Abstract

A retroreflection (return-path) spectroscopic ellipsometer without a wave plate is described that uses an IR-transparent high-refractive-index hemicylindrical semiconductor substrate to measure the optical properties of aqueous solutions from multiple principal angles and multiple principal azimuths of atten uated internal reflection (AIR) at the semiconductor–solution interface. The pseudo-Brewster angle of minimum reflectance for the p polarization is also readily measured using the same instrument. This wealth of data can also be used to characterize thin films at the solid–liquid interface. Simulated results of AIR at the Si–water interface over the 1.211μm IR spectral range are presented in support of this concept. The optical properties of water and aqueous solutions are important for modeling radiative transfer in the atmosphere and oceans and for biomedical and tissue optics.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1987).
  2. R. Röseler, Infrared Spectroscopic Ellipsometry (Akademie-Verlag, 1990).
  3. R.M. A.Azzam, ed., Selected Papers on Ellipsometry, Vol. MS27 of SPIE Milestone Series (SPIE, 1991).
  4. H.G.Tompkins and E.A.Irene, eds., Handbook of Ellipsometry (William Andrew, 2005).
    [CrossRef]
  5. R. M. A. Azzam, “Ellipsometry,” in Handbook of Optics, M.Bass and V.N.Mahajan, eds. (McGraw-Hill, 2010), Vol. I.
  6. D. E. Aspnes, “Optimizing precision of rotating-analyzer ellipsometers,” J. Opt. Soc. Am. 64, 639–646 (1974).
    [CrossRef]
  7. R. M. A. Azzam and A.-R. Zaghloul, “Principal angle, principal azimuth, and principal-angle ellipsometry of film-substrate systems,” J. Opt. Soc. Am. 67, 1058–1065 (1977).
    [CrossRef]
  8. D. Chandler-Horowitz and G. A. Candela, “Principal angle spectroscopic ellipsometry utilizing a rotating analyzer,” Appl. Opt. 21, 2972–2977 (1982).
    [CrossRef] [PubMed]
  9. L. Schrottke and G. Jungk, “Automated null ellipsometer with rotating analyzer,” Rev. Sci. Instrum. 65, 3657–3660 (1994).
    [CrossRef]
  10. H. M. O’Bryan, “The optical constants of several metals in vacuum,” J. Opt. Soc. Am. 26, 122–127 (1936).
    [CrossRef]
  11. M. Yamamoto, “New type of precision ellipsometer without employing a compensator,” Opt. Commun. 10, 200–202 (1974).
    [CrossRef]
  12. T. Yamaguchi and H. Takahashi, “Autocollimation-type ellipsometer for monitoring film growth through a single window,” Appl. Opt. 15, 677–680 (1976).
    [CrossRef] [PubMed]
  13. R. M. A. Azzam, “Oblique and normal-incidence photometric return-path ellipsometer for isotropic and anisotropic surfaces,” J. Opt. 9, 131–134 (1978).
    [CrossRef]
  14. M. Yamamoto and O. S. Heavens, “A vacuum automatic ellipsometer for principal angle of incidence measurement,” Surf. Sci. 96, 202–216 (1980).
    [CrossRef]
  15. R. M. A. Azzam, “Measurement of the Jones matrix of an optical system by return-path null ellipsometry,” J. Mod. Opt. 28, 795–800 (1981).
    [CrossRef]
  16. A. B. Marchant and J. J. Wrobel, “Simple ellipsometer design,” Appl. Opt. 20, 2040–2041 (1981).
    [CrossRef] [PubMed]
  17. L. R. Watkins and S. S. Shamailov, “Variable angle of incidence spectroscopic autocollimating ellipsometer,” Appl. Opt. 49, 3231–3234 (2010).
    [CrossRef] [PubMed]
  18. M. R. Querry, B. Curnutte, and D. Williams, “Refractive index of water in the infrared,” J. Opt. Soc. Am. 59, 1299–1305(1969).
    [CrossRef]
  19. M. R. Querry, R. C. Waring, W. E. Holland, G. M. Hale, and W. Nijm, “Optical constants in the infrared for aqueous solutions of NaCl,” J. Opt. Soc. Am. 62, 849–855(1972).
    [CrossRef]
  20. G. M. Hale and M. R. Querry, “Optical constants of water in the 200 nm to 200 μm wavelength region,” Appl. Opt. 12, 555–563 (1973).
    [CrossRef] [PubMed]
  21. K. F. Palmer and D. Williams, “Optical properties of water in the near infrared,” J. Opt. Soc. Am. 64, 1107–1110(1974).
    [CrossRef]
  22. M. N. Afsar and J. B. Hasted, “Measurements of the optical constants of liquid H2O and D2O between 6 and 450 cm−1,” J. Opt. Soc. Am. 67, 902–904 (1977).
    [CrossRef]
  23. D. M. Wieliczka, S. Weng, and M. R. Querry, “Wedge shaped cell for highly absorbing liquids: infrared optical constants of water,” Appl. Opt. 28, 1714–1719 (1989).
    [CrossRef] [PubMed]
  24. M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared to the ultraviolet region,” Appl. Opt. 46, 3811–3820 (2007).
    [CrossRef] [PubMed]
  25. S. Rekveld, Ellipsometric Studies of Protein Adsorption onto Hard Surfaces in a Flow Cell (Fedobruk, 1997).
  26. H. Arwin, M. Poksinski, and K. Johansen, “Total internal reflection ellipsometry: principles and applications,” Appl. Opt. 43, 3028–3036 (2004).
    [CrossRef] [PubMed]
  27. Y. Mikhaylova, L. Ionov, J. Rappich, M. Gensch, N. Esser, S. Minko, K.-J. Eichhorn, M. Stamm, and K. Hinrichs, “In-situ infrared ellipsometric study of stimuli-responsive polyelectrolyte brushes,” Anal. Chem. 79, 7676–7682 (2007).
    [CrossRef] [PubMed]
  28. W. J. Tropf, M. E. Thomas, and T. J. Harris, “Properties of crystals and glasses,” in Handbook of Optics, M.Bass, E.W.Van Stryland, D.R.Williams, and W.L.Wolfe, eds. (McGraw-Hill, 1995), Vol. II, Chap. 33.
  29. R. M. A. Azzam, “Contours of constant principal angle and constant principal azimuth in the complex ε plane,” J. Opt. Soc. Am. 71, 1523–1528 (1981).
    [CrossRef]
  30. R. M. A. Azzam and A. Alsamman, “Plurality of principal angles for a given pseudo-Brewster angle when polarized light is reflected at a dielectric-conductor interface,” J. Opt. Soc. Am. A 25, 2858–2864 (2008).
    [CrossRef]
  31. R. M. A. Azzam and E. Ugbo, “Contours of constant pseudo-Brewster angle in the complex ε plane and an analytical method for the determination of optical constants,” Appl. Opt. 28, 5222–5228 (1989).
    [CrossRef] [PubMed]

