Abstract

The real-time display of full-range, 2048  axial pixel×1024  lateral pixel, Fourier-domain optical- coherence tomography (FD-OCT) images is demonstrated. The required speed was achieved by using dual graphic processing units (GPUs) with many stream processors to realize highly parallel processing. We used a zero-filling technique, including a forward Fourier transform, a zero padding to increase the axial data-array size to 8192, an inverse-Fourier transform back to the spectral domain, a linear interpolation from wavelength to wavenumber, a lateral Hilbert transform to obtain the complex spectrum, a Fourier transform to obtain the axial profiles, and a log scaling. The data-transfer time of the frame grabber was 15.73ms, and the processing time, which includes the data transfer between the GPU memory and the host computer, was 14.75ms, for a total time shorter than the 36.70ms frame-interval time using a line-scan CCD camera operated at 27.9kHz. That is, our OCT system achieved a processed-image display rate of 27.23 frames/s.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
    [CrossRef]
  3. G. Häusler and M. W. Lindner, ““Coherence Radar” and “Spectral Radar”—New Tools for Dermatological Diagnosis,” J Biomed. Opt. 3, 21–31 (1998).
    [CrossRef]
  4. S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11, 2953–2963 (2003).
    [CrossRef] [PubMed]
  5. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29, 480–482 (2004).
    [CrossRef] [PubMed]
  6. R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
    [CrossRef] [PubMed]
  7. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31, 2975–2977 (2006).
    [CrossRef] [PubMed]
  8. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed Spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16, 15149–15169 (2008).
    [CrossRef] [PubMed]
  9. C. Dorrer, N. Belabas, J.-P. Likforman, and M. Joffre, “Spectral resolution and sampling issues in Fourier transform spectral interferometry,” J. Opt. Soc. Am. B 17, 1795–1802 (2000).
    [CrossRef]
  10. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. Bouma, and G. Tearney, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367–376 (2004).
    [CrossRef] [PubMed]
  11. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13, 10652–10664 (2005).
    [CrossRef] [PubMed]
  12. Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, “Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography,” Appl. Opt. 45, 1861–1865 (2006).
    [CrossRef] [PubMed]
  13. R. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett. 90, 054103 (2007).
    [CrossRef]
  14. B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express 15, 13375–13387 (2007).
    [CrossRef] [PubMed]
  15. R. A. Leitgeb, R. Michaely, T. Lasser, and S. C.Sekhar, “Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning,” Opt. Lett. 32, 3453–3455 (2007).
    [CrossRef] [PubMed]
  16. L. An and R. K. Wang, “Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography,” Opt. Lett. 32, 3423–3425(2007).
    [CrossRef] [PubMed]
  17. S. Vergnole, G. Lamouche, and M. L. Dufour, “Artifact removal in Fourier-domain optical coherence tomography with a piezoelectric fiber stretcher,” Opt. Lett. 33, 732–734 (2008).
    [CrossRef] [PubMed]
  18. S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1 μm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye,” Opt. Express 16, 8406–8420 (2008).
    [CrossRef] [PubMed]
  19. Y. K. Tao, A. M. Davis, and J. A. Izatt, “Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform,” Opt. Express 16, 12350–12361 (2008).
    [CrossRef] [PubMed]
  20. Y. K. Tao, K. M. Kennedy, and J. A. Izatt, “Velocity-resolved 3D retinal microvessel imaging using single-pass flow imaging spectral domain optical coherence tomography,” Opt. Express 17, 4177–4188 (2009).
    [CrossRef] [PubMed]
  21. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three-dimensional optical angiography,” Opt. Express 15, 4083–4097 (2007).
    [CrossRef] [PubMed]
  22. L. An and R. K. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16, 11438–11452(2008).
    [CrossRef] [PubMed]
  23. G. Liu, J. Zhang, L. Yu, T. Xie, and Z. Chen, “Real-time polarization-sensitive optical coherence tomography data processing with parallel computing,” Appl. Opt. 48, 6365–6370 (2009).
    [CrossRef] [PubMed]
  24. S. Yan, D. Piao, Y. Chen, and Q. Zhu, “Digital signal processor-based real-time optical Doppler tomography system,” J Biomed. Opt. 9, 454–463 (2004).
    [CrossRef] [PubMed]
  25. J. Su, J. Zhang, L. Yu, H. G. Colt, M. Brenner, and Z. Chen, “Real-time swept source optical coherence tomography imaging of the human airway using a microelectromechanical system endoscope and digital signal processor,” J. Biomed. Opt. 13, 030506 (2008).
    [CrossRef] [PubMed]
  26. T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum. 79, 114301 (2008).
    [CrossRef] [PubMed]
  27. N. Masuda, T. Ito, T. Tanaka, A. Shiraki, and T. Sugie, “Computer generated holography using a graphics processing unit,” Opt. Express 14, 587–592 (2006).
    [CrossRef] [PubMed]
  28. L. Ahrenberg, P. Benzie, M. Magnor, and J. Watson, “Computer generated holography using parallel commodity graphics hardware,” Opt. Express 14, 7636–7641 (2006).
    [CrossRef] [PubMed]
  29. T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, “Real-time digital holographic microscopy using the graphic processing unit,” Opt. Express 16, 11776–11781(2008).
    [CrossRef] [PubMed]
  30. Y. Watanabe and T. Itagaki, “Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit,” J Biomed. Opt. 14, 060506(2009).
    [CrossRef]
  31. K. Zhang and J. U. Kang, “Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system,” Opt. Express 18, 11772–11784 (2010).
    [CrossRef] [PubMed]
  32. S. Van der Jeught, A. Bradu, and A. Gh. Podoleanu, “Real-time resampling in Fourier domain optical coherence tomography using a graphics processing unit,” J. Biomed. Opt. 15, 030511 (2010).
    [CrossRef] [PubMed]
  33. NVIDIA CUDA Zone, http://www.nvidia.com/object/cuda_home.htm.
  34. OpenMPArchitecture Review Board, “The OpenMPAPI specification for parallel programming,” http://www.openmp.org/.

