Abstract

A handheld-probe-based optical imager has recently been developed toward three-dimensional tomography. In this study, the improvement of target depth recovery was demonstrated using a multi-projection technique on large slab phantoms using 0.45cc fluorescing target(s) (with 10 contrast ratio) of 1.5 to 2.5cm deep. Tomographic results using single- and multi- (here dual) projection measurements (with and without a priori information of target location) were compared. In all experimental cases, the use of multi-projection measurements along with a priori information recovered target depth and location closer to their true values, demonstrating its applicability for clinical translation.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Cross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
    [CrossRef]
  2. B. J. Tromberg, “Optical scanning and breast cancer,” Acad. Radiol. 12, 923–924 (2005).
    [CrossRef] [PubMed]
  3. T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71, 2500–2513 (2000).
    [CrossRef]
  4. N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. J. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
    [CrossRef] [PubMed]
  5. N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” J. Biomed. Opt. 9, 534–540 (2004).
    [CrossRef] [PubMed]
  6. D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–238 (2004).
    [CrossRef] [PubMed]
  7. N. Chen, M. Huang, H. Xia, and D. Piao, “Portable near-infrared diffusive light imager for breast cancer detection,” J. Biomed. Opt. 9, 504–510 (2004).
    [CrossRef] [PubMed]
  8. B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12, 925–933 (2005).
    [CrossRef] [PubMed]
  9. B. Chance, Z. Zhao, S. Wen, and Y. Chen, “Simple ac circuit for breast cancer detection and object detection,” Rev. Sci. Instrum. 77, 064301 (2006).
    [CrossRef]
  10. K. S. No and P. H. Chou, “Mini-FDPM and heterodyne mini-FDPM: handheld non-invasive breast cancer detectors based on frequency domain photon migration,” IEEE Trans. Circuits Syst. 52, 2672–2685 (2005).
    [CrossRef]
  11. K. S. No, Q. Xie, R. Kwong, A. Cerussi, B. J. Tromberg, and P. Chou, “HBS: a handheld breast cancer detector based on frequency domain photon migration with full heterodyne,” in Proceedings of the IEEE Biomedical Circuits and Systems Conference (IEEE, 2006), pp. 114–117.
    [CrossRef]
  12. T. Durduran, R. Choe, G. Yu, C. Zhou, J. C. Tchou, B. J. Czemiecki, and A. G. Yodh, “Diffuse optical measurement of blood flow in breast tumors,” Opt. Lett. 30, 2915–2917 (2005).
    [CrossRef] [PubMed]
  13. Q. Zhu, S. H. Kurtzman, P. Hedge, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7, 263–270 (2005).
    [CrossRef] [PubMed]
  14. B. Jayachandran, J. Ge, S. Regalado, and A. Godavarty, “Design and development of a hand-held optical probe towards fluorescence diagnostic imaging,” J. Biomed. Opt. 12, 054014(2007).
    [CrossRef] [PubMed]
  15. J. Ge, B. Zhu, S. Regalado, and A. Godavarty, “Three-dimensional fluorescence-enhanced optical tomography using a hand-held probe based imaging system,” Med. Phys. 35, 3354–3363 (2008).
    [CrossRef] [PubMed]
  16. V. A. Markel and J. C. Schotland, “Dual-projection optical diffusion tomography,” Opt. Lett. 29, 2019–2021 (2004).
    [CrossRef] [PubMed]
  17. V. A. Markel and J. C. Schotland, “Multiple projection optical diffusion tomography with plane wave illumination,” Phys. Med. Biol. 50, 2351–2364 (2005).
    [CrossRef] [PubMed]
  18. T. Lasser and V. Ntziachristos, “Optimization of 360 degrees projection fluorescence molecular tomography,” Med. Image Anal. 11, 389–399 (2007).
    [CrossRef] [PubMed]
  19. N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360 degrees geometry projections,” Opt. Lett. 32, 382–384 (2007).
    [CrossRef] [PubMed]
  20. A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain modulated ICCD camera,” Phys. Med. Biol. 48, 1701–1720 (2003).
    [CrossRef] [PubMed]
  21. A. Godavarty, A. B. Thompson, R. Roy, M. J. Eppstein, C. Zhang, M. Gurfinkel, and E. M. Sevick-Muraca, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9(3), 488–496(2004).
    [CrossRef] [PubMed]
  22. A. Joshi, W. Bangerth, K. Hwang, J. C. Rasmussen, and E. M. Sevick-Muraca, “Fully adaptive FEM based fluorescence optical tomography from time-dependent measurements with area illumination and detection,” Med. Phys. 33, 1299–1310 (2006).
    [CrossRef] [PubMed]
  23. A. Joshi, W. Bangerth, K. Hwang, J. C. Rasmussen, and E. M. Sevick-Muraca, “Plane-wave fluorescence tomography with adaptive finite elements,” Opt. Lett. 31, 193–195(2006).
    [CrossRef] [PubMed]
  24. D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth,” Appl. Opt. 46, 1669–1678 (2007).
    [CrossRef] [PubMed]
  25. D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Challenges in sub-surface fluorescence diffuse optical imaging,” Proc. SPIE 6434, 64340R (2007).
    [CrossRef]
  26. M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz, and E. M. Sevick-Muraca, “Three dimensional bayesian optical image reconstruction with domain decomposition,” IEEE Trans. Med. Imaging 20, 147–163 (2001).
    [CrossRef] [PubMed]
  27. S. Regalado, S. J. Erickson, B. Zhu, J. Ge, and A. Godavarty, “Automated real-time coregistered imaging using a hand-held probe-based optical imager,” Rev. Sci. Instrum. 81, 023702(2010).
    [CrossRef] [PubMed]
  28. Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J. Biomed. Opt. 10, 024033 (2005).
    [CrossRef] [PubMed]
  29. Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Phys. Med. Biol. 52, 5569–5585 (2007).
    [CrossRef] [PubMed]

