Abstract

Precise measurement of the refractive index of chemical vapor deposition (CVD) ZnSe with the Fourier-transform interference refractometry method from 0.9 to 21.7μm (from 11,000 to 460cm1) with 0.1cm1 resolution is described. For this measurement, structurally homogeneous ZnSe plates were grown on a substrate with an optimized temperature increase. Using three ZnSe plates of different thicknesses, we managed to raise the measurement accuracy of the refractive index up to 2×105 (being nearly 1 order of magnitude better than the available data) in the near IR and most of the middle IR wavelength range from 0.9 to 12.5μm (wavenumber range of 11,000800cm1) and up to 14×104 in the 12.521.7μm (800460cm1) region. The experimental results are approximated by a generalized Cauchy dispersion function of the 8th power. Spectral wavelength dependencies of the first- and second-order derivatives of the refractive index are calculated, and the zero material dispersion wavelength is found to be λ0=4.84μm.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C. Harris, “Development of hot-pressed and chemical-vapor-deposited zinc sulfide and zinc selenide in the United States for optical windows,” Proc. SPIE 6545, 654502 (2007).
    [CrossRef]
  2. E. M. Gavrishchuk, “Polycrystalline zinc selenide for IR optical applications,” Inorg. Mater. 39, 883–899 (2003).
    [CrossRef]
  3. A. Feldman, D. Horowitz, R. M. Waxler, and M. J. Dodge, “Optical characterization final technical report, February 1, 1978–September 30, 1978,” Natl. Bur. Stand. (U.S.) Tech. Note 993, 63 (1979).
  4. E. M. Gavrishchuk, V. B. Ikonnikov, L. A. Kuznetsov, and S. M. Mazavin, “Temperature effect on the structure of ZnSe layers grown by chemical vapor deposition,” Inorg. Mater. 42, 1302–1307 (2006).
    [CrossRef]
  5. E. M. Gavrishchuk, V. B. Ikonnikov, L. A. Kuznetsov, and S. M. Mazavin, “Growth of structurally homogeneous CVD-ZnSe plates,” Inorg. Mater. 46, 255–258 (2010).
    [CrossRef]
  6. H. H. Li, “Refractive index of ZnS, ZnSe, and ZnTe and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 13, 103–150 (1984).
    [CrossRef]
  7. A. V. Vasil’ev, V. V. Voitsekhovskii, and V. G. Plotnichenko, “Measurement of spectral dependence of refractive index of solid state materials in high transparency region,” High-Purity Subst. 3, 39–49 (1991).
  8. V. G. Plotnichenko, V. O. Nazaryants, E. B. Kryukova, Yu. N. Pyrkov, E. M. Dianov, B. I. Galagan, and S. E. Sverchkov, “Precise measurement of refractive index spectral dependence of optical materials for laser, fiber, and integrated optics,” Inorg. Mater. 45, 322–328 (2009).
    [CrossRef]
  9. V. G. Plotnichenko, V. O. Nazaryants, E. B. Kryukova, and E. M. Dianov, “Spectral dependence of the refractive index of single-crystalline GaAs for optical applications,” J. Phys. D 43, 105402 (2010).
    [CrossRef]
  10. R. Gupta and S. G. Kaplan, “High accuracy ultraviolet index of refraction measurements using a Fourier transform spectrometer,” J. Res. Natl. Inst. Stand. Technol. 108, 429–437 (2003).
  11. D. Y. Smith, M. Inokuti, and W. Karstens, “A generalized Cauchy dispersion formula and the refractivity of elemental semiconductors,” J. Phys. Condens. Matter 13, 3883–3894 (2001).
    [CrossRef]
  12. A. R. Hilton and C. E. Jones, “The thermal change in the nondispersive infrared refractive index of optical materials,” Appl. Opt. 6, 1513–1517 (1967).
    [CrossRef] [PubMed]
  13. “Kodak Irtran Infrared Optical Materials,” (Kodak Publications, Rochester, New York, USA, 1971), U-72.

