Abstract

Plasma chemical vaporization machining (CVM) is a high-precision chemical shaping method using rf plasma generated in the proximity of an electrode in an atmospheric environment. The purpose of the present study is to clarify the removal characteristics of plasma CVM using a pipe electrode. Polished fused silica plates were processed by plasma CVM, polishing, and precision grinding under various conditions. The removal rate of plasma CVM was about 4 to 1100 times faster than that of polishing, and the maximum removal rate was almost equal to that of precision grinding. The roughness of the resultant surfaces was almost the same as that of the polished surfaces.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Bárdos, S. Berg, and H.-O. Blom, “Superhigh-rate plasma jet etching of silicon,” Appl. Phys. Lett. 55, 1615–1617 (1989).
    [CrossRef]
  2. D. Bollinger, G. Gallatin, J. Samuels, G. Steinberg, and C. Zarowin, “Rapid, noncontact optical figuring of aspheric surfaces with plasma assisted chemical etching (PACE),” Proc. SPIE 1333, 44–57 (1990).
    [CrossRef]
  3. H. Koinuma, H. Ohkubo, and T. Hashimoto, “Development and application of a microbeam plasma generator,” Appl. Phys. Lett. 60, 816–817 (1992).
    [CrossRef]
  4. G. Boehm, W. Frank, A. Schindler, A. Nickel, H. J. Thomas, F. Bigl, and M. Weiser, “Plasma jet chemical etching—a tool for the figuring of optical precision aspheres,” in Proceedings of the Ninth International Conference on Production Engineering (Japan Society for Precision Engineering, 1991), pp. 231–236.
  5. A. Schindler, G. Boehm, T. Haensel, W. Frank, A. Nickel, B. Rauschenbach, and F. Bigl, “Precison optical asphere fabrication by plasma jet chemical etching (PJCE) and ion beam figuring,” Proc. SPIE 4451, 242–248 (2001).
    [CrossRef]
  6. T. Ichiki, Y. Sugiyama, R. Taura, T. Koidesawa, and Y. Horiike, “Plasma applications for biochip technology,” Thin Solid Films 435, 62–68 (2003).
    [CrossRef]
  7. T. Ichiki, R. Taura, and Y. Horiike, “Localized and ultrahigh-rate etching of silicon wafers using atmospheric-pressure microplasma jets,” J. Appl. Phys. 95, 35–39 (2004).
    [CrossRef]
  8. C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, J. Kelley, J. Carr, and P. Sommer, “ A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE surfaces,” Adv. Eng. Mater. 8, 933–939 (2006).
    [CrossRef]
  9. C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, P. Sommer, and P. Fiske, “ A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE optical surfaces,” Proc. SPIE 6273, 62730A (2006).
    [CrossRef]
  10. Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, and H. Kakiuchi, “Plasma CVM (chemical vaporization machining)—a chemical machining method with equal performances to conventional mechanical methods from the sense of removal rates and spatial resolutions,” in Proceedings of the Seventh International Precision Engineering Seminar (Butterworth-Heinemann, 1993), pp. 78–87.
  11. Y. Mori, K. Yamauchi, K. Yamamura, and Y. Sano, “Development of plasma chemical vaporization machining,” Rev. Sci. Instrum. 71, 4627–4632 (2000).
    [CrossRef]
  12. Y. Mori, K. Yamamura, and Y. Sano, “The study of fabrication of the x-ray mirror by numerically controlled plasma chemical vaporization machining: development of the machine for the x-ray mirror fabrication,” Rev. Sci. Instrum. 71, 4620–4626(2000).
    [CrossRef]
  13. K. Yamamura, Y. Sano, M. Shibahara, K. Yamauchi, H. Mimura, K. Endo, and Y. Mori, “Ultra precision machining utilizing numerically controlled scanning of localized atmospheric pressure plasma,” Jpn. J. Appl. Phys 45, 8270–8276 (2006).
    [CrossRef]
  14. H. Takino, N. Shibata, H. Itoh, T. Kobayashi, H. Tanaka, M. Ebi, K. Yamamura, Y. Sano, and Y. Mori, “Computer numerically controlled plasma chemical vaporization machining with a pipe electrode for optical fabrication,” Appl. Opt. 37, 5198–5210 (1998).
    [CrossRef]
  15. H. Takino, N. Shibata, H. Itoh, T. Kobayashi, K. Yamamura, Y. Sano, and Y. Mori, “Fabrication of optics by use of plasma chemical vaporization machining with a pipe electrode,” Appl. Opt. 41, 3971–3977 (2002).
    [CrossRef] [PubMed]
  16. H. Takino, N. Shibata, H. Itoh, T. Kobayashi, K. Nemoto, T. Fujii, N. Goto, K. Yamamura, Y. Sano, and Y. Mori, “Fabrication of small complex-shaped optics by plasma chemical vaporization machining with a microelectrode,” Appl. Opt. 45, 5897–5902 (2006).
    [CrossRef] [PubMed]
  17. D. M. Allen, P. Shore, R. W. Evans, C. Fanara, W. O’Brien, S. Marson, and W. O’Neill, “Ion beam, focused ion beam, and plasma discharge machining,” CIRP Ann. Manuf. Technol. 58, 647–662 (2009).
    [CrossRef]

