low polarization dependence,” Conference on Lasers and Electro-Optics, 2007 (IEEE, 2007), paper CThP7.

O. Kilic, S. Kim, W. Suh, Y.-A Peter, A. S. Sudbø, M. F. Yanik, S. Fan, and O. Solgaard, “Photonic crystal slabs demonstrating strong broadband suppression of transmission in the presence of disorders,” Opt. Lett. 29, 2782–2784 (2004).
[CrossRef]

Kino, G.

O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “Photonic-crystal-diaphragm-based fiber-tip hydrophone optimized for ocean acoustics,” Proc. SPIE 7004, 700405 (2008).

O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “External fibre Fabry–Perot acoustic sensor based on a photonic-crystal mirror,” Meas. Sci. Technol. 18, 3049–3054 (2007).
[CrossRef]

Kino, G. S.

W. Piyawattanametha, H. Ra, M. J. Mandella, K. Loewke, T. D. Wang, G. S. Kino, O. Solgaard, and C. H. Contag, “3-D Near-infrared fluorescence imaging using a MEMS-based miniature dual-axis confocal microscope,” IEEE J. Sel. Top. Quantum Electron. 15, 1344–1350 (2009).
[CrossRef]

H. Ra, W. Piyawattanametha, M. J. Mandella, P.-L Hsiung, J. Hardy, T. D. Wang, C. H. Contag, G. S. Kino, and O. Solgaard, “Three-dimensional in vivo imaging by a handheld dual-axes confocal microscope,” Opt. Express 16, 7224–7232(2008).
[CrossRef]

Kitching, J.

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: design, microfabrication, and performance,” J. Microelectromech. Syst. 11, 136–146 (2002).
[CrossRef]

Klemens, F.

V. A. Aksyuk, D. López, G. P. Watson, M. E. Simon, R. A. Cirelli, F. Pardo, F. Klemens, A. R. Papazian, C. Bolle, J. E. Bower, E. Ferry, W. M. Mansfield, J. Miner, T. W. Sorsch, and D. Tennant, “Mems spatial light modulator for optical maskless lithography,” Proceedings of the Solid-State Sensor and Actuator Workshop (IEEE, 2006), pp. 352–355.

Ko, T. H.

Krishnamoorthy, U.

I. W. Jung, U. Krishnamoorthy, and O. Solgaard, “High fill-factor two-axis gimbaled tip-tilt-piston micromirror array actuated by self-aligned vertical comb drives,” J. Microelectromech. Syst. 15, 563–571 (2006).
[CrossRef]

U. Krishnamoorthy, Design and fabrication of micromirrors for optical application,” Ph.D. thesis (University of California, Davis, 2002).

P. M. Hagelin, U. Krishnamoorthy, J. P. Heritage, and O. Solgaard, “Scalable optical cross-connect switch using micromachined mirrors,” IEEE Photonics Technol. Lett. 12, 882–884(2000).
[CrossRef]

Kubota, S. R.

S. R. Kubota, “The grating light valve projector,” Opt. Photon. News 13, 50–53 (2002).

Latypov, A.

E. Croffie, N. Eib, N. Callan, N. Baba Ali, A. Latypov, J. Hintersteiner, T. Sandstrom, A. Bleeker, and K. Cummings, “Application of rigorous electromagnetic simulation to SLM-based maskless lithography for 65nm node,” Proc. SPIE 5256, 842–850 (2003).

Lau, E. K.

M.-C. M. Lee, D. Hah, E. K. Lau, H. Toshiyoshi, and M. Wu, “MEMS-actuated photonic crystal switches,” IEEE Photonics Technol. Lett. 18, 358–360 (2006).
[CrossRef]

Lau, K. Y.

M. J. Daneman, N. C. Tien, O. Solgaard, A. P. Pisano, K. Y. Lau, and R. S. Muller, “Linear microvibromotor for positioning optical components,” J. Microelectromech. Syst. 5, 159–165 (1996).
[CrossRef]

Leclercq, J. L.

Leclercq, J.-L

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. Ben Bakir, H. Takashi, J.-L Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11, 395–407(2005).
[CrossRef]

Lee, D.

Lee, H.

H. Lee, M. H. Miller, and T. G. Bifano, “CMOS chip planarization by chemical mechanical polishing for a vertically stacked metal MEMS integration,” J. Micromech. Microeng. 14, 108–115 (2004).
[CrossRef]

Lee, M.-C. M.

M.-C. M. Lee, and M. C. Wu, “Variable bandwidth of dynamic add-drop filters based on coupling-controlled microdisk resonators,” Opt. Lett. 31, 2444–2446 (2006).
[CrossRef]

M.-C. M. Lee, D. Hah, E. K. Lau, H. Toshiyoshi, and M. Wu, “MEMS-actuated photonic crystal switches,” IEEE Photonics Technol. Lett. 18, 358–360 (2006).
[CrossRef]

Lee, S.-S

Letartre, X.

Levenson, A.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fuijimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Lin, Q.

Q. Lin, J. Rosenberg, X. Jiang, Xiaoshun Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601–103604 (2009).
[CrossRef]

Loewke, K.

W. Piyawattanametha, H. Ra, M. J. Mandella, K. Loewke, T. D. Wang, G. S. Kino, O. Solgaard, and C. H. Contag, “3-D Near-infrared fluorescence imaging using a MEMS-based miniature dual-axis confocal microscope,” IEEE J. Sel. Top. Quantum Electron. 15, 1344–1350 (2009).
[CrossRef]

Loh, N. C.

N. C. Loh, M. A. Schmidt, and S. R. Manalis, “Sub-10cm3 interferometric accelerometer with nano-g resolution,” J. Microelectromech. Syst. 11, 182–187 (2002).
[CrossRef]

López, D.

V. A. Aksyuk, D. López, G. P. Watson, M. E. Simon, R. A. Cirelli, F. Pardo, F. Klemens, A. R. Papazian, C. Bolle, J. E. Bower, E. Ferry, W. M. Mansfield, J. Miner, T. W. Sorsch, and D. Tennant, “Mems spatial light modulator for optical maskless lithography,” Proceedings of the Solid-State Sensor and Actuator Workshop (IEEE, 2006), pp. 352–355.

Magnusson, R.

R. Magnusson and D. Wawro, “Guided-mode resonance sensors for biochemical screening,” The 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2007 (IEEE, 2008), pp. 228–229.

R. Magnusson and Y. Ding, “MEMS tunable resonant leaky mode filters,” IEEE Photics Technol. Lett. 18, 1479–1481(2006).

Majumdar, A.

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: design, microfabrication, and performance,” J. Microelectromech. Syst. 11, 136–146 (2002).
[CrossRef]

Mallinson, S. R.

J. H. Jerman and S. R. Mallinson, “A miniature Fabry–Perot interferometer fabricated using silicon micromachining techniques,” 1988 Solid State Sensor and Actuator Workshop (IEEE, 1988), pp. 16–18.