2010

E. M. Gavrishchuk, V. B. Ikonnikov, L. A. Kuznetsov, and S. M. Mazavin, “Growth of structurally homogeneous CVD-ZnSe plates,” Inorg. Mater. 46, 255–258 (2010).
[CrossRef]

V. G. Plotnichenko, V. O. Nazaryants, E. B. Kryukova, and E. M. Dianov, “Spectral dependence of the refractive index of single-crystalline GaAs for optical applications,” J. Phys. D 43, 105402 (2010).
[CrossRef]

2009

V. G. Plotnichenko, V. O. Nazaryants, E. B. Kryukova, Yu. N. Pyrkov, E. M. Dianov, B. I. Galagan, and S. E. Sverchkov, “Precise measurement of refractive index spectral dependence of optical materials for laser, fiber, and integrated optics,” Inorg. Mater. 45, 322–328 (2009).
[CrossRef]

2007

D. C. Harris, “Development of hot-pressed and chemical-vapor-deposited zinc sulfide and zinc selenide in the United States for optical windows,” Proc. SPIE 6545, 654502 (2007).
[CrossRef]

2006

E. M. Gavrishchuk, V. B. Ikonnikov, L. A. Kuznetsov, and S. M. Mazavin, “Temperature effect on the structure of ZnSe layers grown by chemical vapor deposition,” Inorg. Mater. 42, 1302–1307 (2006).
[CrossRef]

2003

E. M. Gavrishchuk, “Polycrystalline zinc selenide for IR optical applications,” Inorg. Mater. 39, 883–899 (2003).
[CrossRef]

R. Gupta and S. G. Kaplan, “High accuracy ultraviolet index of refraction measurements using a Fourier transform spectrometer,” J. Res. Natl. Inst. Stand. Technol. 108, 429–437 (2003).

2001

D. Y. Smith, M. Inokuti, and W. Karstens, “A generalized Cauchy dispersion formula and the refractivity of elemental semiconductors,” J. Phys. Condens. Matter 13, 3883–3894 (2001).
[CrossRef]

1991

A. V. Vasil’ev, V. V. Voitsekhovskii, and V. G. Plotnichenko, “Measurement of spectral dependence of refractive index of solid state materials in high transparency region,” High-Purity Subst. 3, 39–49 (1991).

1984

H. H. Li, “Refractive index of ZnS, ZnSe, and ZnTe and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 13, 103–150 (1984).
[CrossRef]

1979

A. Feldman, D. Horowitz, R. M. Waxler, and M. J. Dodge, “Optical characterization final technical report, February 1, 1978–September 30, 1978,” Natl. Bur. Stand. (U.S.) Tech. Note 993, 63 (1979).

1971

“Kodak Irtran Infrared Optical Materials,” (Kodak Publications, Rochester, New York, USA, 1971), U-72.

1967

Dianov, E. M.

V. G. Plotnichenko, V. O. Nazaryants, E. B. Kryukova, and E. M. Dianov, “Spectral dependence of the refractive index of single-crystalline GaAs for optical applications,” J. Phys. D 43, 105402 (2010).
[CrossRef]

V. G. Plotnichenko, V. O. Nazaryants, E. B. Kryukova, Yu. N. Pyrkov, E. M. Dianov, B. I. Galagan, and S. E. Sverchkov, “Precise measurement of refractive index spectral dependence of optical materials for laser, fiber, and integrated optics,” Inorg. Mater. 45, 322–328 (2009).
[CrossRef]

Dodge, M. J.

A. Feldman, D. Horowitz, R. M. Waxler, and M. J. Dodge, “Optical characterization final technical report, February 1, 1978–September 30, 1978,” Natl. Bur. Stand. (U.S.) Tech. Note 993, 63 (1979).

Feldman, A.

A. Feldman, D. Horowitz, R. M. Waxler, and M. J. Dodge, “Optical characterization final technical report, February 1, 1978–September 30, 1978,” Natl. Bur. Stand. (U.S.) Tech. Note 993, 63 (1979).

Galagan, B. I.

V. G. Plotnichenko, V. O. Nazaryants, E. B. Kryukova, Yu. N. Pyrkov, E. M. Dianov, B. I. Galagan, and S. E. Sverchkov, “Precise measurement of refractive index spectral dependence of optical materials for laser, fiber, and integrated optics,” Inorg. Mater. 45, 322–328 (2009).
[CrossRef]

Gavrishchuk, E. M.