2009 (1)

D. M. Allen, P. Shore, R. W. Evans, C. Fanara, W. O’Brien, S. Marson, and W. O’Neill, “Ion beam, focused ion beam, and plasma discharge machining,” CIRP Ann. Manuf. Technol. 58, 647–662 (2009).
[CrossRef]

2006 (4)

H. Takino, N. Shibata, H. Itoh, T. Kobayashi, K. Nemoto, T. Fujii, N. Goto, K. Yamamura, Y. Sano, and Y. Mori, “Fabrication of small complex-shaped optics by plasma chemical vaporization machining with a microelectrode,” Appl. Opt. 45, 5897–5902 (2006).
[CrossRef] [PubMed]

K. Yamamura, Y. Sano, M. Shibahara, K. Yamauchi, H. Mimura, K. Endo, and Y. Mori, “Ultra precision machining utilizing numerically controlled scanning of localized atmospheric pressure plasma,” Jpn. J. Appl. Phys 45, 8270–8276 (2006).
[CrossRef]

C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, J. Kelley, J. Carr, and P. Sommer, “ A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE surfaces,” Adv. Eng. Mater. 8, 933–939 (2006).
[CrossRef]

C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, P. Sommer, and P. Fiske, “ A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE optical surfaces,” Proc. SPIE 6273, 62730A (2006).
[CrossRef]

2004 (1)

T. Ichiki, R. Taura, and Y. Horiike, “Localized and ultrahigh-rate etching of silicon wafers using atmospheric-pressure microplasma jets,” J. Appl. Phys. 95, 35–39 (2004).
[CrossRef]

2003 (1)

T. Ichiki, Y. Sugiyama, R. Taura, T. Koidesawa, and Y. Horiike, “Plasma applications for biochip technology,” Thin Solid Films 435, 62–68 (2003).
[CrossRef]

2002 (1)

2001 (1)

A. Schindler, G. Boehm, T. Haensel, W. Frank, A. Nickel, B. Rauschenbach, and F. Bigl, “Precison optical asphere fabrication by plasma jet chemical etching (PJCE) and ion beam figuring,” Proc. SPIE 4451, 242–248 (2001).
[CrossRef]

2000 (2)

Y. Mori, K. Yamauchi, K. Yamamura, and Y. Sano, “Development of plasma chemical vaporization machining,” Rev. Sci. Instrum. 71, 4627–4632 (2000).
[CrossRef]

Y. Mori, K. Yamamura, and Y. Sano, “The study of fabrication of the x-ray mirror by numerically controlled plasma chemical vaporization machining: development of the machine for the x-ray mirror fabrication,” Rev. Sci. Instrum. 71, 4620–4626(2000).
[CrossRef]

1998 (1)

1993 (1)

Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, and H. Kakiuchi, “Plasma CVM (chemical vaporization machining)—a chemical machining method with equal performances to conventional mechanical methods from the sense of removal rates and spatial resolutions,” in Proceedings of the Seventh International Precision Engineering Seminar (Butterworth-Heinemann, 1993), pp. 78–87.

1992 (1)

H. Koinuma, H. Ohkubo, and T. Hashimoto, “Development and application of a microbeam plasma generator,” Appl. Phys. Lett. 60, 816–817 (1992).
[CrossRef]

1991 (1)

G. Boehm, W. Frank, A. Schindler, A. Nickel, H. J. Thomas, F. Bigl, and M. Weiser, “Plasma jet chemical etching—a tool for the figuring of optical precision aspheres,” in Proceedings of the Ninth International Conference on Production Engineering (Japan Society for Precision Engineering, 1991), pp. 231–236.

1990 (1)

D. Bollinger, G. Gallatin, J. Samuels, G. Steinberg, and C. Zarowin, “Rapid, noncontact optical figuring of aspheric surfaces with plasma assisted chemical etching (PACE),” Proc. SPIE 1333, 44–57 (1990).
[CrossRef]

1989 (1)

L. Bárdos, S. Berg, and H.-O. Blom, “Superhigh-rate plasma jet etching of silicon,” Appl. Phys. Lett. 55, 1615–1617 (1989).
[CrossRef]

Allen, D. M.

D. M. Allen, P. Shore, R. W. Evans, C. Fanara, W. O’Brien, S. Marson, and W. O’Neill, “Ion beam, focused ion beam, and plasma discharge machining,” CIRP Ann. Manuf. Technol. 58, 647–662 (2009).
[CrossRef]

Bárdos, L.

L. Bárdos, S. Berg, and H.-O. Blom, “Superhigh-rate plasma jet etching of silicon,” Appl. Phys. Lett. 55, 1615–1617 (1989).
[CrossRef]

Berg, S.