2010 (2)

K. Zhang and J. U. Kang, “Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system,” Opt. Express 18, 11772–11784 (2010).
[CrossRef] [PubMed]

S. Van der Jeught, A. Bradu, and A. Gh. Podoleanu, “Real-time resampling in Fourier domain optical coherence tomography using a graphics processing unit,” J. Biomed. Opt. 15, 030511 (2010).
[CrossRef] [PubMed]

2009 (3)

2008 (8)

S. Vergnole, G. Lamouche, and M. L. Dufour, “Artifact removal in Fourier-domain optical coherence tomography with a piezoelectric fiber stretcher,” Opt. Lett. 33, 732–734 (2008).
[CrossRef] [PubMed]

S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1 μm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye,” Opt. Express 16, 8406–8420 (2008).
[CrossRef] [PubMed]

Y. K. Tao, A. M. Davis, and J. A. Izatt, “Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform,” Opt. Express 16, 12350–12361 (2008).
[CrossRef] [PubMed]

J. Su, J. Zhang, L. Yu, H. G. Colt, M. Brenner, and Z. Chen, “Real-time swept source optical coherence tomography imaging of the human airway using a microelectromechanical system endoscope and digital signal processor,” J. Biomed. Opt. 13, 030506 (2008).
[CrossRef] [PubMed]

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum. 79, 114301 (2008).
[CrossRef] [PubMed]

L. An and R. K. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16, 11438–11452(2008).
[CrossRef] [PubMed]

T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, “Real-time digital holographic microscopy using the graphic processing unit,” Opt. Express 16, 11776–11781(2008).
[CrossRef] [PubMed]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed Spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16, 15149–15169 (2008).
[CrossRef] [PubMed]

2007 (5)

2006 (4)

2005 (1)

2004 (3)

2003 (2)

2000 (1)

1998 (1)

G. Häusler and M. W. Lindner, ““Coherence Radar” and “Spectral Radar”—New Tools for Dermatological Diagnosis,” J Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

1995 (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Adler, D. C.

Ahrenberg, L.

Akiba, M.

An, L.

Aoki, G.

Baumann, B.

Belabas, N.