E. M. Gavrishchuk, V. B. Ikonnikov, L. A. Kuznetsov, and S. M. Mazavin, “Growth of structurally homogeneous CVD-ZnSe plates,” Inorg. Mater. 46, 255–258 (2010).
[CrossRef]

E. M. Gavrishchuk, V. B. Ikonnikov, L. A. Kuznetsov, and S. M. Mazavin, “Temperature effect on the structure of ZnSe layers grown by chemical vapor deposition,” Inorg. Mater. 42, 1302–1307 (2006).
[CrossRef]

E. M. Gavrishchuk, “Polycrystalline zinc selenide for IR optical applications,” Inorg. Mater. 39, 883–899 (2003).
[CrossRef]

Gupta, R.

R. Gupta and S. G. Kaplan, “High accuracy ultraviolet index of refraction measurements using a Fourier transform spectrometer,” J. Res. Natl. Inst. Stand. Technol. 108, 429–437 (2003).

Harris, D. C.

D. C. Harris, “Development of hot-pressed and chemical-vapor-deposited zinc sulfide and zinc selenide in the United States for optical windows,” Proc. SPIE 6545, 654502 (2007).
[CrossRef]

Hilton, A. R.

Horowitz, D.

A. Feldman, D. Horowitz, R. M. Waxler, and M. J. Dodge, “Optical characterization final technical report, February 1, 1978–September 30, 1978,” Natl. Bur. Stand. (U.S.) Tech. Note 993, 63 (1979).

Ikonnikov, V. B.

E. M. Gavrishchuk, V. B. Ikonnikov, L. A. Kuznetsov, and S. M. Mazavin, “Growth of structurally homogeneous CVD-ZnSe plates,” Inorg. Mater. 46, 255–258 (2010).
[CrossRef]

E. M. Gavrishchuk, V. B. Ikonnikov, L. A. Kuznetsov, and S. M. Mazavin, “Temperature effect on the structure of ZnSe layers grown by chemical vapor deposition,” Inorg. Mater. 42, 1302–1307 (2006).
[CrossRef]

Inokuti, M.

D. Y. Smith, M. Inokuti, and W. Karstens, “A generalized Cauchy dispersion formula and the refractivity of elemental semiconductors,” J. Phys. Condens. Matter 13, 3883–3894 (2001).
[CrossRef]

Jones, C. E.

Kaplan, S. G.

R. Gupta and S. G. Kaplan, “High accuracy ultraviolet index of refraction measurements using a Fourier transform spectrometer,” J. Res. Natl. Inst. Stand. Technol. 108, 429–437 (2003).

Karstens, W.

D. Y. Smith, M. Inokuti, and W. Karstens, “A generalized Cauchy dispersion formula and the refractivity of elemental semiconductors,” J. Phys. Condens. Matter 13, 3883–3894 (2001).
[CrossRef]

Kryukova, E. B.

V. G. Plotnichenko, V. O. Nazaryants, E. B. Kryukova, and E. M. Dianov, “Spectral dependence of the refractive index of single-crystalline GaAs for optical applications,” J. Phys. D 43, 105402 (2010).
[CrossRef]

V. G. Plotnichenko, V. O. Nazaryants, E. B. Kryukova, Yu. N. Pyrkov, E. M. Dianov, B. I. Galagan, and S. E. Sverchkov, “Precise measurement of refractive index spectral dependence of optical materials for laser, fiber, and integrated optics,” Inorg. Mater. 45, 322–328 (2009).
[CrossRef]

Kuznetsov, L. A.

E. M. Gavrishchuk, V. B. Ikonnikov, L. A. Kuznetsov, and S. M. Mazavin, “Growth of structurally homogeneous CVD-ZnSe plates,” Inorg. Mater. 46, 255–258 (2010).
[CrossRef]

E. M. Gavrishchuk, V. B. Ikonnikov, L. A. Kuznetsov, and S. M. Mazavin, “Temperature effect on the structure of ZnSe layers grown by chemical vapor deposition,” Inorg. Mater. 42, 1302–1307 (2006).
[CrossRef]

Li, H. H.

H. H. Li, “Refractive index of ZnS, ZnSe, and ZnTe and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 13, 103–150 (1984).
[CrossRef]

Mazavin, S. M.