2010

R. M. A. Azzam, “Ellipsometry,” in Handbook of Optics, M.Bass and V.N.Mahajan, eds. (McGraw-Hill, 2010), Vol. I.

L. R. Watkins and S. S. Shamailov, “Variable angle of incidence spectroscopic autocollimating ellipsometer,” Appl. Opt. 49, 3231–3234 (2010).
[CrossRef] [PubMed]

2008

2007

M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared to the ultraviolet region,” Appl. Opt. 46, 3811–3820 (2007).
[CrossRef] [PubMed]

Y. Mikhaylova, L. Ionov, J. Rappich, M. Gensch, N. Esser, S. Minko, K.-J. Eichhorn, M. Stamm, and K. Hinrichs, “In-situ infrared ellipsometric study of stimuli-responsive polyelectrolyte brushes,” Anal. Chem. 79, 7676–7682 (2007).
[CrossRef] [PubMed]

2005

H.G.Tompkins and E.A.Irene, eds., Handbook of Ellipsometry (William Andrew, 2005).
[CrossRef]

2004

1997

S. Rekveld, Ellipsometric Studies of Protein Adsorption onto Hard Surfaces in a Flow Cell (Fedobruk, 1997).

1995

W. J. Tropf, M. E. Thomas, and T. J. Harris, “Properties of crystals and glasses,” in Handbook of Optics, M.Bass, E.W.Van Stryland, D.R.Williams, and W.L.Wolfe, eds. (McGraw-Hill, 1995), Vol. II, Chap. 33.