Manalis, S. R.

C. A. Savran, T. P. Burg, J. Fritz, and S. R. Manalis, “Microfabricated mechanical biosensor with inherently differential readout,” Appl. Phys. Lett. 83, 1659–1661 (2003).
[CrossRef]

N. C. Loh, M. A. Schmidt, and S. R. Manalis, “Sub-10cm3 interferometric accelerometer with nano-g resolution,” J. Microelectromech. Syst. 11, 182–187 (2002).
[CrossRef]

G. G. Yaralioglu, A. Atalar, S. R. Manalis, and C. F. Quate, “Analysis and design of an interdigital cantilever as a displacement sensor,” J. Appl. Phys. 83, 7405–7415 (1998).
[CrossRef]

S. R. Manalis, S. C. Minne, C. F. Quate, G. G. Yaralioglu, and A. Atalar, “Two-dimensional micromechanical bimorph arrays for detection of thermal radiation,” Appl. Phys. Lett. 70, 3311–3313 (1997).
[CrossRef]

Mandella, M. J.

W. Piyawattanametha, H. Ra, M. J. Mandella, K. Loewke, T. D. Wang, G. S. Kino, O. Solgaard, and C. H. Contag, “3-D Near-infrared fluorescence imaging using a MEMS-based miniature dual-axis confocal microscope,” IEEE J. Sel. Top. Quantum Electron. 15, 1344–1350 (2009).
[CrossRef]

H. Ra, W. Piyawattanametha, M. J. Mandella, P.-L Hsiung, J. Hardy, T. D. Wang, C. H. Contag, G. S. Kino, and O. Solgaard, “Three-dimensional in vivo imaging by a handheld dual-axes confocal microscope,” Opt. Express 16, 7224–7232(2008).
[CrossRef]

Mansfield, W. M.

V. A. Aksyuk, D. López, G. P. Watson, M. E. Simon, R. A. Cirelli, F. Pardo, F. Klemens, A. R. Papazian, C. Bolle, J. E. Bower, E. Ferry, W. M. Mansfield, J. Miner, T. W. Sorsch, and D. Tennant, “Mems spatial light modulator for optical maskless lithography,” Proceedings of the Solid-State Sensor and Actuator Workshop (IEEE, 2006), pp. 352–355.

Mao, M.

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: design, microfabrication, and performance,” J. Microelectromech. Syst. 11, 136–146 (2002).
[CrossRef]

Mateus, C. F. R.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16, 518–520 (2004).
[CrossRef]

McAllister, A.

D. R. Day, M. A. Butler, M. C. Smith, A. McAllister, E. R. Deutsch, K. Zafiriou, and S. D. Senturia, “Diffractive-MEMS implementation of a Hadamard near-infrared spectrometer,” Transducers (IEEE, 2005), pp. 1246–1249.

Miller, M. H.

H. Lee, M. H. Miller, and T. G. Bifano, “CMOS chip planarization by chemical mechanical polishing for a vertically stacked metal MEMS integration,” J. Micromech. Microeng. 14, 108–115 (2004).
[CrossRef]

Miner, J.

V. A. Aksyuk, D. López, G. P. Watson, M. E. Simon, R. A. Cirelli, F. Pardo, F. Klemens, A. R. Papazian, C. Bolle, J. E. Bower, E. Ferry, W. M. Mansfield, J. Miner, T. W. Sorsch, and D. Tennant, “Mems spatial light modulator for optical maskless lithography,” Proceedings of the Solid-State Sensor and Actuator Workshop (IEEE, 2006), pp. 352–355.

Minne, S. C.

S. R. Manalis, S. C. Minne, C. F. Quate, G. G. Yaralioglu, and A. Atalar, “Two-dimensional micromechanical bimorph arrays for detection of thermal radiation,” Appl. Phys. Lett. 70, 3311–3313 (1997).
[CrossRef]

Monat, C.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. Ben Bakir, H. Takashi, J.-L Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11, 395–407(2005).
[CrossRef]

Monnier, P.

Mouette, J.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. Ben Bakir, H. Takashi, J.-L Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11, 395–407(2005).
[CrossRef]

X. Letartre, J. Mouette, J. L. Leclercq, P. Rojo Romeo, C. Seassal, and P. Viktorovitch, “Switching devices with spatial and spectral resolution combining photonic crystal and MOEMS structures,” J. Lightwave Technol. 21, 1691–1699 (2003).
[CrossRef]

Muller, R. S.

M. J. Daneman, N. C. Tien, O. Solgaard, A. P. Pisano, K. Y. Lau, and R. S. Muller, “Linear microvibromotor for positioning optical components,” J. Microelectromech. Syst. 5, 159–165 (1996).
[CrossRef]

Neureuther, A. R.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16, 518–520 (2004).
[CrossRef]

Nishioka, N. S.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429–1433 (2006).

Norton, P.

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: design, microfabrication, and performance,” J. Microelectromech. Syst. 11, 136–146 (2002).
[CrossRef]

Oh, W. Y.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429–1433 (2006).

Painter, O.

Q. Lin, J. Rosenberg, X. Jiang, Xiaoshun Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601–103604 (2009).
[CrossRef]

Pan, Y.

Papazian, A. R.

V. A. Aksyuk, D. López, G. P. Watson, M. E. Simon, R. A. Cirelli, F. Pardo, F. Klemens, A. R. Papazian, C. Bolle, J. E. Bower, E. Ferry, W. M. Mansfield, J. Miner, T. W. Sorsch, and D. Tennant, “Mems spatial light modulator for optical maskless lithography,” Proceedings of the Solid-State Sensor and Actuator Workshop (IEEE, 2006), pp. 352–355.

Pardo, F.

V. A. Aksyuk, D. López, G. P. Watson, M. E. Simon, R. A. Cirelli, F. Pardo, F. Klemens, A. R. Papazian, C. Bolle, J. E. Bower, E. Ferry, W. M. Mansfield, J. Miner, T. W. Sorsch, and D. Tennant, “Mems spatial light modulator for optical maskless lithography,” Proceedings of the Solid-State Sensor and Actuator Workshop (IEEE, 2006), pp. 352–355.

Park, B.

I.-W. Jung, B. Park, J. Provine, R. T. Howe, and O. Solgaard, “Monolithic silicon photonic crystal slab fiber tip sensor,” IEEE/LEOS International Conference on Optical MEMS and Nanophotonics (IEEE, 2009), pp. 19–20.

I.-W. Jung, B. Park, J. Provine, R. T. Howe, and O. Solgaard, “Photonic crystal fiber tip sensor for precision temperature sensing,” LEOS Annual Meeting Conference Proceedings, 2009 (IEEE, 2009), pp. 761–762.

Peter, Y.-A

Pisano, A. P.