E. M. Gavrishchuk, V. B. Ikonnikov, L. A. Kuznetsov, and S. M. Mazavin, “Growth of structurally homogeneous CVD-ZnSe plates,” Inorg. Mater. 46, 255–258 (2010).
[CrossRef]

E. M. Gavrishchuk, V. B. Ikonnikov, L. A. Kuznetsov, and S. M. Mazavin, “Temperature effect on the structure of ZnSe layers grown by chemical vapor deposition,” Inorg. Mater. 42, 1302–1307 (2006).
[CrossRef]

Nazaryants, V. O.

V. G. Plotnichenko, V. O. Nazaryants, E. B. Kryukova, and E. M. Dianov, “Spectral dependence of the refractive index of single-crystalline GaAs for optical applications,” J. Phys. D 43, 105402 (2010).
[CrossRef]

V. G. Plotnichenko, V. O. Nazaryants, E. B. Kryukova, Yu. N. Pyrkov, E. M. Dianov, B. I. Galagan, and S. E. Sverchkov, “Precise measurement of refractive index spectral dependence of optical materials for laser, fiber, and integrated optics,” Inorg. Mater. 45, 322–328 (2009).
[CrossRef]

Plotnichenko, V. G.

V. G. Plotnichenko, V. O. Nazaryants, E. B. Kryukova, and E. M. Dianov, “Spectral dependence of the refractive index of single-crystalline GaAs for optical applications,” J. Phys. D 43, 105402 (2010).
[CrossRef]

V. G. Plotnichenko, V. O. Nazaryants, E. B. Kryukova, Yu. N. Pyrkov, E. M. Dianov, B. I. Galagan, and S. E. Sverchkov, “Precise measurement of refractive index spectral dependence of optical materials for laser, fiber, and integrated optics,” Inorg. Mater. 45, 322–328 (2009).
[CrossRef]

A. V. Vasil’ev, V. V. Voitsekhovskii, and V. G. Plotnichenko, “Measurement of spectral dependence of refractive index of solid state materials in high transparency region,” High-Purity Subst. 3, 39–49 (1991).

Pyrkov, Yu. N.

V. G. Plotnichenko, V. O. Nazaryants, E. B. Kryukova, Yu. N. Pyrkov, E. M. Dianov, B. I. Galagan, and S. E. Sverchkov, “Precise measurement of refractive index spectral dependence of optical materials for laser, fiber, and integrated optics,” Inorg. Mater. 45, 322–328 (2009).
[CrossRef]

Smith, D. Y.

D. Y. Smith, M. Inokuti, and W. Karstens, “A generalized Cauchy dispersion formula and the refractivity of elemental semiconductors,” J. Phys. Condens. Matter 13, 3883–3894 (2001).
[CrossRef]

Sverchkov, S. E.

V. G. Plotnichenko, V. O. Nazaryants, E. B. Kryukova, Yu. N. Pyrkov, E. M. Dianov, B. I. Galagan, and S. E. Sverchkov, “Precise measurement of refractive index spectral dependence of optical materials for laser, fiber, and integrated optics,” Inorg. Mater. 45, 322–328 (2009).
[CrossRef]

Vasil’ev, A. V.

A. V. Vasil’ev, V. V. Voitsekhovskii, and V. G. Plotnichenko, “Measurement of spectral dependence of refractive index of solid state materials in high transparency region,” High-Purity Subst. 3, 39–49 (1991).

Voitsekhovskii, V. V.

A. V. Vasil’ev, V. V. Voitsekhovskii, and V. G. Plotnichenko, “Measurement of spectral dependence of refractive index of solid state materials in high transparency region,” High-Purity Subst. 3, 39–49 (1991).

Waxler, R. M.

A. Feldman, D. Horowitz, R. M. Waxler, and M. J. Dodge, “Optical characterization final technical report, February 1, 1978–September 30, 1978,” Natl. Bur. Stand. (U.S.) Tech. Note 993, 63 (1979).

Appl. Opt.

High-Purity Subst.

A. V. Vasil’ev, V. V. Voitsekhovskii, and V. G. Plotnichenko, “Measurement of spectral dependence of refractive index of solid state materials in high transparency region,” High-Purity Subst. 3, 39–49 (1991).

Inorg. Mater.