1994

L. Schrottke and G. Jungk, “Automated null ellipsometer with rotating analyzer,” Rev. Sci. Instrum. 65, 3657–3660 (1994).
[CrossRef]

1991

R.M. A.Azzam, ed., Selected Papers on Ellipsometry, Vol. MS27 of SPIE Milestone Series (SPIE, 1991).

1990

R. Röseler, Infrared Spectroscopic Ellipsometry (Akademie-Verlag, 1990).

1989

1987

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1987).

1982

1981

1980

M. Yamamoto and O. S. Heavens, “A vacuum automatic ellipsometer for principal angle of incidence measurement,” Surf. Sci. 96, 202–216 (1980).
[CrossRef]

1978

R. M. A. Azzam, “Oblique and normal-incidence photometric return-path ellipsometer for isotropic and anisotropic surfaces,” J. Opt. 9, 131–134 (1978).
[CrossRef]

1977

1976

1974

1973

1972

1969

1936

Afsar, M. N.

Alsamman, A.

Arwin, H.

Aspnes, D. E.

Azzam, R. M. A.

Bashara, N. M.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1987).

Candela, G. A.

Chandler-Horowitz, D.

Curnutte, B.

Daimon, M.

Eichhorn, K.-J.

Y. Mikhaylova, L. Ionov, J. Rappich, M. Gensch, N. Esser, S. Minko, K.-J. Eichhorn, M. Stamm, and K. Hinrichs, “In-situ infrared ellipsometric study of stimuli-responsive polyelectrolyte brushes,” Anal. Chem. 79, 7676–7682 (2007).
[CrossRef] [PubMed]

Esser, N.

Y. Mikhaylova, L. Ionov, J. Rappich, M. Gensch, N. Esser, S. Minko, K.-J. Eichhorn, M. Stamm, and K. Hinrichs, “In-situ infrared ellipsometric study of stimuli-responsive polyelectrolyte brushes,” Anal. Chem. 79, 7676–7682 (2007).
[CrossRef] [PubMed]

Gensch, M.

Y. Mikhaylova, L. Ionov, J. Rappich, M. Gensch, N. Esser, S. Minko, K.-J. Eichhorn, M. Stamm, and K. Hinrichs, “In-situ infrared ellipsometric study of stimuli-responsive polyelectrolyte brushes,” Anal. Chem. 79, 7676–7682 (2007).
[CrossRef] [PubMed]

Hale, G. M.

Harris, T. J.

W. J. Tropf, M. E. Thomas, and T. J. Harris, “Properties of crystals and glasses,” in Handbook of Optics, M.Bass, E.W.Van Stryland, D.R.Williams, and W.L.Wolfe, eds. (McGraw-Hill, 1995), Vol. II, Chap. 33.

Hasted, J. B.

Heavens, O. S.

M. Yamamoto and O. S. Heavens, “A vacuum automatic ellipsometer for principal angle of incidence measurement,” Surf. Sci. 96, 202–216 (1980).
[CrossRef]

Hinrichs, K.

Y. Mikhaylova, L. Ionov, J. Rappich, M. Gensch, N. Esser, S. Minko, K.-J. Eichhorn, M. Stamm, and K. Hinrichs, “In-situ infrared ellipsometric study of stimuli-responsive polyelectrolyte brushes,” Anal. Chem. 79, 7676–7682 (2007).
[CrossRef] [PubMed]

Holland, W. E.

Ionov, L.