M. J. Daneman, N. C. Tien, O. Solgaard, A. P. Pisano, K. Y. Lau, and R. S. Muller, “Linear microvibromotor for positioning optical components,” J. Microelectromech. Syst. 5, 159–165 (1996).
[CrossRef]

Piyawattanametha, W.

Provine, J.

I.-W. Jung, B. Park, J. Provine, R. T. Howe, and O. Solgaard, “Photonic crystal fiber tip sensor for precision temperature sensing,” LEOS Annual Meeting Conference Proceedings, 2009 (IEEE, 2009), pp. 761–762.

I.-W. Jung, B. Park, J. Provine, R. T. Howe, and O. Solgaard, “Monolithic silicon photonic crystal slab fiber tip sensor,” IEEE/LEOS International Conference on Optical MEMS and Nanophotonics (IEEE, 2009), pp. 19–20.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fuijimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Quate, C. F.

G. G. Yaralioglu, A. Atalar, S. R. Manalis, and C. F. Quate, “Analysis and design of an interdigital cantilever as a displacement sensor,” J. Appl. Phys. 83, 7405–7415 (1998).
[CrossRef]

S. R. Manalis, S. C. Minne, C. F. Quate, G. G. Yaralioglu, and A. Atalar, “Two-dimensional micromechanical bimorph arrays for detection of thermal radiation,” Appl. Phys. Lett. 70, 3311–3313 (1997).
[CrossRef]

Ra, H.

Raineri, F.

Raj, R.

Rojo Romeo, P.

Rojo-Romeo, P.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. Ben Bakir, H. Takashi, J.-L Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11, 395–407(2005).
[CrossRef]

Rosenberg, J.

Q. Lin, J. Rosenberg, X. Jiang, Xiaoshun Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601–103604 (2009).
[CrossRef]

Sagberg, H.

H. Sagberg, A. Sudbo, O. Solgaard, K. A. Hestnes Bakke, and I.-R. Johansen, “Optical microphone based on a modulated diffractive lens,” IEEE Photon. Technol. Lett. 15, 1431–1433(2003).

Salehi, J. A.

Sandejas, F. S. A.

Sandstrom, T.

E. Croffie, N. Eib, N. Callan, N. Baba Ali, A. Latypov, J. Hintersteiner, T. Sandstrom, A. Bleeker, and K. Cummings, “Application of rigorous electromagnetic simulation to SLM-based maskless lithography for 65nm node,” Proc. SPIE 5256, 842–850 (2003).

Sarioglu, A. F.

A. F. Sarioglu and O. Solgaard, “Cantilevers with integrated sensor for time-resolved force measurement in tapping-mode atomic force microscopy,” Appl. Phys. Lett. 93, 023114 (2008).
[CrossRef]

Savran, C. A.

C. A. Savran, T. P. Burg, J. Fritz, and S. R. Manalis, “Microfabricated mechanical biosensor with inherently differential readout,” Appl. Phys. Lett. 83, 1659–1661 (2003).
[CrossRef]

Schmidt, M. A.

N. C. Loh, M. A. Schmidt, and S. R. Manalis, “Sub-10cm3 interferometric accelerometer with nano-g resolution,” J. Microelectromech. Syst. 11, 182–187 (2002).
[CrossRef]

Schnitzer, M. J.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fuijimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Seassal, C.

Senturia, S. D.

D. R. Day, M. A. Butler, M. C. Smith, A. McAllister, E. R. Deutsch, K. Zafiriou, and S. D. Senturia, “Diffractive-MEMS implementation of a Hadamard near-infrared spectrometer,” Transducers (IEEE, 2005), pp. 1246–1249.

Shishkov, M.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429–1433 (2006).

Simon, M. E.

V. A. Aksyuk, D. López, G. P. Watson, M. E. Simon, R. A. Cirelli, F. Pardo, F. Klemens, A. R. Papazian, C. Bolle, J. E. Bower, E. Ferry, W. M. Mansfield, J. Miner, T. W. Sorsch, and D. Tennant, “Mems spatial light modulator for optical maskless lithography,” Proceedings of the Solid-State Sensor and Actuator Workshop (IEEE, 2006), pp. 352–355.

Smith, M. C.

D. R. Day, M. A. Butler, M. C. Smith, A. McAllister, E. R. Deutsch, K. Zafiriou, and S. D. Senturia, “Diffractive-MEMS implementation of a Hadamard near-infrared spectrometer,” Transducers (IEEE, 2005), pp. 1246–1249.

Solgaard, O.

W. Piyawattanametha, H. Ra, M. J. Mandella, K. Loewke, T. D. Wang, G. S. Kino, O. Solgaard, and C. H. Contag, “3-D Near-infrared fluorescence imaging using a MEMS-based miniature dual-axis confocal microscope,” IEEE J. Sel. Top. Quantum Electron. 15, 1344–1350 (2009).
[CrossRef]

O. Solgaard, Photonic Microsystems (Springer, 2009).

I.-W. Jung, B. Park, J. Provine, R. T. Howe, and O. Solgaard, “Photonic crystal fiber tip sensor for precision temperature sensing,” LEOS Annual Meeting Conference Proceedings, 2009 (IEEE, 2009), pp. 761–762.

I.-W. Jung, B. Park, J. Provine, R. T. Howe, and O. Solgaard, “Monolithic silicon photonic crystal slab fiber tip sensor,” IEEE/LEOS International Conference on Optical MEMS and Nanophotonics (IEEE, 2009), pp. 19–20.

I. W. Jung, S. Kim, and O. Solgaard, “High-reflectivity broadband photonic crystal mirror MEMS scanner with low dependence on incident angle and polarization,” J. Microelectromech. Syst. 18, 924–932 (2009).
[CrossRef]

W. Piyawattanametha, E. D. Cocker, L. D. Burns, R. P. J. Barretto, J. C. Jung, H. Ra, O. Solgaard, and M. J. Schnitzer, “In vivo brain imaging using a portable 2.9g two-photon microscope based on a microelectromechanical systems scanning mirror,” Opt. Lett. 34, 2309–2311 (2009).
[CrossRef]

O. Kilic, S. Fan, and O. Solgaard, “Analysis of guided-resonance based polarization beam splitting in photonic crystal slabs,” J. Opt. Soc. Am. A 25, 2680–2692 (2008).

O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “Photonic-crystal-diaphragm-based fiber-tip hydrophone optimized for ocean acoustics,” Proc. SPIE 7004, 700405 (2008).