Benzie, P.

Bouma, B.

Bouma, B. E.

Bradu, A.

S. Van der Jeught, A. Bradu, and A. Gh. Podoleanu, “Real-time resampling in Fourier domain optical coherence tomography using a graphics processing unit,” J. Biomed. Opt. 15, 030511 (2010).
[CrossRef] [PubMed]

Brenner, M.

J. Su, J. Zhang, L. Yu, H. G. Colt, M. Brenner, and Z. Chen, “Real-time swept source optical coherence tomography imaging of the human airway using a microelectromechanical system endoscope and digital signal processor,” J. Biomed. Opt. 13, 030506 (2008).
[CrossRef] [PubMed]

Cable, A.

Cense, B.

Chan, K.-P.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, T. C.

Chen, Y.

Chen, Z.

G. Liu, J. Zhang, L. Yu, T. Xie, and Z. Chen, “Real-time polarization-sensitive optical coherence tomography data processing with parallel computing,” Appl. Opt. 48, 6365–6370 (2009).
[CrossRef] [PubMed]

J. Su, J. Zhang, L. Yu, H. G. Colt, M. Brenner, and Z. Chen, “Real-time swept source optical coherence tomography imaging of the human airway using a microelectromechanical system endoscope and digital signal processor,” J. Biomed. Opt. 13, 030506 (2008).
[CrossRef] [PubMed]

Chong, C.

Colt, H. G.

J. Su, J. Zhang, L. Yu, H. G. Colt, M. Brenner, and Z. Chen, “Real-time swept source optical coherence tomography imaging of the human airway using a microelectromechanical system endoscope and digital signal processor,” J. Biomed. Opt. 13, 030506 (2008).
[CrossRef] [PubMed]

Davis, A. M.

de Boer, J.

de Boer, J. F.

Dorrer, C.

Dufour, M. L.

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Endo, T.

Fabritius, T.

Fercher, A. F.

R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Ferguson, R. D.

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum. 79, 114301 (2008).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

Gorczynska, I.

Götzinger, E.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Gruber, A.

Hammer, D. X.

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum. 79, 114301 (2008).
[CrossRef] [PubMed]

Hanson, S. R.

Häusler, G.

G. Häusler and M. W. Lindner, ““Coherence Radar” and “Spectral Radar”—New Tools for Dermatological Diagnosis,” J Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hitzenberger, C. K.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Huber, R.

Hurst, S.

Iftimia, N.

Iftimia, N. V.

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum. 79, 114301 (2008).
[CrossRef] [PubMed]

Itagaki, T.

Y. Watanabe and T. Itagaki, “Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit,” J Biomed. Opt. 14, 060506(2009).
[CrossRef]

Ito, T.

Itoh, M.

Izatt, J. A.

Jacques, S. L.

Jiang, J.

Joffre, M.

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Kang, J. U.

Kennedy, K. M.

Lamouche, G.

Lasser, T.

Leitgeb, R. A.

Likforman, J.-P.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Lindner, M. W.

G. Häusler and M. W. Lindner, ““Coherence Radar” and “Spectral Radar”—New Tools for Dermatological Diagnosis,” J Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

Liu, G.

Ma, Z.

Madjarova, V. D.

Magnor, M.

Makita, S.

Masuda, N.

Michaely, R.

Miura, J.

Morosawa, A.

Nassif, N.

Nassif, N. A.

Park, B. H.

Piao, D.

S. Yan, D. Piao, Y. Chen, and Q. Zhu, “Digital signal processor-based real-time optical Doppler tomography system,” J Biomed. Opt. 9, 454–463 (2004).
[CrossRef] [PubMed]

Pierce, M. C.

Pircher, M.

Podoleanu, A. Gh.

S. Van der Jeught, A. Bradu, and A. Gh. Podoleanu, “Real-time resampling in Fourier domain optical coherence tomography using a graphics processing unit,” J. Biomed. Opt. 15, 030511 (2010).
[CrossRef] [PubMed]

Potsaid, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Sakai, T.

Sato, Y.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Sekhar, S. C.

Shimobaba, T.

Shiraki, A.