Y. Mikhaylova, L. Ionov, J. Rappich, M. Gensch, N. Esser, S. Minko, K.-J. Eichhorn, M. Stamm, and K. Hinrichs, “In-situ infrared ellipsometric study of stimuli-responsive polyelectrolyte brushes,” Anal. Chem. 79, 7676–7682 (2007).
[CrossRef] [PubMed]

Johansen, K.

Jungk, G.

L. Schrottke and G. Jungk, “Automated null ellipsometer with rotating analyzer,” Rev. Sci. Instrum. 65, 3657–3660 (1994).
[CrossRef]

Marchant, A. B.

Masumura, A.

Mikhaylova, Y.

Y. Mikhaylova, L. Ionov, J. Rappich, M. Gensch, N. Esser, S. Minko, K.-J. Eichhorn, M. Stamm, and K. Hinrichs, “In-situ infrared ellipsometric study of stimuli-responsive polyelectrolyte brushes,” Anal. Chem. 79, 7676–7682 (2007).
[CrossRef] [PubMed]

Minko, S.

Y. Mikhaylova, L. Ionov, J. Rappich, M. Gensch, N. Esser, S. Minko, K.-J. Eichhorn, M. Stamm, and K. Hinrichs, “In-situ infrared ellipsometric study of stimuli-responsive polyelectrolyte brushes,” Anal. Chem. 79, 7676–7682 (2007).
[CrossRef] [PubMed]

Nijm, W.

O’Bryan, H. M.

Palmer, K. F.

Poksinski, M.

Querry, M. R.

Rappich, J.

Y. Mikhaylova, L. Ionov, J. Rappich, M. Gensch, N. Esser, S. Minko, K.-J. Eichhorn, M. Stamm, and K. Hinrichs, “In-situ infrared ellipsometric study of stimuli-responsive polyelectrolyte brushes,” Anal. Chem. 79, 7676–7682 (2007).
[CrossRef] [PubMed]

Rekveld, S.

S. Rekveld, Ellipsometric Studies of Protein Adsorption onto Hard Surfaces in a Flow Cell (Fedobruk, 1997).

Röseler, R.

R. Röseler, Infrared Spectroscopic Ellipsometry (Akademie-Verlag, 1990).

Schrottke, L.

L. Schrottke and G. Jungk, “Automated null ellipsometer with rotating analyzer,” Rev. Sci. Instrum. 65, 3657–3660 (1994).
[CrossRef]

Shamailov, S. S.

Stamm, M.

Y. Mikhaylova, L. Ionov, J. Rappich, M. Gensch, N. Esser, S. Minko, K.-J. Eichhorn, M. Stamm, and K. Hinrichs, “In-situ infrared ellipsometric study of stimuli-responsive polyelectrolyte brushes,” Anal. Chem. 79, 7676–7682 (2007).
[CrossRef] [PubMed]

Takahashi, H.

Thomas, M. E.

W. J. Tropf, M. E. Thomas, and T. J. Harris, “Properties of crystals and glasses,” in Handbook of Optics, M.Bass, E.W.Van Stryland, D.R.Williams, and W.L.Wolfe, eds. (McGraw-Hill, 1995), Vol. II, Chap. 33.

Tropf, W. J.

W. J. Tropf, M. E. Thomas, and T. J. Harris, “Properties of crystals and glasses,” in Handbook of Optics, M.Bass, E.W.Van Stryland, D.R.Williams, and W.L.Wolfe, eds. (McGraw-Hill, 1995), Vol. II, Chap. 33.

Ugbo, E.

Waring, R. C.

Watkins, L. R.

Weng, S.

Wieliczka, D. M.

Williams, D.

Wrobel, J. J.

Yamaguchi, T.

Yamamoto, M.

M. Yamamoto and O. S. Heavens, “A vacuum automatic ellipsometer for principal angle of incidence measurement,” Surf. Sci. 96, 202–216 (1980).
[CrossRef]

M. Yamamoto, “New type of precision ellipsometer without employing a compensator,” Opt. Commun. 10, 200–202 (1974).
[CrossRef]

Zaghloul, A.-R.