C. L. Hoy, N. J. Durr, P. Chen, W. Piyawattanametha, H. Ra, O. Solgaard, and A. Ben-Yakar, “Miniaturized probe for femtosecond laser microsurgery and two-photon imaging,” Opt. Express 16, 9996–10005 (2008).
[CrossRef]

H. Ra, W. Piyawattanametha, M. J. Mandella, P.-L Hsiung, J. Hardy, T. D. Wang, C. H. Contag, G. S. Kino, and O. Solgaard, “Three-dimensional in vivo imaging by a handheld dual-axes confocal microscope,” Opt. Express 16, 7224–7232(2008).
[CrossRef]

A. F. Sarioglu and O. Solgaard, “Cantilevers with integrated sensor for time-resolved force measurement in tapping-mode atomic force microscopy,” Appl. Phys. Lett. 93, 023114 (2008).
[CrossRef]

O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “External fibre Fabry–Perot acoustic sensor based on a photonic-crystal mirror,” Meas. Sci. Technol. 18, 3049–3054 (2007).
[CrossRef]

S. Kim, S. Hadzialic, A. Sudbo, and O. Solgaard, “Single-film broadband photonic crystal micro-mirror with large angular range and low polarization dependence,” Conference on Lasers and Electro-Optics, 2007 (IEEE, 2007), paper CThP7.

W. Piyawattanametha, R. P. J. Barretto, T. H. Ko, B. A. Flusberg, E. D. Cocker, H. Ra, D. Lee, O. Solgaard, and M. J. Schnitzer, “Fast-scanning two-photon fluorescence imaging based on a microelectromechanical systems two-dimensional scanning mirror,” Opt. Lett. 31, 2018–2020(2006).
[CrossRef]

I. W. Jung, U. Krishnamoorthy, and O. Solgaard, “High fill-factor two-axis gimbaled tip-tilt-piston micromirror array actuated by self-aligned vertical comb drives,” J. Microelectromech. Syst. 15, 563–571 (2006).
[CrossRef]

W. Suh, O. Solgaard, and S. Fan, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys. 98, 033102(2005).
[CrossRef]

O. Kilic, S. Kim, W. Suh, Y.-A Peter, A. S. Sudbø, M. F. Yanik, S. Fan, and O. Solgaard, “Photonic crystal slabs demonstrating strong broadband suppression of transmission in the presence of disorders,” Opt. Lett. 29, 2782–2784 (2004).
[CrossRef]

W. Suh, M. F. Yanik, O. Solgaard, and S.-H Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett. 82, 1999–2001 (2003).
[CrossRef]

H. Sagberg, A. Sudbo, O. Solgaard, K. A. Hestnes Bakke, and I.-R. Johansen, “Optical microphone based on a modulated diffractive lens,” IEEE Photon. Technol. Lett. 15, 1431–1433(2003).

P. M. Hagelin, U. Krishnamoorthy, J. P. Heritage, and O. Solgaard, “Scalable optical cross-connect switch using micromachined mirrors,” IEEE Photonics Technol. Lett. 12, 882–884(2000).
[CrossRef]

K. T. Cornett, P. M. Hagelin, J. P. Heritage, O. Solgaard, and M. Everett, “Miniature variable optical delay using silicon micromachined scanning mirrors,” Conference on Lasers and Electro-Optics, 2000 (IEEE, 2000), pp. 383–384.

M. J. Daneman, N. C. Tien, O. Solgaard, A. P. Pisano, K. Y. Lau, and R. S. Muller, “Linear microvibromotor for positioning optical components,” J. Microelectromech. Syst. 5, 159–165 (1996).
[CrossRef]

O. Solgaard, F. S. A. Sandejas, and D. M. Bloom, “A deformable grating optical modulator,” Opt. Lett. 17, 688–690 (1992).
[CrossRef]

Sorsch, T. W.

V. A. Aksyuk, D. López, G. P. Watson, M. E. Simon, R. A. Cirelli, F. Pardo, F. Klemens, A. R. Papazian, C. Bolle, J. E. Bower, E. Ferry, W. M. Mansfield, J. Miner, T. W. Sorsch, and D. Tennant, “Mems spatial light modulator for optical maskless lithography,” Proceedings of the Solid-State Sensor and Actuator Workshop (IEEE, 2006), pp. 352–355.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fuijimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Sudbo, A.

S. Kim, S. Hadzialic, A. Sudbo, and O. Solgaard, “Single-film broadband photonic crystal micro-mirror with large angular range and low polarization dependence,” Conference on Lasers and Electro-Optics, 2007 (IEEE, 2007), paper CThP7.

H. Sagberg, A. Sudbo, O. Solgaard, K. A. Hestnes Bakke, and I.-R. Johansen, “Optical microphone based on a modulated diffractive lens,” IEEE Photon. Technol. Lett. 15, 1431–1433(2003).

Sudbø, A. S.

Suh, W.

W. Suh, O. Solgaard, and S. Fan, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys. 98, 033102(2005).
[CrossRef]

O. Kilic, S. Kim, W. Suh, Y.-A Peter, A. S. Sudbø, M. F. Yanik, S. Fan, and O. Solgaard, “Photonic crystal slabs demonstrating strong broadband suppression of transmission in the presence of disorders,” Opt. Lett. 29, 2782–2784 (2004).
[CrossRef]

W. Suh and S. Fan, “Mechanically switchable photonic crystal filter with either all-pass transmission or flat-top reflection characteristics,” Opt. Lett. 28, 1763–1765 (2003).
[CrossRef]

W. Suh, M. F. Yanik, O. Solgaard, and S.-H Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett. 82, 1999–2001 (2003).
[CrossRef]

Sullivan, J. P.

Suter, M. J.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429–1433 (2006).

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fuijimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Takashi, H.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. Ben Bakir, H. Takashi, J.-L Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11, 395–407(2005).
[CrossRef]

Tearney, G. J.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429–1433 (2006).

G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–1813 (1997).
[CrossRef]

Tennant, D.

V. A. Aksyuk, D. López, G. P. Watson, M. E. Simon, R. A. Cirelli, F. Pardo, F. Klemens, A. R. Papazian, C. Bolle, J. E. Bower, E. Ferry, W. M. Mansfield, J. Miner, T. W. Sorsch, and D. Tennant, “Mems spatial light modulator for optical maskless lithography,” Proceedings of the Solid-State Sensor and Actuator Workshop (IEEE, 2006), pp. 352–355.

Thurston, R. N.

Tien, N. C.

M. J. Daneman, N. C. Tien, O. Solgaard, A. P. Pisano, K. Y. Lau, and R. S. Muller, “Linear microvibromotor for positioning optical components,” J. Microelectromech. Syst. 5, 159–165 (1996).
[CrossRef]

Toshiyoshi, H.

M.-C. M. Lee, D. Hah, E. K. Lau, H. Toshiyoshi, and M. Wu, “MEMS-actuated photonic crystal switches,” IEEE Photonics Technol. Lett. 18, 358–360 (2006).
[CrossRef]

Touraille, E.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. Ben Bakir, H. Takashi, J.-L Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11, 395–407(2005).
[CrossRef]

Vahala, K. J.

Q. Lin, J. Rosenberg, X. Jiang, Xiaoshun Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601–103604 (2009).
[CrossRef]

Vakoc, B. J.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429–1433 (2006).

Varesi, J.