2010

S. Regalado, S. J. Erickson, B. Zhu, J. Ge, and A. Godavarty, “Automated real-time coregistered imaging using a hand-held probe-based optical imager,” Rev. Sci. Instrum. 81, 023702(2010).
[CrossRef] [PubMed]

2008

J. Ge, B. Zhu, S. Regalado, and A. Godavarty, “Three-dimensional fluorescence-enhanced optical tomography using a hand-held probe based imaging system,” Med. Phys. 35, 3354–3363 (2008).
[CrossRef] [PubMed]

2007

T. Lasser and V. Ntziachristos, “Optimization of 360 degrees projection fluorescence molecular tomography,” Med. Image Anal. 11, 389–399 (2007).
[CrossRef] [PubMed]

N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360 degrees geometry projections,” Opt. Lett. 32, 382–384 (2007).
[CrossRef] [PubMed]

B. Jayachandran, J. Ge, S. Regalado, and A. Godavarty, “Design and development of a hand-held optical probe towards fluorescence diagnostic imaging,” J. Biomed. Opt. 12, 054014(2007).
[CrossRef] [PubMed]

D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth,” Appl. Opt. 46, 1669–1678 (2007).
[CrossRef] [PubMed]

D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Challenges in sub-surface fluorescence diffuse optical imaging,” Proc. SPIE 6434, 64340R (2007).
[CrossRef]

Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Phys. Med. Biol. 52, 5569–5585 (2007).
[CrossRef] [PubMed]

2006

A. Joshi, W. Bangerth, K. Hwang, J. C. Rasmussen, and E. M. Sevick-Muraca, “Fully adaptive FEM based fluorescence optical tomography from time-dependent measurements with area illumination and detection,” Med. Phys. 33, 1299–1310 (2006).
[CrossRef] [PubMed]

A. Joshi, W. Bangerth, K. Hwang, J. C. Rasmussen, and E. M. Sevick-Muraca, “Plane-wave fluorescence tomography with adaptive finite elements,” Opt. Lett. 31, 193–195(2006).
[CrossRef] [PubMed]

K. S. No, Q. Xie, R. Kwong, A. Cerussi, B. J. Tromberg, and P. Chou, “HBS: a handheld breast cancer detector based on frequency domain photon migration with full heterodyne,” in Proceedings of the IEEE Biomedical Circuits and Systems Conference (IEEE, 2006), pp. 114–117.
[CrossRef]