L. Bárdos, S. Berg, and H.-O. Blom, “Superhigh-rate plasma jet etching of silicon,” Appl. Phys. Lett. 55, 1615–1617 (1989).
[CrossRef]

Bigl, F.

A. Schindler, G. Boehm, T. Haensel, W. Frank, A. Nickel, B. Rauschenbach, and F. Bigl, “Precison optical asphere fabrication by plasma jet chemical etching (PJCE) and ion beam figuring,” Proc. SPIE 4451, 242–248 (2001).
[CrossRef]

G. Boehm, W. Frank, A. Schindler, A. Nickel, H. J. Thomas, F. Bigl, and M. Weiser, “Plasma jet chemical etching—a tool for the figuring of optical precision aspheres,” in Proceedings of the Ninth International Conference on Production Engineering (Japan Society for Precision Engineering, 1991), pp. 231–236.

Blom, H.-O.

L. Bárdos, S. Berg, and H.-O. Blom, “Superhigh-rate plasma jet etching of silicon,” Appl. Phys. Lett. 55, 1615–1617 (1989).
[CrossRef]

Boehm, G.

A. Schindler, G. Boehm, T. Haensel, W. Frank, A. Nickel, B. Rauschenbach, and F. Bigl, “Precison optical asphere fabrication by plasma jet chemical etching (PJCE) and ion beam figuring,” Proc. SPIE 4451, 242–248 (2001).
[CrossRef]

G. Boehm, W. Frank, A. Schindler, A. Nickel, H. J. Thomas, F. Bigl, and M. Weiser, “Plasma jet chemical etching—a tool for the figuring of optical precision aspheres,” in Proceedings of the Ninth International Conference on Production Engineering (Japan Society for Precision Engineering, 1991), pp. 231–236.

Bollinger, D.

D. Bollinger, G. Gallatin, J. Samuels, G. Steinberg, and C. Zarowin, “Rapid, noncontact optical figuring of aspheric surfaces with plasma assisted chemical etching (PACE),” Proc. SPIE 1333, 44–57 (1990).
[CrossRef]

Carr, J.

C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, J. Kelley, J. Carr, and P. Sommer, “ A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE surfaces,” Adv. Eng. Mater. 8, 933–939 (2006).
[CrossRef]

Ebi, M.

Endo, K.

K. Yamamura, Y. Sano, M. Shibahara, K. Yamauchi, H. Mimura, K. Endo, and Y. Mori, “Ultra precision machining utilizing numerically controlled scanning of localized atmospheric pressure plasma,” Jpn. J. Appl. Phys 45, 8270–8276 (2006).
[CrossRef]

Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, and H. Kakiuchi, “Plasma CVM (chemical vaporization machining)—a chemical machining method with equal performances to conventional mechanical methods from the sense of removal rates and spatial resolutions,” in Proceedings of the Seventh International Precision Engineering Seminar (Butterworth-Heinemann, 1993), pp. 78–87.

Evans, R. W.

D. M. Allen, P. Shore, R. W. Evans, C. Fanara, W. O’Brien, S. Marson, and W. O’Neill, “Ion beam, focused ion beam, and plasma discharge machining,” CIRP Ann. Manuf. Technol. 58, 647–662 (2009).
[CrossRef]

Fanara, C.

D. M. Allen, P. Shore, R. W. Evans, C. Fanara, W. O’Brien, S. Marson, and W. O’Neill, “Ion beam, focused ion beam, and plasma discharge machining,” CIRP Ann. Manuf. Technol. 58, 647–662 (2009).
[CrossRef]

C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, P. Sommer, and P. Fiske, “ A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE optical surfaces,” Proc. SPIE 6273, 62730A (2006).
[CrossRef]

C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, J. Kelley, J. Carr, and P. Sommer, “ A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE surfaces,” Adv. Eng. Mater. 8, 933–939 (2006).
[CrossRef]

Fiske, P.

C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, P. Sommer, and P. Fiske, “ A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE optical surfaces,” Proc. SPIE 6273, 62730A (2006).
[CrossRef]

Frank, W.

A. Schindler, G. Boehm, T. Haensel, W. Frank, A. Nickel, B. Rauschenbach, and F. Bigl, “Precison optical asphere fabrication by plasma jet chemical etching (PJCE) and ion beam figuring,” Proc. SPIE 4451, 242–248 (2001).
[CrossRef]

G. Boehm, W. Frank, A. Schindler, A. Nickel, H. J. Thomas, F. Bigl, and M. Weiser, “Plasma jet chemical etching—a tool for the figuring of optical precision aspheres,” in Proceedings of the Ninth International Conference on Production Engineering (Japan Society for Precision Engineering, 1991), pp. 231–236.

Fujii, T.

Gallatin, G.