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: design, microfabrication, and performance,” J. Microelectromech. Syst. 11, 136–146 (2002).
[CrossRef]

Viktorovitch, P.

Walker, J. A.

Wang, T. D.

W. Piyawattanametha, H. Ra, M. J. Mandella, K. Loewke, T. D. Wang, G. S. Kino, O. Solgaard, and C. H. Contag, “3-D Near-infrared fluorescence imaging using a MEMS-based miniature dual-axis confocal microscope,” IEEE J. Sel. Top. Quantum Electron. 15, 1344–1350 (2009).
[CrossRef]

H. Ra, W. Piyawattanametha, M. J. Mandella, P.-L Hsiung, J. Hardy, T. D. Wang, C. H. Contag, G. S. Kino, and O. Solgaard, “Three-dimensional in vivo imaging by a handheld dual-axes confocal microscope,” Opt. Express 16, 7224–7232(2008).
[CrossRef]

Watson, G. P.

V. A. Aksyuk, D. López, G. P. Watson, M. E. Simon, R. A. Cirelli, F. Pardo, F. Klemens, A. R. Papazian, C. Bolle, J. E. Bower, E. Ferry, W. M. Mansfield, J. Miner, T. W. Sorsch, and D. Tennant, “Mems spatial light modulator for optical maskless lithography,” Proceedings of the Solid-State Sensor and Actuator Workshop (IEEE, 2006), pp. 352–355.

Wawro, D.

R. Magnusson and D. Wawro, “Guided-mode resonance sensors for biochemical screening,” The 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2007 (IEEE, 2008), pp. 228–229.

Weiner, A. M.

Wendt, J. R.

Wook, L.

L. Wook, N. A. Hall, Z. Zhiping, and F. L. Degertekin, “Fabrication and characterization of a micromachined acoustic sensor with integrated optical readout,” IEEE J. Sel. Top. Quantum Electron. 10, 643–651 (2004).
[CrossRef]

Wu, M.

M.-C. M. Lee, D. Hah, E. K. Lau, H. Toshiyoshi, and M. Wu, “MEMS-actuated photonic crystal switches,” IEEE Photonics Technol. Lett. 18, 358–360 (2006).
[CrossRef]

Wu, M. C.

Xie, H.

Yanik, M. F.

O. Kilic, S. Kim, W. Suh, Y.-A Peter, A. S. Sudbø, M. F. Yanik, S. Fan, and O. Solgaard, “Photonic crystal slabs demonstrating strong broadband suppression of transmission in the presence of disorders,” Opt. Lett. 29, 2782–2784 (2004).
[CrossRef]

W. Suh, M. F. Yanik, O. Solgaard, and S.-H Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett. 82, 1999–2001 (2003).
[CrossRef]

Yaralioglu, G. G.

G. G. Yaralioglu, A. Atalar, S. R. Manalis, and C. F. Quate, “Analysis and design of an interdigital cantilever as a displacement sensor,” J. Appl. Phys. 83, 7405–7415 (1998).
[CrossRef]

S. R. Manalis, S. C. Minne, C. F. Quate, G. G. Yaralioglu, and A. Atalar, “Two-dimensional micromechanical bimorph arrays for detection of thermal radiation,” Appl. Phys. Lett. 70, 3311–3313 (1997).
[CrossRef]

Yun, S. H.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429–1433 (2006).

Zafiriou, K.

D. R. Day, M. A. Butler, M. C. Smith, A. McAllister, E. R. Deutsch, K. Zafiriou, and S. D. Senturia, “Diffractive-MEMS implementation of a Hadamard near-infrared spectrometer,” Transducers (IEEE, 2005), pp. 1246–1249.

Zappe, H.

D. Hohlfeld and H. Zappe, “All-dielectric tunable optical filter based on the thermo-optic effect,” J. Opt. A: Pure Appl, Opt. 6, 504–511 (2004).

Zhao, Y.

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: design, microfabrication, and performance,” J. Microelectromech. Syst. 11, 136–146 (2002).
[CrossRef]

Zhiping, Z.

L. Wook, N. A. Hall, Z. Zhiping, and F. L. Degertekin, “Fabrication and characterization of a micromachined acoustic sensor with integrated optical readout,” IEEE J. Sel. Top. Quantum Electron. 10, 643–651 (2004).
[CrossRef]

Appl. Phys. Lett. (4)

A. F. Sarioglu and O. Solgaard, “Cantilevers with integrated sensor for time-resolved force measurement in tapping-mode atomic force microscopy,” Appl. Phys. Lett. 93, 023114 (2008).
[CrossRef]

S. R. Manalis, S. C. Minne, C. F. Quate, G. G. Yaralioglu, and A. Atalar, “Two-dimensional micromechanical bimorph arrays for detection of thermal radiation,” Appl. Phys. Lett. 70, 3311–3313 (1997).
[CrossRef]

C. A. Savran, T. P. Burg, J. Fritz, and S. R. Manalis, “Microfabricated mechanical biosensor with inherently differential readout,” Appl. Phys. Lett. 83, 1659–1661 (2003).
[CrossRef]

W. Suh, M. F. Yanik, O. Solgaard, and S.-H Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett. 82, 1999–2001 (2003).
[CrossRef]

Appl. Spectrosc. (1)

IEEE J. Sel. Top. Quantum Electron. (3)

W. Piyawattanametha, H. Ra, M. J. Mandella, K. Loewke, T. D. Wang, G. S. Kino, O. Solgaard, and C. H. Contag, “3-D Near-infrared fluorescence imaging using a MEMS-based miniature dual-axis confocal microscope,” IEEE J. Sel. Top. Quantum Electron. 15, 1344–1350 (2009).
[CrossRef]

L. Wook, N. A. Hall, Z. Zhiping, and F. L. Degertekin, “Fabrication and characterization of a micromachined acoustic sensor with integrated optical readout,” IEEE J. Sel. Top. Quantum Electron. 10, 643–651 (2004).
[CrossRef]

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. Ben Bakir, H. Takashi, J.-L Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11, 395–407(2005).
[CrossRef]

IEEE Photics Technol. Lett. (1)

R. Magnusson and Y. Ding, “MEMS tunable resonant leaky mode filters,” IEEE Photics Technol. Lett. 18, 1479–1481(2006).

IEEE Photon. Technol. Lett. (1)

H. Sagberg, A. Sudbo, O. Solgaard, K. A. Hestnes Bakke, and I.-R. Johansen, “Optical microphone based on a modulated diffractive lens,” IEEE Photon. Technol. Lett. 15, 1431–1433(2003).

IEEE Photonic Technol. Lett. (1)

E. L. Goldstein, L. Eskildsen, and A. F. Elrefaie, “Performance implications of component crosstalk in transparent lightwave networks,” IEEE Photonic Technol. Lett. 6, 657–660 (1994).