B. Chance, Z. Zhao, S. Wen, and Y. Chen, “Simple ac circuit for breast cancer detection and object detection,” Rev. Sci. Instrum. 77, 064301 (2006).
[CrossRef]

2005

K. S. No and P. H. Chou, “Mini-FDPM and heterodyne mini-FDPM: handheld non-invasive breast cancer detectors based on frequency domain photon migration,” IEEE Trans. Circuits Syst. 52, 2672–2685 (2005).
[CrossRef]

B. J. Tromberg, “Optical scanning and breast cancer,” Acad. Radiol. 12, 923–924 (2005).
[CrossRef] [PubMed]

T. Durduran, R. Choe, G. Yu, C. Zhou, J. C. Tchou, B. J. Czemiecki, and A. G. Yodh, “Diffuse optical measurement of blood flow in breast tumors,” Opt. Lett. 30, 2915–2917 (2005).
[CrossRef] [PubMed]

Q. Zhu, S. H. Kurtzman, P. Hedge, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7, 263–270 (2005).
[CrossRef] [PubMed]

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12, 925–933 (2005).
[CrossRef] [PubMed]

V. A. Markel and J. C. Schotland, “Multiple projection optical diffusion tomography with plane wave illumination,” Phys. Med. Biol. 50, 2351–2364 (2005).
[CrossRef] [PubMed]

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J. Biomed. Opt. 10, 024033 (2005).
[CrossRef] [PubMed]

2004

A. Godavarty, A. B. Thompson, R. Roy, M. J. Eppstein, C. Zhang, M. Gurfinkel, and E. M. Sevick-Muraca, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9(3), 488–496(2004).
[CrossRef] [PubMed]

V. A. Markel and J. C. Schotland, “Dual-projection optical diffusion tomography,” Opt. Lett. 29, 2019–2021 (2004).
[CrossRef] [PubMed]

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” J. Biomed. Opt. 9, 534–540 (2004).
[CrossRef] [PubMed]

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–238 (2004).
[CrossRef] [PubMed]

N. Chen, M. Huang, H. Xia, and D. Piao, “Portable near-infrared diffusive light imager for breast cancer detection,” J. Biomed. Opt. 9, 504–510 (2004).
[CrossRef] [PubMed]

2003

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain modulated ICCD camera,” Phys. Med. Biol. 48, 1701–1720 (2003).
[CrossRef] [PubMed]

2001

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. J. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
[CrossRef] [PubMed]

M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz, and E. M. Sevick-Muraca, “Three dimensional bayesian optical image reconstruction with domain decomposition,” IEEE Trans. Med. Imaging 20, 147–163 (2001).
[CrossRef] [PubMed]

2000

T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71, 2500–2513 (2000).
[CrossRef]

1997

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Cross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Anderson, E.

T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71, 2500–2513 (2000).
[CrossRef]

Anderson, E. R.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Cross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Bangerth, W.

A. Joshi, W. Bangerth, K. Hwang, J. C. Rasmussen, and E. M. Sevick-Muraca, “Fully adaptive FEM based fluorescence optical tomography from time-dependent measurements with area illumination and detection,” Med. Phys. 33, 1299–1310 (2006).
[CrossRef] [PubMed]

A. Joshi, W. Bangerth, K. Hwang, J. C. Rasmussen, and E. M. Sevick-Muraca, “Plane-wave fluorescence tomography with adaptive finite elements,” Opt. Lett. 31, 193–195(2006).
[CrossRef] [PubMed]

Bevilacqua, F.

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–238 (2004).
[CrossRef] [PubMed]

Boas, D. A.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J. Biomed. Opt. 10, 024033 (2005).
[CrossRef] [PubMed]

Briest, S.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12, 925–933 (2005).
[CrossRef] [PubMed]

Brukilacchio, T. J.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J. Biomed. Opt. 10, 024033 (2005).
[CrossRef] [PubMed]

Butler, J.

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–238 (2004).
[CrossRef] [PubMed]

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” J. Biomed. Opt. 9, 534–540 (2004).
[CrossRef] [PubMed]

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. J. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
[CrossRef] [PubMed]

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Cross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Cahn, M.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Cross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Cerussi, A.