Anal. Chem.

Y. Mikhaylova, L. Ionov, J. Rappich, M. Gensch, N. Esser, S. Minko, K.-J. Eichhorn, M. Stamm, and K. Hinrichs, “In-situ infrared ellipsometric study of stimuli-responsive polyelectrolyte brushes,” Anal. Chem. 79, 7676–7682 (2007).
[CrossRef] [PubMed]

Appl. Opt.

H. Arwin, M. Poksinski, and K. Johansen, “Total internal reflection ellipsometry: principles and applications,” Appl. Opt. 43, 3028–3036 (2004).
[CrossRef] [PubMed]

M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared to the ultraviolet region,” Appl. Opt. 46, 3811–3820 (2007).
[CrossRef] [PubMed]

L. R. Watkins and S. S. Shamailov, “Variable angle of incidence spectroscopic autocollimating ellipsometer,” Appl. Opt. 49, 3231–3234 (2010).
[CrossRef] [PubMed]

G. M. Hale and M. R. Querry, “Optical constants of water in the 200 nm to 200 μm wavelength region,” Appl. Opt. 12, 555–563 (1973).
[CrossRef] [PubMed]

T. Yamaguchi and H. Takahashi, “Autocollimation-type ellipsometer for monitoring film growth through a single window,” Appl. Opt. 15, 677–680 (1976).
[CrossRef] [PubMed]

A. B. Marchant and J. J. Wrobel, “Simple ellipsometer design,” Appl. Opt. 20, 2040–2041 (1981).
[CrossRef] [PubMed]

D. Chandler-Horowitz and G. A. Candela, “Principal angle spectroscopic ellipsometry utilizing a rotating analyzer,” Appl. Opt. 21, 2972–2977 (1982).
[CrossRef] [PubMed]

D. M. Wieliczka, S. Weng, and M. R. Querry, “Wedge shaped cell for highly absorbing liquids: infrared optical constants of water,” Appl. Opt. 28, 1714–1719 (1989).
[CrossRef] [PubMed]

R. M. A. Azzam and E. Ugbo, “Contours of constant pseudo-Brewster angle in the complex ε plane and an analytical method for the determination of optical constants,” Appl. Opt. 28, 5222–5228 (1989).
[CrossRef] [PubMed]

J. Mod. Opt.

R. M. A. Azzam, “Measurement of the Jones matrix of an optical system by return-path null ellipsometry,” J. Mod. Opt. 28, 795–800 (1981).
[CrossRef]

J. Opt.

R. M. A. Azzam, “Oblique and normal-incidence photometric return-path ellipsometer for isotropic and anisotropic surfaces,” J. Opt. 9, 131–134 (1978).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Opt. Commun.

M. Yamamoto, “New type of precision ellipsometer without employing a compensator,” Opt. Commun. 10, 200–202 (1974).
[CrossRef]

Rev. Sci. Instrum.

L. Schrottke and G. Jungk, “Automated null ellipsometer with rotating analyzer,” Rev. Sci. Instrum. 65, 3657–3660 (1994).
[CrossRef]

Surf. Sci.

M. Yamamoto and O. S. Heavens, “A vacuum automatic ellipsometer for principal angle of incidence measurement,” Surf. Sci. 96, 202–216 (1980).
[CrossRef]

Other

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1987).

R. Röseler, Infrared Spectroscopic Ellipsometry (Akademie-Verlag, 1990).

R.M. A.Azzam, ed., Selected Papers on Ellipsometry, Vol. MS27 of SPIE Milestone Series (SPIE, 1991).