IEEE Photonics Technol. Lett. (3)

P. M. Hagelin, U. Krishnamoorthy, J. P. Heritage, and O. Solgaard, “Scalable optical cross-connect switch using micromachined mirrors,” IEEE Photonics Technol. Lett. 12, 882–884(2000).
[CrossRef]

M.-C. M. Lee, D. Hah, E. K. Lau, H. Toshiyoshi, and M. Wu, “MEMS-actuated photonic crystal switches,” IEEE Photonics Technol. Lett. 18, 358–360 (2006).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16, 518–520 (2004).
[CrossRef]

J. Appl. Phys. (2)

W. Suh, O. Solgaard, and S. Fan, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys. 98, 033102(2005).
[CrossRef]

G. G. Yaralioglu, A. Atalar, S. R. Manalis, and C. F. Quate, “Analysis and design of an interdigital cantilever as a displacement sensor,” J. Appl. Phys. 83, 7405–7415 (1998).
[CrossRef]

J. Lightwave Technol. (3)

J. Microelectromech. Syst. (6)

M. J. Daneman, N. C. Tien, O. Solgaard, A. P. Pisano, K. Y. Lau, and R. S. Muller, “Linear microvibromotor for positioning optical components,” J. Microelectromech. Syst. 5, 159–165 (1996).
[CrossRef]

T. Akiyama, D. Collard, and H. Fujita, “Scratch drive actuator with mechanical links for self-assembly of three-dimensional MEMS,” J. Microelectromech. Syst. 6, 10–17 (1997).
[CrossRef]

N. C. Loh, M. A. Schmidt, and S. R. Manalis, “Sub-10cm3 interferometric accelerometer with nano-g resolution,” J. Microelectromech. Syst. 11, 182–187 (2002).
[CrossRef]

I. W. Jung, U. Krishnamoorthy, and O. Solgaard, “High fill-factor two-axis gimbaled tip-tilt-piston micromirror array actuated by self-aligned vertical comb drives,” J. Microelectromech. Syst. 15, 563–571 (2006).
[CrossRef]

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: design, microfabrication, and performance,” J. Microelectromech. Syst. 11, 136–146 (2002).
[CrossRef]

I. W. Jung, S. Kim, and O. Solgaard, “High-reflectivity broadband photonic crystal mirror MEMS scanner with low dependence on incident angle and polarization,” J. Microelectromech. Syst. 18, 924–932 (2009).
[CrossRef]

J. Micromech. Microeng. (1)

H. Lee, M. H. Miller, and T. G. Bifano, “CMOS chip planarization by chemical mechanical polishing for a vertically stacked metal MEMS integration,” J. Micromech. Microeng. 14, 108–115 (2004).
[CrossRef]

J. Opt. A: Pure Appl, Opt. (1)

D. Hohlfeld and H. Zappe, “All-dielectric tunable optical filter based on the thermo-optic effect,” J. Opt. A: Pure Appl, Opt. 6, 504–511 (2004).

J. Opt. Soc. Am. A (1)

J. Soc. Inf. Disp. (1)

J. Hagerman, “Optimum spot size for raster-scanned monochrome CRT displays,” J. Soc. Inf. Disp. 1, 367–369 (1993).
[CrossRef]

Laser Focus World (1)

A. Godil, “Diffractive MEMS technology offers a new platform for optical networks,” Laser Focus World (2002).

Mater. Res. Bull. (1)

L. J. Hornbeck, “The DMD projection display chip: a MEMS-based technology,” Mater. Res. Bull. 26, 325–327(2001).

Meas. Sci. Technol. (1)

O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “External fibre Fabry–Perot acoustic sensor based on a photonic-crystal mirror,” Meas. Sci. Technol. 18, 3049–3054 (2007).
[CrossRef]

Nat. Med. (1)

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429–1433 (2006).

Opt. Express (2)

Opt. Lett. (13)

W. Piyawattanametha, R. P. J. Barretto, T. H. Ko, B. A. Flusberg, E. D. Cocker, H. Ra, D. Lee, O. Solgaard, and M. J. Schnitzer, “Fast-scanning two-photon fluorescence imaging based on a microelectromechanical systems two-dimensional scanning mirror,” Opt. Lett. 31, 2018–2020(2006).
[CrossRef]

W. Piyawattanametha, E. D. Cocker, L. D. Burns, R. P. J. Barretto, J. C. Jung, H. Ra, O. Solgaard, and M. J. Schnitzer, “In vivo brain imaging using a portable 2.9g two-photon microscope based on a microelectromechanical systems scanning mirror,” Opt. Lett. 34, 2309–2311 (2009).
[CrossRef]

J. P. Heritage, A. M. Weiner, and R. N. Thurston, “Picosecond pulse shaping by spectral phase and amplitude manipulation,” Opt. Lett. 10, 609–611 (1985).
[CrossRef]

A. M. Weiner, J. P. Heritage, and J. A. Salehi, “Encoding and decoding of femtosecond pulses,” Opt. Lett. 13, 300–302(1988).
[CrossRef]

G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–1813 (1997).
[CrossRef]

Y. Pan, H. Xie, and G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Opt. Lett. 26, 1966–1968 (2001).
[CrossRef]

O. Solgaard, F. S. A. Sandejas, and D. M. Bloom, “A deformable grating optical modulator,” Opt. Lett. 17, 688–690 (1992).
[CrossRef]

W. Suh and S. Fan, “Mechanically switchable photonic crystal filter with either all-pass transmission or flat-top reflection characteristics,” Opt. Lett. 28, 1763–1765 (2003).
[CrossRef]

F. Raineri, C. Cojocaru, R. Raj, P. Monnier, A. Levenson, C. Seassal, X. Letartre, and P. Viktorovitch, “Tuning a two-dimensional photonic crystal resonance via optical carrier injection,” Opt. Lett. 30, 64–66 (2005).
[CrossRef]

D. W. Carr, J. P. Sullivan, and T. A. Friedmann, “Laterally deformable nanomechanical zeroth-order gratings: anomalous diffraction studied by rigorous coupled-wave analysis,” Opt. Lett. 28, 1636–1638 (2003).
[CrossRef]

B. E. N. Keeler, D. W. Carr, J. P. Sullivan, T. A. Friedmann, and J. R. Wendt, “Experimental demonstration of a laterally deformable nanoelectromechanical system grating transducer,” Opt. Lett. 29, 1182–1184 (2004).
[CrossRef]

O. Kilic, S. Kim, W. Suh, Y.-A Peter, A. S. Sudbø, M. F. Yanik, S. Fan, and O. Solgaard, “Photonic crystal slabs demonstrating strong broadband suppression of transmission in the presence of disorders,” Opt. Lett. 29, 2782–2784 (2004).
[CrossRef]

M.-C. M. Lee, and M. C. Wu, “Variable bandwidth of dynamic add-drop filters based on coupling-controlled microdisk resonators,” Opt. Lett. 31, 2444–2446 (2006).
[CrossRef]

Opt. Photon. News (1)

S. R. Kubota, “The grating light valve projector,” Opt. Photon. News 13, 50–53 (2002).

Phys. Rev. B (1)

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).