D. Bollinger, G. Gallatin, J. Samuels, G. Steinberg, and C. Zarowin, “Rapid, noncontact optical figuring of aspheric surfaces with plasma assisted chemical etching (PACE),” Proc. SPIE 1333, 44–57 (1990).
[CrossRef]

Goto, N.

Haensel, T.

A. Schindler, G. Boehm, T. Haensel, W. Frank, A. Nickel, B. Rauschenbach, and F. Bigl, “Precison optical asphere fabrication by plasma jet chemical etching (PJCE) and ion beam figuring,” Proc. SPIE 4451, 242–248 (2001).
[CrossRef]

Hashimoto, T.

H. Koinuma, H. Ohkubo, and T. Hashimoto, “Development and application of a microbeam plasma generator,” Appl. Phys. Lett. 60, 816–817 (1992).
[CrossRef]

Horiike, Y.

T. Ichiki, R. Taura, and Y. Horiike, “Localized and ultrahigh-rate etching of silicon wafers using atmospheric-pressure microplasma jets,” J. Appl. Phys. 95, 35–39 (2004).
[CrossRef]

T. Ichiki, Y. Sugiyama, R. Taura, T. Koidesawa, and Y. Horiike, “Plasma applications for biochip technology,” Thin Solid Films 435, 62–68 (2003).
[CrossRef]

Ichiki, T.

T. Ichiki, R. Taura, and Y. Horiike, “Localized and ultrahigh-rate etching of silicon wafers using atmospheric-pressure microplasma jets,” J. Appl. Phys. 95, 35–39 (2004).
[CrossRef]

T. Ichiki, Y. Sugiyama, R. Taura, T. Koidesawa, and Y. Horiike, “Plasma applications for biochip technology,” Thin Solid Films 435, 62–68 (2003).
[CrossRef]

Inagaki, K.

Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, and H. Kakiuchi, “Plasma CVM (chemical vaporization machining)—a chemical machining method with equal performances to conventional mechanical methods from the sense of removal rates and spatial resolutions,” in Proceedings of the Seventh International Precision Engineering Seminar (Butterworth-Heinemann, 1993), pp. 78–87.

Itoh, H.

Kakiuchi, H.

Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, and H. Kakiuchi, “Plasma CVM (chemical vaporization machining)—a chemical machining method with equal performances to conventional mechanical methods from the sense of removal rates and spatial resolutions,” in Proceedings of the Seventh International Precision Engineering Seminar (Butterworth-Heinemann, 1993), pp. 78–87.

Kataoka, T.

Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, and H. Kakiuchi, “Plasma CVM (chemical vaporization machining)—a chemical machining method with equal performances to conventional mechanical methods from the sense of removal rates and spatial resolutions,” in Proceedings of the Seventh International Precision Engineering Seminar (Butterworth-Heinemann, 1993), pp. 78–87.

Kelley, J.

C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, J. Kelley, J. Carr, and P. Sommer, “ A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE surfaces,” Adv. Eng. Mater. 8, 933–939 (2006).
[CrossRef]

Kobayashi, T.

Koidesawa, T.

T. Ichiki, Y. Sugiyama, R. Taura, T. Koidesawa, and Y. Horiike, “Plasma applications for biochip technology,” Thin Solid Films 435, 62–68 (2003).
[CrossRef]

Koinuma, H.

H. Koinuma, H. Ohkubo, and T. Hashimoto, “Development and application of a microbeam plasma generator,” Appl. Phys. Lett. 60, 816–817 (1992).
[CrossRef]

Lyford, N.

C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, P. Sommer, and P. Fiske, “ A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE optical surfaces,” Proc. SPIE 6273, 62730A (2006).
[CrossRef]

C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, J. Kelley, J. Carr, and P. Sommer, “ A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE surfaces,” Adv. Eng. Mater. 8, 933–939 (2006).
[CrossRef]

Marson, S.

D. M. Allen, P. Shore, R. W. Evans, C. Fanara, W. O’Brien, S. Marson, and W. O’Neill, “Ion beam, focused ion beam, and plasma discharge machining,” CIRP Ann. Manuf. Technol. 58, 647–662 (2009).
[CrossRef]

Mimura, H.

K. Yamamura, Y. Sano, M. Shibahara, K. Yamauchi, H. Mimura, K. Endo, and Y. Mori, “Ultra precision machining utilizing numerically controlled scanning of localized atmospheric pressure plasma,” Jpn. J. Appl. Phys 45, 8270–8276 (2006).
[CrossRef]

Mori, Y.