V. G. Plotnichenko, V. O. Nazaryants, E. B. Kryukova, Yu. N. Pyrkov, E. M. Dianov, B. I. Galagan, and S. E. Sverchkov, “Precise measurement of refractive index spectral dependence of optical materials for laser, fiber, and integrated optics,” Inorg. Mater. 45, 322–328 (2009).
[CrossRef]

E. M. Gavrishchuk, “Polycrystalline zinc selenide for IR optical applications,” Inorg. Mater. 39, 883–899 (2003).
[CrossRef]

E. M. Gavrishchuk, V. B. Ikonnikov, L. A. Kuznetsov, and S. M. Mazavin, “Temperature effect on the structure of ZnSe layers grown by chemical vapor deposition,” Inorg. Mater. 42, 1302–1307 (2006).
[CrossRef]

E. M. Gavrishchuk, V. B. Ikonnikov, L. A. Kuznetsov, and S. M. Mazavin, “Growth of structurally homogeneous CVD-ZnSe plates,” Inorg. Mater. 46, 255–258 (2010).
[CrossRef]

J. Phys. Chem. Ref. Data

H. H. Li, “Refractive index of ZnS, ZnSe, and ZnTe and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 13, 103–150 (1984).
[CrossRef]

J. Phys. Condens. Matter

D. Y. Smith, M. Inokuti, and W. Karstens, “A generalized Cauchy dispersion formula and the refractivity of elemental semiconductors,” J. Phys. Condens. Matter 13, 3883–3894 (2001).
[CrossRef]

J. Phys. D

V. G. Plotnichenko, V. O. Nazaryants, E. B. Kryukova, and E. M. Dianov, “Spectral dependence of the refractive index of single-crystalline GaAs for optical applications,” J. Phys. D 43, 105402 (2010).
[CrossRef]

J. Res. Natl. Inst. Stand. Technol.

R. Gupta and S. G. Kaplan, “High accuracy ultraviolet index of refraction measurements using a Fourier transform spectrometer,” J. Res. Natl. Inst. Stand. Technol. 108, 429–437 (2003).

Proc. SPIE

D. C. Harris, “Development of hot-pressed and chemical-vapor-deposited zinc sulfide and zinc selenide in the United States for optical windows,” Proc. SPIE 6545, 654502 (2007).
[CrossRef]

Other

“Kodak Irtran Infrared Optical Materials,” (Kodak Publications, Rochester, New York, USA, 1971), U-72.

A. Feldman, D. Horowitz, R. M. Waxler, and M. J. Dodge, “Optical characterization final technical report, February 1, 1978–September 30, 1978,” Natl. Bur. Stand. (U.S.) Tech. Note 993, 63 (1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Depth distribution of the average grain size in CVD ZnSe grown (a) at a constant temperature and (b)at the optimized variable substrate temperature .

Fig. 2
Fig. 2

Dependence of an average grain size on annealing time in conditions of CVD process.

Fig. 3
Fig. 3

Spectral dependence of transmission (with and without interference) for the 1.3992 mm thick ZnSe sample for two spectral regions: (a) from 2000 to 1940 cm 1 and (b) from 540 to 480 cm 1 .

Fig. 4
Fig. 4

Spectral dependence as an example of the left part of Eq. (2) for two ZnSe samples at the most optimal value of the m 1 / m 2 ratio.

Fig. 5
Fig. 5

Calculated spectral dependence of the refractive index of ZnSe samples (1) and the data available from literature, (2) Ref. [6] ( 27 ° C ); (3) Ref. [3] ( 20 ° C ); (4) Ref. [12] ( 22 ° C ); and (5) Ref. [13] ( 25 ° C ).

Fig. 6
Fig. 6

Spectral dependence of the first- (in μm 1 ) and second-order (in ps / ( nm · km ) ) derivatives of the refractive index of ZnSe.

Tables (1)

Tables Icon

Table 1 Parameter Values of Polynomial Approximation for CVD ZnSe Refractive Index at 27 ° C

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

2 h n ( ν m ) ν m = m .
m 1 ( ν ) m 2 ( ν ) h 1 h 2 = { 0 , theoretically , f ( ν ) , experimentally .
n ( λ ) = A 8 λ 8 + A 6 λ 6 + A 4 λ 4 + A 2 λ 2 + C + B 2 λ 2 + B 4 λ 4 + B 6 λ 6 + B 8 λ 8 .

Metrics