Phys. Rev. Lett. (1)

Q. Lin, J. Rosenberg, X. Jiang, Xiaoshun Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601–103604 (2009).
[CrossRef]

Proc. SPIE (3)

O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “Photonic-crystal-diaphragm-based fiber-tip hydrophone optimized for ocean acoustics,” Proc. SPIE 7004, 700405 (2008).

L. J. Hornbeck, “Deformable-mirror spatial-light modulators,” Proc. SPIE 1150, 86–102 (1990).

E. Croffie, N. Eib, N. Callan, N. Baba Ali, A. Latypov, J. Hintersteiner, T. Sandstrom, A. Bleeker, and K. Cummings, “Application of rigorous electromagnetic simulation to SLM-based maskless lithography for 65nm node,” Proc. SPIE 5256, 842–850 (2003).

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fuijimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Other (13)

E. M. Kim and D. L. Franzen, “Measurement of far-field and near-field radiation patterns from optical fibers,” Report NBS-TN-1032 (National Bureau of Standards, 1981).

U. Krishnamoorthy, Design and fabrication of micromirrors for optical application,” Ph.D. thesis (University of California, Davis, 2002).

V. A. Aksyuk, D. López, G. P. Watson, M. E. Simon, R. A. Cirelli, F. Pardo, F. Klemens, A. R. Papazian, C. Bolle, J. E. Bower, E. Ferry, W. M. Mansfield, J. Miner, T. W. Sorsch, and D. Tennant, “Mems spatial light modulator for optical maskless lithography,” Proceedings of the Solid-State Sensor and Actuator Workshop (IEEE, 2006), pp. 352–355.

E. Hecht, Optics, 2nd ed. (Addison-Wesley, 2001).

O. Solgaard, Photonic Microsystems (Springer, 2009).

K. T. Cornett, P. M. Hagelin, J. P. Heritage, O. Solgaard, and M. Everett, “Miniature variable optical delay using silicon micromachined scanning mirrors,” Conference on Lasers and Electro-Optics, 2000 (IEEE, 2000), pp. 383–384.

N. A. Hall and F. L. Degertekin, “Self-calibrating micromachined microphones with integrated optical displacement detection,” Transducers 01 (IEEE, 2001, pp. 118–121.

D. R. Day, M. A. Butler, M. C. Smith, A. McAllister, E. R. Deutsch, K. Zafiriou, and S. D. Senturia, “Diffractive-MEMS implementation of a Hadamard near-infrared spectrometer,” Transducers (IEEE, 2005), pp. 1246–1249.

I.-W. Jung, B. Park, J. Provine, R. T. Howe, and O. Solgaard, “Monolithic silicon photonic crystal slab fiber tip sensor,” IEEE/LEOS International Conference on Optical MEMS and Nanophotonics (IEEE, 2009), pp. 19–20.

I.-W. Jung, B. Park, J. Provine, R. T. Howe, and O. Solgaard, “Photonic crystal fiber tip sensor for precision temperature sensing,” LEOS Annual Meeting Conference Proceedings, 2009 (IEEE, 2009), pp. 761–762.

R. Magnusson and D. Wawro, “Guided-mode resonance sensors for biochemical screening,” The 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2007 (IEEE, 2008), pp. 228–229.

J. H. Jerman and S. R. Mallinson, “A miniature Fabry–Perot interferometer fabricated using silicon micromachining techniques,” 1988 Solid State Sensor and Actuator Workshop (IEEE, 1988), pp. 16–18.

S. Kim, S. Hadzialic, A. Sudbo, and O. Solgaard, “Single-film broadband photonic crystal micro-mirror with large angular range and low polarization dependence,” Conference on Lasers and Electro-Optics, 2007 (IEEE, 2007), paper CThP7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Energy conservation demands that each of the outputs of the symmetrical Y-coupler must suffer a fan-out loss of 1 / 2 . Similarly, the fan-in loss from each of the inputs of the symmetric Y-coupler also is 1 / 2 . This principle of fan-in loss is readily extended to the case of a symmetric N to 1 fan-in; each input must suffer a 1 / N loss.

Fig. 2
Fig. 2

Schematic of a scanning display system. The resolution of the scanning mirror is determined by the total range of scanning angle and by the diffraction of the beam coming off the mirror. (Not to scale.)

Fig. 3
Fig. 3

General case of a converging Gaussian beam that is reflected off a scanner onto a screen.

Fig. 4
Fig. 4

Planar matrix switches have mirrors at all cross points between the optical axes of the input and output fibers. The simple 2 by 2 switch has only a single mirror, while the N by N switch requires N 2 .

Fig. 5
Fig. 5

(a) Schematic of the design and function of a beam-steering fiber-optic switch. Each input fiber has a dedicated mirror that directs the beam from the fiber onto the dedicated output mirror of choice. (b) Switch geometry used to find the optimized separation between the mirrors and between the arrays.

Fig. 6
Fig. 6

Two categories of imaging micromirror arrays: In the amplitude-modulating array (a), the individual mirrors are be tilted to direct light outside the aperture of the projection system, while in the phase-modulating array (b), the mirrors are moved in a piston-like motion to create a local phase shift.

Fig. 7
Fig. 7

Projections of a phase step (solid) compared to dark Gaussian lines on a bright background for object beam radii of ω 0 M = 4 (dashed), ω 0 M = 2 (dotted), ω 0 M = 1 (dash-dotted), and ω 0 M = 0.5 (dash-double-dotted).

Fig. 8
Fig. 8

Graphs show projections of π phase modulated lines with ω 0 M = 4 (dashed), ω 0 M = 2 (dotted), ω 0 M = 1 (dash-dotted), and ω 0 M = 0.5 (dash-double-dotted). The projection of a π phase step (solid) is shown for comparison. The beam radius of the PSF is set to unity ( ω PSF = 1 ).

Fig. 9
Fig. 9

(a) Schematic of a continuous adaptive-optics mirror that can be deformed into the desired shape by electrostatic actuators. The continuous surface avoids phase singularities. (b) Schematic of one pixel of a tip-tilt-piston micromirror adaptive-optics array [22]. The two axes of rotation allows the mirror to create a piece-wise linear approximation to the desired surface relief.

Fig. 10
Fig. 10

Cross sections showing the reflective and diffractive states of a grating light modulator.

Fig. 11
Fig. 11

In the Weiner-Heritage optical synthesizer the incident light is dispersed onto a spatial light modulator (SLM) that modulates the individual spectral components of the input.

Fig. 12
Fig. 12

Pressure sensor based on a grating interferometer that allows the position of the diaphragm to be measured with interferometric precision.