K. Yamamura, Y. Sano, M. Shibahara, K. Yamauchi, H. Mimura, K. Endo, and Y. Mori, “Ultra precision machining utilizing numerically controlled scanning of localized atmospheric pressure plasma,” Jpn. J. Appl. Phys 45, 8270–8276 (2006).
[CrossRef]

H. Takino, N. Shibata, H. Itoh, T. Kobayashi, K. Nemoto, T. Fujii, N. Goto, K. Yamamura, Y. Sano, and Y. Mori, “Fabrication of small complex-shaped optics by plasma chemical vaporization machining with a microelectrode,” Appl. Opt. 45, 5897–5902 (2006).
[CrossRef] [PubMed]

H. Takino, N. Shibata, H. Itoh, T. Kobayashi, K. Yamamura, Y. Sano, and Y. Mori, “Fabrication of optics by use of plasma chemical vaporization machining with a pipe electrode,” Appl. Opt. 41, 3971–3977 (2002).
[CrossRef] [PubMed]

Y. Mori, K. Yamauchi, K. Yamamura, and Y. Sano, “Development of plasma chemical vaporization machining,” Rev. Sci. Instrum. 71, 4627–4632 (2000).
[CrossRef]

Y. Mori, K. Yamamura, and Y. Sano, “The study of fabrication of the x-ray mirror by numerically controlled plasma chemical vaporization machining: development of the machine for the x-ray mirror fabrication,” Rev. Sci. Instrum. 71, 4620–4626(2000).
[CrossRef]

H. Takino, N. Shibata, H. Itoh, T. Kobayashi, H. Tanaka, M. Ebi, K. Yamamura, Y. Sano, and Y. Mori, “Computer numerically controlled plasma chemical vaporization machining with a pipe electrode for optical fabrication,” Appl. Opt. 37, 5198–5210 (1998).
[CrossRef]

Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, and H. Kakiuchi, “Plasma CVM (chemical vaporization machining)—a chemical machining method with equal performances to conventional mechanical methods from the sense of removal rates and spatial resolutions,” in Proceedings of the Seventh International Precision Engineering Seminar (Butterworth-Heinemann, 1993), pp. 78–87.

Nemoto, K.

Nicholls, J. R.

C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, P. Sommer, and P. Fiske, “ A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE optical surfaces,” Proc. SPIE 6273, 62730A (2006).
[CrossRef]

C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, J. Kelley, J. Carr, and P. Sommer, “ A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE surfaces,” Adv. Eng. Mater. 8, 933–939 (2006).
[CrossRef]

Nickel, A.

A. Schindler, G. Boehm, T. Haensel, W. Frank, A. Nickel, B. Rauschenbach, and F. Bigl, “Precison optical asphere fabrication by plasma jet chemical etching (PJCE) and ion beam figuring,” Proc. SPIE 4451, 242–248 (2001).
[CrossRef]

G. Boehm, W. Frank, A. Schindler, A. Nickel, H. J. Thomas, F. Bigl, and M. Weiser, “Plasma jet chemical etching—a tool for the figuring of optical precision aspheres,” in Proceedings of the Ninth International Conference on Production Engineering (Japan Society for Precision Engineering, 1991), pp. 231–236.

O’Brien, W.

D. M. Allen, P. Shore, R. W. Evans, C. Fanara, W. O’Brien, S. Marson, and W. O’Neill, “Ion beam, focused ion beam, and plasma discharge machining,” CIRP Ann. Manuf. Technol. 58, 647–662 (2009).
[CrossRef]

O’Neill, W.

D. M. Allen, P. Shore, R. W. Evans, C. Fanara, W. O’Brien, S. Marson, and W. O’Neill, “Ion beam, focused ion beam, and plasma discharge machining,” CIRP Ann. Manuf. Technol. 58, 647–662 (2009).
[CrossRef]

Ohkubo, H.

H. Koinuma, H. Ohkubo, and T. Hashimoto, “Development and application of a microbeam plasma generator,” Appl. Phys. Lett. 60, 816–817 (1992).
[CrossRef]

Rauschenbach, B.

A. Schindler, G. Boehm, T. Haensel, W. Frank, A. Nickel, B. Rauschenbach, and F. Bigl, “Precison optical asphere fabrication by plasma jet chemical etching (PJCE) and ion beam figuring,” Proc. SPIE 4451, 242–248 (2001).
[CrossRef]

Samuels, J.

D. Bollinger, G. Gallatin, J. Samuels, G. Steinberg, and C. Zarowin, “Rapid, noncontact optical figuring of aspheric surfaces with plasma assisted chemical etching (PACE),” Proc. SPIE 1333, 44–57 (1990).
[CrossRef]

Sano, Y.

K. Yamamura, Y. Sano, M. Shibahara, K. Yamauchi, H. Mimura, K. Endo, and Y. Mori, “Ultra precision machining utilizing numerically controlled scanning of localized atmospheric pressure plasma,” Jpn. J. Appl. Phys 45, 8270–8276 (2006).
[CrossRef]

H. Takino, N. Shibata, H. Itoh, T. Kobayashi, K. Nemoto, T. Fujii, N. Goto, K. Yamamura, Y. Sano, and Y. Mori, “Fabrication of small complex-shaped optics by plasma chemical vaporization machining with a microelectrode,” Appl. Opt. 45, 5897–5902 (2006).
[CrossRef] [PubMed]