Srinivasan, V. J.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Su, J.

J. Su, J. Zhang, L. Yu, H. G. Colt, M. Brenner, and Z. Chen, “Real-time swept source optical coherence tomography imaging of the human airway using a microelectromechanical system endoscope and digital signal processor,” J. Biomed. Opt. 13, 030506 (2008).
[CrossRef] [PubMed]

Sugie, T.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Takenouchi, M.

Tanaka, T.

Tao, Y. K.

Tearney, G.

Tearney, G. J.

Ustun, T. E.

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum. 79, 114301 (2008).
[CrossRef] [PubMed]

Van der Jeught, S.

S. Van der Jeught, A. Bradu, and A. Gh. Podoleanu, “Real-time resampling in Fourier domain optical coherence tomography using a graphics processing unit,” J. Biomed. Opt. 15, 030511 (2010).
[CrossRef] [PubMed]

Vergnole, S.

Wang, R. K.

Wang, R. K. K.

Watanabe, Y.

Y. Watanabe and T. Itagaki, “Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit,” J Biomed. Opt. 14, 060506(2009).
[CrossRef]

Watson, J.

Xie, T.

Yan, S.

S. Yan, D. Piao, Y. Chen, and Q. Zhu, “Digital signal processor-based real-time optical Doppler tomography system,” J Biomed. Opt. 9, 454–463 (2004).
[CrossRef] [PubMed]

Yasuno, Y.

Yatagai, T.

Yu, L.

G. Liu, J. Zhang, L. Yu, T. Xie, and Z. Chen, “Real-time polarization-sensitive optical coherence tomography data processing with parallel computing,” Appl. Opt. 48, 6365–6370 (2009).
[CrossRef] [PubMed]

J. Su, J. Zhang, L. Yu, H. G. Colt, M. Brenner, and Z. Chen, “Real-time swept source optical coherence tomography imaging of the human airway using a microelectromechanical system endoscope and digital signal processor,” J. Biomed. Opt. 13, 030506 (2008).
[CrossRef] [PubMed]

Yun, S.

Yun, S. H.

Zhang, J.

G. Liu, J. Zhang, L. Yu, T. Xie, and Z. Chen, “Real-time polarization-sensitive optical coherence tomography data processing with parallel computing,” Appl. Opt. 48, 6365–6370 (2009).
[CrossRef] [PubMed]

J. Su, J. Zhang, L. Yu, H. G. Colt, M. Brenner, and Z. Chen, “Real-time swept source optical coherence tomography imaging of the human airway using a microelectromechanical system endoscope and digital signal processor,” J. Biomed. Opt. 13, 030506 (2008).
[CrossRef] [PubMed]

Zhang, K.

Zhu, Q.

S. Yan, D. Piao, Y. Chen, and Q. Zhu, “Digital signal processor-based real-time optical Doppler tomography system,” J Biomed. Opt. 9, 454–463 (2004).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

R. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett. 90, 054103 (2007).
[CrossRef]

J Biomed. Opt. (3)

G. Häusler and M. W. Lindner, ““Coherence Radar” and “Spectral Radar”—New Tools for Dermatological Diagnosis,” J Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

S. Yan, D. Piao, Y. Chen, and Q. Zhu, “Digital signal processor-based real-time optical Doppler tomography system,” J Biomed. Opt. 9, 454–463 (2004).
[CrossRef] [PubMed]

Y. Watanabe and T. Itagaki, “Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit,” J Biomed. Opt. 14, 060506(2009).
[CrossRef]

J. Biomed. Opt. (2)

J. Su, J. Zhang, L. Yu, H. G. Colt, M. Brenner, and Z. Chen, “Real-time swept source optical coherence tomography imaging of the human airway using a microelectromechanical system endoscope and digital signal processor,” J. Biomed. Opt. 13, 030506 (2008).
[CrossRef] [PubMed]

S. Van der Jeught, A. Bradu, and A. Gh. Podoleanu, “Real-time resampling in Fourier domain optical coherence tomography using a graphics processing unit,” J. Biomed. Opt. 15, 030511 (2010).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Opt. Express (15)