H.G.Tompkins and E.A.Irene, eds., Handbook of Ellipsometry (William Andrew, 2005).
[CrossRef]

R. M. A. Azzam, “Ellipsometry,” in Handbook of Optics, M.Bass and V.N.Mahajan, eds. (McGraw-Hill, 2010), Vol. I.

S. Rekveld, Ellipsometric Studies of Protein Adsorption onto Hard Surfaces in a Flow Cell (Fedobruk, 1997).

W. J. Tropf, M. E. Thomas, and T. J. Harris, “Properties of crystals and glasses,” in Handbook of Optics, M.Bass, E.W.Van Stryland, D.R.Williams, and W.L.Wolfe, eds. (McGraw-Hill, 1995), Vol. II, Chap. 33.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Multiple-principal-angle return-path ellipsometer (MPA RPE) that consists of a source of collimated monochromatic light L, beam splitter BS, and linear polarizer P that can be rotated around the light beam as an axis. Sample S is a polished hemicylindrical semiconductor (Si) substrate that allows internal reflection at a variable angle of incidence ϕ measured from the surface normal ON. An aqueous solution is contained in the rectangular space (cuvette) ABCD. The surface of the entrance quadrant AN of the hemicylinder has a broadband antireflection coating (ARC), whereas the remaining quadrant BN is uncoated (UC). Arrows indicate the forward and backward propagation directions.

Fig. 2
Fig. 2

Real and imaginary parts ε r , ε i of the relative complex dielectric function of the Si–water interface plotted versus wavelength λ in the 1.2 11 μm spectral range.

Fig. 3
Fig. 3

Trajectory of ε r , ε i of the Si–water interface in the complex ε plane as the wavelength λ is increased from 1.2 to 11 μm . The domain of multiple principal angles (MPA) is highlighted. The inset gives the wavelengths at points a , b , c , , and h at which the segmented locus of ε r , ε i cuts in and out of the domain of MPA.

Fig. 4
Fig. 4

First principal angle and first principal azimuth ϕ ¯ 1 , ψ ¯ 1 (in degrees) of the Si–water interface plotted versus wavelength λ in the 1.2 11 μm spectral range.

Fig. 5
Fig. 5

Second principal angle and second principal azimuth ϕ ¯ 2 , ψ ¯ 2 (in degrees) of the Si–water interface plotted versus wavelength λ in the 1.2 11 μm spectral range.

Fig. 6
Fig. 6

Third principal angle and third principal azimuth ϕ ¯ 3 , ψ ¯ 3 (in degrees) of the Si–water interface plotted versus wavelength λ in the 1.2 11 μm spectral range.

Fig. 7
Fig. 7

Pseudo-Brewster angle ϕ pB (in degrees) and the associated minimum parallel reflectance R p min of the Si–water interface plotted as functions of wavelength λ in the 1.2 11 μm spectral range.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ε = ε w / ε Si = ε r j ε i , ε r = ( n w 2 k w 2 ) / n Si 2 , ε i = 2 n w k w / n Si 2 .
a 3 u 3 + a 2 u 2 + a 1 u + a 0 = 0 ,
a 0 = ε r 2 + ε i 2 , a 1 = 2 ( a 0 + ε r ) , a 2 = a 0 + 4 ε r + 1 , a 3 = 2 ( ε r + 1 ) ,
u = sin 2 ϕ ¯ i .
ρ ¯ = r p / r s = sin ϕ ¯ tan ϕ ¯ ( ε sin 2 ϕ ¯ ) 1 / 2 sin ϕ ¯ tan ϕ ¯ + ( ε sin 2 ϕ ¯ ) 1 / 2 = j tan ψ ¯ .
ε r w = ε Si ( sin 2 ϕ ¯ i + sin 2 ϕ ¯ i tan 2 ϕ ¯ i cos 4 ψ ¯ i ) , ε i w = ε Si ( sin 2 ϕ ¯ i tan 2 ϕ ¯ i sin 4 ψ ¯ i ) .
a 3 u 3 + a 2 u 2 + a 1 u + a 0 = 0 ,
a 0 = ( ε r 2 + ε i 2 ) 2 , a 1 = 2 a 0 , a 2 = a 0 3 a 0 , a 3 = 2 ε r + 2 a 0 ,
u = sin 2 ϕ pB .

Metrics