H. Takino, N. Shibata, H. Itoh, T. Kobayashi, K. Yamamura, Y. Sano, and Y. Mori, “Fabrication of optics by use of plasma chemical vaporization machining with a pipe electrode,” Appl. Opt. 41, 3971–3977 (2002).
[CrossRef] [PubMed]

Y. Mori, K. Yamauchi, K. Yamamura, and Y. Sano, “Development of plasma chemical vaporization machining,” Rev. Sci. Instrum. 71, 4627–4632 (2000).
[CrossRef]

Y. Mori, K. Yamamura, and Y. Sano, “The study of fabrication of the x-ray mirror by numerically controlled plasma chemical vaporization machining: development of the machine for the x-ray mirror fabrication,” Rev. Sci. Instrum. 71, 4620–4626(2000).
[CrossRef]

H. Takino, N. Shibata, H. Itoh, T. Kobayashi, H. Tanaka, M. Ebi, K. Yamamura, Y. Sano, and Y. Mori, “Computer numerically controlled plasma chemical vaporization machining with a pipe electrode for optical fabrication,” Appl. Opt. 37, 5198–5210 (1998).
[CrossRef]

Schindler, A.

A. Schindler, G. Boehm, T. Haensel, W. Frank, A. Nickel, B. Rauschenbach, and F. Bigl, “Precison optical asphere fabrication by plasma jet chemical etching (PJCE) and ion beam figuring,” Proc. SPIE 4451, 242–248 (2001).
[CrossRef]

G. Boehm, W. Frank, A. Schindler, A. Nickel, H. J. Thomas, F. Bigl, and M. Weiser, “Plasma jet chemical etching—a tool for the figuring of optical precision aspheres,” in Proceedings of the Ninth International Conference on Production Engineering (Japan Society for Precision Engineering, 1991), pp. 231–236.

Shibahara, M.

K. Yamamura, Y. Sano, M. Shibahara, K. Yamauchi, H. Mimura, K. Endo, and Y. Mori, “Ultra precision machining utilizing numerically controlled scanning of localized atmospheric pressure plasma,” Jpn. J. Appl. Phys 45, 8270–8276 (2006).
[CrossRef]

Shibata, N.

Shore, P.

D. M. Allen, P. Shore, R. W. Evans, C. Fanara, W. O’Brien, S. Marson, and W. O’Neill, “Ion beam, focused ion beam, and plasma discharge machining,” CIRP Ann. Manuf. Technol. 58, 647–662 (2009).
[CrossRef]

C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, P. Sommer, and P. Fiske, “ A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE optical surfaces,” Proc. SPIE 6273, 62730A (2006).
[CrossRef]

C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, J. Kelley, J. Carr, and P. Sommer, “ A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE surfaces,” Adv. Eng. Mater. 8, 933–939 (2006).
[CrossRef]

Sommer, P.

C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, J. Kelley, J. Carr, and P. Sommer, “ A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE surfaces,” Adv. Eng. Mater. 8, 933–939 (2006).
[CrossRef]

C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, P. Sommer, and P. Fiske, “ A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE optical surfaces,” Proc. SPIE 6273, 62730A (2006).
[CrossRef]

Steinberg, G.

D. Bollinger, G. Gallatin, J. Samuels, G. Steinberg, and C. Zarowin, “Rapid, noncontact optical figuring of aspheric surfaces with plasma assisted chemical etching (PACE),” Proc. SPIE 1333, 44–57 (1990).
[CrossRef]

Sugiyama, Y.

T. Ichiki, Y. Sugiyama, R. Taura, T. Koidesawa, and Y. Horiike, “Plasma applications for biochip technology,” Thin Solid Films 435, 62–68 (2003).
[CrossRef]

Takino, H.

Tanaka, H.

Taura, R.

T. Ichiki, R. Taura, and Y. Horiike, “Localized and ultrahigh-rate etching of silicon wafers using atmospheric-pressure microplasma jets,” J. Appl. Phys. 95, 35–39 (2004).
[CrossRef]

T. Ichiki, Y. Sugiyama, R. Taura, T. Koidesawa, and Y. Horiike, “Plasma applications for biochip technology,” Thin Solid Films 435, 62–68 (2003).
[CrossRef]

Thomas, H. J.

G. Boehm, W. Frank, A. Schindler, A. Nickel, H. J. Thomas, F. Bigl, and M. Weiser, “Plasma jet chemical etching—a tool for the figuring of optical precision aspheres,” in Proceedings of the Ninth International Conference on Production Engineering (Japan Society for Precision Engineering, 1991), pp. 231–236.

Weiser, M.

G. Boehm, W. Frank, A. Schindler, A. Nickel, H. J. Thomas, F. Bigl, and M. Weiser, “Plasma jet chemical etching—a tool for the figuring of optical precision aspheres,” in Proceedings of the Ninth International Conference on Production Engineering (Japan Society for Precision Engineering, 1991), pp. 231–236.

Yamamura, K.