K. S. No, Q. Xie, R. Kwong, A. Cerussi, B. J. Tromberg, and P. Chou, “HBS: a handheld breast cancer detector based on frequency domain photon migration with full heterodyne,” in Proceedings of the IEEE Biomedical Circuits and Systems Conference (IEEE, 2006), pp. 114–117.
[CrossRef]

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. J. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
[CrossRef] [PubMed]

Cerussi, A. E.

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” J. Biomed. Opt. 9, 534–540 (2004).
[CrossRef] [PubMed]

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–238 (2004).
[CrossRef] [PubMed]

Chance, B.

B. Chance, Z. Zhao, S. Wen, and Y. Chen, “Simple ac circuit for breast cancer detection and object detection,” Rev. Sci. Instrum. 77, 064301 (2006).
[CrossRef]

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12, 925–933 (2005).
[CrossRef] [PubMed]

Chaves, T.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J. Biomed. Opt. 10, 024033 (2005).
[CrossRef] [PubMed]

Chen, N.

N. Chen, M. Huang, H. Xia, and D. Piao, “Portable near-infrared diffusive light imager for breast cancer detection,” J. Biomed. Opt. 9, 504–510 (2004).
[CrossRef] [PubMed]

Chen, N. G.

Q. Zhu, S. H. Kurtzman, P. Hedge, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7, 263–270 (2005).
[CrossRef] [PubMed]

Chen, Y.

B. Chance, Z. Zhao, S. Wen, and Y. Chen, “Simple ac circuit for breast cancer detection and object detection,” Rev. Sci. Instrum. 77, 064301 (2006).
[CrossRef]

Choe, R.

Chorlton, M.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J. Biomed. Opt. 10, 024033 (2005).
[CrossRef] [PubMed]

Chou, P.

K. S. No, Q. Xie, R. Kwong, A. Cerussi, B. J. Tromberg, and P. Chou, “HBS: a handheld breast cancer detector based on frequency domain photon migration with full heterodyne,” in Proceedings of the IEEE Biomedical Circuits and Systems Conference (IEEE, 2006), pp. 114–117.
[CrossRef]

Chou, P. H.

K. S. No and P. H. Chou, “Mini-FDPM and heterodyne mini-FDPM: handheld non-invasive breast cancer detectors based on frequency domain photon migration,” IEEE Trans. Circuits Syst. 52, 2672–2685 (2005).
[CrossRef]

Conant, E. F.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12, 925–933 (2005).
[CrossRef] [PubMed]

Coquoz, O.

T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71, 2500–2513 (2000).
[CrossRef]

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Cross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Cross, J. D.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Cross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Czemiecki, B. J.

Czerniecki, B. J.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12, 925–933 (2005).
[CrossRef] [PubMed]

Davis, S. C.

Dehghani, H.

Deliolanis, N.

Dougherty, D. E.

M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz, and E. M. Sevick-Muraca, “Three dimensional bayesian optical image reconstruction with domain decomposition,” IEEE Trans. Med. Imaging 20, 147–163 (2001).
[CrossRef] [PubMed]

Durduran, T.

Eker, C.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. J. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
[CrossRef] [PubMed]

Eppstein, M. J.

A. Godavarty, A. B. Thompson, R. Roy, M. J. Eppstein, C. Zhang, M. Gurfinkel, and E. M. Sevick-Muraca, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9(3), 488–496(2004).
[CrossRef] [PubMed]

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain modulated ICCD camera,” Phys. Med. Biol. 48, 1701–1720 (2003).
[CrossRef] [PubMed]

M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz, and E. M. Sevick-Muraca, “Three dimensional bayesian optical image reconstruction with domain decomposition,” IEEE Trans. Med. Imaging 20, 147–163 (2001).
[CrossRef] [PubMed]

Erickson, S. J.

S. Regalado, S. J. Erickson, B. Zhu, J. Ge, and A. Godavarty, “Automated real-time coregistered imaging using a hand-held probe-based optical imager,” Rev. Sci. Instrum. 81, 023702(2010).
[CrossRef] [PubMed]

Espinoza, J.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. J. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
[CrossRef] [PubMed]

Fishkin, J.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. J. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
[CrossRef] [PubMed]

Fishkin, J. B.