S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11, 2953–2963 (2003).
[CrossRef] [PubMed]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. Bouma, and G. Tearney, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367–376 (2004).
[CrossRef] [PubMed]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13, 10652–10664 (2005).
[CrossRef] [PubMed]

R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[CrossRef] [PubMed]

B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express 15, 13375–13387 (2007).
[CrossRef] [PubMed]

S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1 μm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye,” Opt. Express 16, 8406–8420 (2008).
[CrossRef] [PubMed]

Y. K. Tao, A. M. Davis, and J. A. Izatt, “Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform,” Opt. Express 16, 12350–12361 (2008).
[CrossRef] [PubMed]

Y. K. Tao, K. M. Kennedy, and J. A. Izatt, “Velocity-resolved 3D retinal microvessel imaging using single-pass flow imaging spectral domain optical coherence tomography,” Opt. Express 17, 4177–4188 (2009).
[CrossRef] [PubMed]

R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three-dimensional optical angiography,” Opt. Express 15, 4083–4097 (2007).
[CrossRef] [PubMed]

L. An and R. K. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16, 11438–11452(2008).
[CrossRef] [PubMed]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed Spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16, 15149–15169 (2008).
[CrossRef] [PubMed]

K. Zhang and J. U. Kang, “Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system,” Opt. Express 18, 11772–11784 (2010).
[CrossRef] [PubMed]

N. Masuda, T. Ito, T. Tanaka, A. Shiraki, and T. Sugie, “Computer generated holography using a graphics processing unit,” Opt. Express 14, 587–592 (2006).
[CrossRef] [PubMed]

L. Ahrenberg, P. Benzie, M. Magnor, and J. Watson, “Computer generated holography using parallel commodity graphics hardware,” Opt. Express 14, 7636–7641 (2006).
[CrossRef] [PubMed]

T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, “Real-time digital holographic microscopy using the graphic processing unit,” Opt. Express 16, 11776–11781(2008).
[CrossRef] [PubMed]

Opt. Lett. (5)

Rev. Sci. Instrum. (1)

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum. 79, 114301 (2008).
[CrossRef] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Other (2)

NVIDIA CUDA Zone, http://www.nvidia.com/object/cuda_home.htm.

OpenMPArchitecture Review Board, “The OpenMPAPI specification for parallel programming,” http://www.openmp.org/.

Supplementary Material (1)

» Media 1: AVI (5165 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of spectral-domain optical- coherence tomography: SLD, superluminescent diode; L, achromatic lens; ND filter, neutral density filter.

Fig. 2
Fig. 2

Heaviside step function and modified step function.

Fig. 3
Fig. 3

Flow chart of signal processing of OCT image using a GPU.

Fig. 4
Fig. 4

Data flow of dual GPUs processing.

Fig. 5
Fig. 5

Processing times using single GPU and dual GPUs. A: full-range OCT with zero-filling interpolation. B: half-range OCT with zero-filling interpolation. C: full-range OCT with simple linear interpolation. D: half-range OCT with simple linear interpolation.

Fig. 6
Fig. 6

SNR fall off (a) zero-filling interpolation (b) simple linear interpolation.

Fig. 7
Fig. 7

(a) Full-range OCT image, (b) standard OCT image of a human-nail-fold region. Imaging range: 5.0 × 6.78 mm 2 ( lateral × axial ).

Fig. 8
Fig. 8

(Media 1) Captured graphic user interface in measuring a finger pad.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

S ( λ , x ) = I S + I R + 2 ( I S I R ) 1 / 2 cos [ 2 π / λ · z + ϕ ( x ) ] d z ,
S k [ n ] = ( 1 - X 2 [ n ] ) S λ [ X 1 [ n ] ] + X 2 [ n ] S λ [ X 1 [ n ] + 1 ] ,
S A ( k , x ) = S k ( k , x ) - i S H ( k , x ) .
FT x u [ S A ( k , x ) ] = H ( u ) FT x u [ S ( k , x ) ] ,
H ( u ) = { 2 u > 0 0 u 0 .
OCT ( z , x ) = 10 log { FT k z [ S A ( k , x ) ] } .

Metrics