Fig. 13
Fig. 13

Incident light excites both plane waves and guided resonances. In high-reflectivity PCs, these modes interfere destructively in transmission over a certain wavelength range determined by the coupling between the incident plane wave and the guided resonance.

Equations (54)

Equations on this page are rendered with MathJax. Learn more.

Input 1 ( E in 1 × H in 1 * ) d A + Input 2 ( E in 2 × H in 2 * ) d A ,
Output ( ( a E in 1 + b E in 2 ) × ( a H in 1 + b H in 2 ) * ) d A = Output [ ( a E in 1 × a H in 1 * ) + ( b E in 2 × b H in 2 * ) + ( a E in 1 × b H in 2 * ) + ( b E in 2 × a H in 1 * ) ] d A ,
a = b = 0.5 .
A in ( E 1 × H 2 * ) d A = A out ( E 1 × H 2 * ) d A ,
A in ( E 1 E 2 * ) d A = A out ( E 1 E 2 * ) d A .
N = Δ θ tilt θ diff + 1 ,
θ = lim z k · ω ( z ) z = k · λ π · ω 0 ,
e r FWHM 2 2 ω 2 = 1 2 r FWHM = ω 0.5 ln 2 0.589 · ω ,
θ diff = lim z 2 r FWHM z = lim z 1.18 · ω ( z ) z = 1.18 λ π · ω 0 ,
N Δ θ tilt · π 1.18 · ω 0 λ + 1 Δ θ tilt · 2.67 · ω 0 λ + 1.
N 2.0 · ω 0 λ + 1.
N = Δ θ tilt k · λ / π · ω 0 + 1 = Δ θ tilt · π · ω 0 k · λ + 1.
N = Δ θ tilt · z s k · ω ( z s ) + 1 ,
ω ( z s ) = ω 0 1 + ( λ · ( z s z 0 ) π · ω 0 2 ) 2 .
d N d z s = 0 z s = π 2 · ω 0 4 z 0 λ 2 + z 0
N = Δ θ tilt · π · ω ( z 0 ) k · λ + 1.
N s 15 ,
s = N · k m ω l = N · k m ω 0 [ 1 + ( λ s / π ω 0 2 ) 2 ] 1 / 2 ,
N = s k m ω 0 [ 1 + ( λ s / π ω 0 2 ) 2 ] 1 / 2 ,
d N d ω 0 = 0 s = π ω 0 2 λ ,
N max = s k m · ω l = 1 k m π ω 0 2 λ = 1 k m π s 2 λ .
s N 2 · 25 μm ,
ω 0 N · 3.5 μm .
tan α = d ( M 1 ) cos β p + d ( M 1 ) sin β ,
M 1 + p α d cos β .
d cos β = k b · ω = k b · ω m [ 1 + ( λ p 2 π ω m 2 ) 2 ] 0.5 ,
M = 1 + p · α k b · ω m [ 1 + ( λ p 2 π ω m 2 ) 2 ] 0.5 ,
d M d ω 0 = 0 p 2 = π ω m 2 λ ,
d cos β = k b · ω ,
M = 1 + π · α · d cos β λ · k b 2 .
s M 2 k b 2 λ π · α · cos β M 2 · 3.5 2 · 1.55 μ m π · 0.4 · 0.8 = M 2 · 19 μ m .
s N k b 2 λ π · α cos β N 3.5 2 · 1.55 μm π · 0.4 · 0.8 N · 17 μm .
x i , y i = M x o , M y o ,
E o ( x o , y o ) = x , y E o ( x , y ) · δ ( x o x , y o y ) d x d y ,
E i ( x i , y i ) = M x , y E o ( x , y ) · PSF ( x i M x , y i M y ) d x d y .
E ( x ) = E 0 e x 2 c G 2 = E 0 e ln 2 2 · x 2 1.62 2 ,
I ( x ) = I 0 ( e x 2 c G 2 ) 2 = I 0 e ln 2 x 2 1.62 2 ,
E ( x ) = E 0 e ln 2 2 · ( π · r λ N ) 2 1.62 2 = E 0 e r 2 ω PSF 2 ,
I ( x ) 2 = I 0 e ln 2 ( π · r λ N ) 2 1.62 2 = I 0 e 2 r 2 ω PSF 2 ,
E i ( x i , y i ) = M π · ω PSF 2 x , y e x 2 + y 2 ω o 2 · e ( x i M x ) 2 + ( y i M y ) 2 ω PSF 2 d x d y .
E i ( x i , y i ) = 1 M e x i 2 + y i 2 ω PSF 2 + ω o 2 M 2 · ω o 2 M 2 ω PSF 2 + ω o 2 M 2 .
E i ( x i , y i ) = M π · ω PSF 2 x , y ( 1 e x 2 + y 2 ω o 2 ) · e ( x i M x ) 2 + ( y i M y ) 2 ω PSF 2 d x d y ,
E i ( x i , y i ) = 1 M ( 1 e x i 2 + y i 2 ω PSF 2 + ω o 2 M 2 · ω o 2 M 2 ω PSF 2 + ω o 2 M 2 ) .
E ( x ) = E 0 e x 2 ω PSF 2 ,
E i ( x i , y i ) = 1 M · e x i 2 ω PSF 2 + ω o 2 M 2 · ω o M ω PSF 2 + ω o 2 M 2 .
E i ( x i , y i ) = 1 M ( 1 e x i 2 ω PSF 2 + ω o 2 M 2 · ω o M ω PSF 2 + ω o 2 M 2 ) .
E i ( x i , y i ) = M π · ω PSF 2 { 0 e j θ 1 e ( x i M x ) 2 + ( y i M y ) 2 ω PSF 2 d x d y + 0 e j θ 2 e ( x i M x ) 2 + ( y i M y ) 2 ω PSF 2 d x d y } .
E i ( x i , y i ) = 1 2 M · { [ e j θ 1 + e j θ 2 ] + [ e j θ 2 e j θ 1 ] Erf ( x i ω PSF ) } .
E i ( x i , y i ) = 1 M · 2 π 0 x i ω PSF e u 2 d u = 1 M · Erf ( x i ω PSF ) ,
I i ( x i , y i ) = ( 1 M · Erf ( x i ω PSF ) ) 2 ,
E i ( x i , y i ) = 1 2 M [ ( e j θ 1 + e j θ 3 ) + ( e j θ 2 e j θ 1 ) Erf ( x i + M w / 2 ω PSF ) + ( e j θ 3 e j θ 2 ) Erf ( x i M w / 2 ω PSF ) ] .
E i ( x i , y i ) = 1 M [ 1 Erf ( x i + M w / 2 ω PSF ) + Erf ( x i M w / 2 ω PSF ) ] ,
I i ( x i , y i ) = 1 M 2 [ 1 Erf ( x i + M w / 2 ω PSF ) + Erf ( x i M w / 2 ω PSF ) ] 2 .
P reflected = R · P incident · cos 2 2 π · Δ L 2 λ ,

Metrics