K. Yamamura, Y. Sano, M. Shibahara, K. Yamauchi, H. Mimura, K. Endo, and Y. Mori, “Ultra precision machining utilizing numerically controlled scanning of localized atmospheric pressure plasma,” Jpn. J. Appl. Phys 45, 8270–8276 (2006).
[CrossRef]

H. Takino, N. Shibata, H. Itoh, T. Kobayashi, K. Nemoto, T. Fujii, N. Goto, K. Yamamura, Y. Sano, and Y. Mori, “Fabrication of small complex-shaped optics by plasma chemical vaporization machining with a microelectrode,” Appl. Opt. 45, 5897–5902 (2006).
[CrossRef] [PubMed]

H. Takino, N. Shibata, H. Itoh, T. Kobayashi, K. Yamamura, Y. Sano, and Y. Mori, “Fabrication of optics by use of plasma chemical vaporization machining with a pipe electrode,” Appl. Opt. 41, 3971–3977 (2002).
[CrossRef] [PubMed]

Y. Mori, K. Yamauchi, K. Yamamura, and Y. Sano, “Development of plasma chemical vaporization machining,” Rev. Sci. Instrum. 71, 4627–4632 (2000).
[CrossRef]

Y. Mori, K. Yamamura, and Y. Sano, “The study of fabrication of the x-ray mirror by numerically controlled plasma chemical vaporization machining: development of the machine for the x-ray mirror fabrication,” Rev. Sci. Instrum. 71, 4620–4626(2000).
[CrossRef]

H. Takino, N. Shibata, H. Itoh, T. Kobayashi, H. Tanaka, M. Ebi, K. Yamamura, Y. Sano, and Y. Mori, “Computer numerically controlled plasma chemical vaporization machining with a pipe electrode for optical fabrication,” Appl. Opt. 37, 5198–5210 (1998).
[CrossRef]

Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, and H. Kakiuchi, “Plasma CVM (chemical vaporization machining)—a chemical machining method with equal performances to conventional mechanical methods from the sense of removal rates and spatial resolutions,” in Proceedings of the Seventh International Precision Engineering Seminar (Butterworth-Heinemann, 1993), pp. 78–87.

Yamauchi, K.

K. Yamamura, Y. Sano, M. Shibahara, K. Yamauchi, H. Mimura, K. Endo, and Y. Mori, “Ultra precision machining utilizing numerically controlled scanning of localized atmospheric pressure plasma,” Jpn. J. Appl. Phys 45, 8270–8276 (2006).
[CrossRef]

Y. Mori, K. Yamauchi, K. Yamamura, and Y. Sano, “Development of plasma chemical vaporization machining,” Rev. Sci. Instrum. 71, 4627–4632 (2000).
[CrossRef]

Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, and H. Kakiuchi, “Plasma CVM (chemical vaporization machining)—a chemical machining method with equal performances to conventional mechanical methods from the sense of removal rates and spatial resolutions,” in Proceedings of the Seventh International Precision Engineering Seminar (Butterworth-Heinemann, 1993), pp. 78–87.

Yoshii, K.

Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, and H. Kakiuchi, “Plasma CVM (chemical vaporization machining)—a chemical machining method with equal performances to conventional mechanical methods from the sense of removal rates and spatial resolutions,” in Proceedings of the Seventh International Precision Engineering Seminar (Butterworth-Heinemann, 1993), pp. 78–87.

Zarowin, C.

D. Bollinger, G. Gallatin, J. Samuels, G. Steinberg, and C. Zarowin, “Rapid, noncontact optical figuring of aspheric surfaces with plasma assisted chemical etching (PACE),” Proc. SPIE 1333, 44–57 (1990).
[CrossRef]

Adv. Eng. Mater. (1)

C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, J. Kelley, J. Carr, and P. Sommer, “ A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE surfaces,” Adv. Eng. Mater. 8, 933–939 (2006).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

L. Bárdos, S. Berg, and H.-O. Blom, “Superhigh-rate plasma jet etching of silicon,” Appl. Phys. Lett. 55, 1615–1617 (1989).
[CrossRef]

H. Koinuma, H. Ohkubo, and T. Hashimoto, “Development and application of a microbeam plasma generator,” Appl. Phys. Lett. 60, 816–817 (1992).
[CrossRef]

CIRP Ann. Manuf. Technol. (1)

D. M. Allen, P. Shore, R. W. Evans, C. Fanara, W. O’Brien, S. Marson, and W. O’Neill, “Ion beam, focused ion beam, and plasma discharge machining,” CIRP Ann. Manuf. Technol. 58, 647–662 (2009).
[CrossRef]

J. Appl. Phys. (1)

T. Ichiki, R. Taura, and Y. Horiike, “Localized and ultrahigh-rate etching of silicon wafers using atmospheric-pressure microplasma jets,” J. Appl. Phys. 95, 35–39 (2004).
[CrossRef]

Jpn. J. Appl. Phys (1)

K. Yamamura, Y. Sano, M. Shibahara, K. Yamauchi, H. Mimura, K. Endo, and Y. Mori, “Ultra precision machining utilizing numerically controlled scanning of localized atmospheric pressure plasma,” Jpn. J. Appl. Phys 45, 8270–8276 (2006).
[CrossRef]

Proc. SPIE (3)

D. Bollinger, G. Gallatin, J. Samuels, G. Steinberg, and C. Zarowin, “Rapid, noncontact optical figuring of aspheric surfaces with plasma assisted chemical etching (PACE),” Proc. SPIE 1333, 44–57 (1990).
[CrossRef]

C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, P. Sommer, and P. Fiske, “ A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE optical surfaces,” Proc. SPIE 6273, 62730A (2006).
[CrossRef]

A. Schindler, G. Boehm, T. Haensel, W. Frank, A. Nickel, B. Rauschenbach, and F. Bigl, “Precison optical asphere fabrication by plasma jet chemical etching (PJCE) and ion beam figuring,” Proc. SPIE 4451, 242–248 (2001).
[CrossRef]

Rev. Sci. Instrum. (2)

Y. Mori, K. Yamauchi, K. Yamamura, and Y. Sano, “Development of plasma chemical vaporization machining,” Rev. Sci. Instrum. 71, 4627–4632 (2000).
[CrossRef]

Y. Mori, K. Yamamura, and Y. Sano, “The study of fabrication of the x-ray mirror by numerically controlled plasma chemical vaporization machining: development of the machine for the x-ray mirror fabrication,” Rev. Sci. Instrum. 71, 4620–4626(2000).
[CrossRef]

Thin Solid Films (1)

T. Ichiki, Y. Sugiyama, R. Taura, T. Koidesawa, and Y. Horiike, “Plasma applications for biochip technology,” Thin Solid Films 435, 62–68 (2003).
[CrossRef]

Other (2)

Y. Mori, K. Yamamura, K. Yamauchi, K. Yoshii, T. Kataoka, K. Endo, K. Inagaki, and H. Kakiuchi, “Plasma CVM (chemical vaporization machining)—a chemical machining method with equal performances to conventional mechanical methods from the sense of removal rates and spatial resolutions,” in Proceedings of the Seventh International Precision Engineering Seminar (Butterworth-Heinemann, 1993), pp. 78–87.

G. Boehm, W. Frank, A. Schindler, A. Nickel, H. J. Thomas, F. Bigl, and M. Weiser, “Plasma jet chemical etching—a tool for the figuring of optical precision aspheres,” in Proceedings of the Ninth International Conference on Production Engineering (Japan Society for Precision Engineering, 1991), pp. 231–236.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the shaping method principle for the optics by use of plasma CVM with a pipe electrode. Plasma is generated at the tip of the pipe electrode. Process gas is supplied to the plasma through the pipe electrode. The workpiece is scanned under a numerically controlled computer.

Fig. 2
Fig. 2

Schematic of shaping methods for the investigation of removal characteristics. (a) Plasma CVM with a pipe electrode: the workpiece is processed while it moves back and forth relative to an electrode. (b) Precision grinding: one entire side of the rotating workpiece is ground. (c) Small-tool polishing: rotating workpiece is polished with a small polisher to remove a ring-shaped area.

Fig. 3
Fig. 3

Example of the shape of a stationary removal mark produced by a pipe electrode with a diameter of 4 mm .

Fig. 4
Fig. 4

Distribution of surface roughness and removal rate for plasma CVM, precision grinding, and small-tool polishing under various removal conditions. The plots for polishing indicate the estimated value for a 4 mm polisher based on the experimental values obtained using a 20 mm polisher.

Fig. 5
Fig. 5

Change in the surface roughness with increasing removal depth of plasma CVM. Rr is the removal rate of plasma CVM.

Fig. 6
Fig. 6

Roughness profiles of the surfaces processed by plasma CVM. (a) Initial, polished surface. Surface roughness is 0.29 nm rms . (b) Processed surface with a removal depth of 1.5 μm . Surface roughness is 0.28 nm rms . (c) Processed surface with a removal depth of 4.6 μm . Surface roughness is 0.24 nm rms .

Fig. 7
Fig. 7

Change in the surface roughness with increasing removal depth of plasma CVM. The initial surfaces were ground with a 600, 1000, or 1500 grit wheel.

Fig. 8
Fig. 8

Nomarski micrographs of the surfaces processed by plasma CVM. (a) Initial surface ground with a 1000 grit wheel. (b) Processed surface with a removal depth of 17 μm . (b) Processed surface with a removal depth of 26 μm .

Fig. 9
Fig. 9

PSD distributions of the surfaces before and after plasma CVM. Dotted curve shows PSD distributions of an initial surface ground with a 1500 grit wheel. Solid curve shows PSD distributions of a surface processed by plasma CVM with a removal depth of 26 μm .

Tables (1)

Tables Icon

Table 1 Process Conditions

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

V s = 2 π ξ A sr .

Metrics