T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71, 2500–2513 (2000).
[CrossRef]

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Cross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Gao, H.

Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Phys. Med. Biol. 52, 5569–5585 (2007).
[CrossRef] [PubMed]

Ge, J.

S. Regalado, S. J. Erickson, B. Zhu, J. Ge, and A. Godavarty, “Automated real-time coregistered imaging using a hand-held probe-based optical imager,” Rev. Sci. Instrum. 81, 023702(2010).
[CrossRef] [PubMed]

J. Ge, B. Zhu, S. Regalado, and A. Godavarty, “Three-dimensional fluorescence-enhanced optical tomography using a hand-held probe based imaging system,” Med. Phys. 35, 3354–3363 (2008).
[CrossRef] [PubMed]

B. Jayachandran, J. Ge, S. Regalado, and A. Godavarty, “Design and development of a hand-held optical probe towards fluorescence diagnostic imaging,” J. Biomed. Opt. 12, 054014(2007).
[CrossRef] [PubMed]

Godavarty, A.

S. Regalado, S. J. Erickson, B. Zhu, J. Ge, and A. Godavarty, “Automated real-time coregistered imaging using a hand-held probe-based optical imager,” Rev. Sci. Instrum. 81, 023702(2010).
[CrossRef] [PubMed]

J. Ge, B. Zhu, S. Regalado, and A. Godavarty, “Three-dimensional fluorescence-enhanced optical tomography using a hand-held probe based imaging system,” Med. Phys. 35, 3354–3363 (2008).
[CrossRef] [PubMed]

B. Jayachandran, J. Ge, S. Regalado, and A. Godavarty, “Design and development of a hand-held optical probe towards fluorescence diagnostic imaging,” J. Biomed. Opt. 12, 054014(2007).
[CrossRef] [PubMed]

A. Godavarty, A. B. Thompson, R. Roy, M. J. Eppstein, C. Zhang, M. Gurfinkel, and E. M. Sevick-Muraca, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9(3), 488–496(2004).
[CrossRef] [PubMed]

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain modulated ICCD camera,” Phys. Med. Biol. 48, 1701–1720 (2003).
[CrossRef] [PubMed]

Gulsen, G.

Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Phys. Med. Biol. 52, 5569–5585 (2007).
[CrossRef] [PubMed]

Gurfinkel, M.

A. Godavarty, A. B. Thompson, R. Roy, M. J. Eppstein, C. Zhang, M. Gurfinkel, and E. M. Sevick-Muraca, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9(3), 488–496(2004).
[CrossRef] [PubMed]

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain modulated ICCD camera,” Phys. Med. Biol. 48, 1701–1720 (2003).
[CrossRef] [PubMed]

Hawrysz, D. J.

M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz, and E. M. Sevick-Muraca, “Three dimensional bayesian optical image reconstruction with domain decomposition,” IEEE Trans. Med. Imaging 20, 147–163 (2001).
[CrossRef] [PubMed]

Hedge, P.

Q. Zhu, S. H. Kurtzman, P. Hedge, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7, 263–270 (2005).
[CrossRef] [PubMed]

Hillman, E.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J. Biomed. Opt. 10, 024033 (2005).
[CrossRef] [PubMed]

Hornung, R.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. J. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
[CrossRef] [PubMed]

Hsiang, D.

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–238 (2004).
[CrossRef] [PubMed]

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” J. Biomed. Opt. 9, 534–540 (2004).
[CrossRef] [PubMed]

Huang, M.

Q. Zhu, S. H. Kurtzman, P. Hedge, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7, 263–270 (2005).
[CrossRef] [PubMed]

N. Chen, M. Huang, H. Xia, and D. Piao, “Portable near-infrared diffusive light imager for breast cancer detection,” J. Biomed. Opt. 9, 504–510 (2004).
[CrossRef] [PubMed]

Hwang, E.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12, 925–933 (2005).
[CrossRef] [PubMed]

Hwang, K.

A. Joshi, W. Bangerth, K. Hwang, J. C. Rasmussen, and E. M. Sevick-Muraca, “Fully adaptive FEM based fluorescence optical tomography from time-dependent measurements with area illumination and detection,” Med. Phys. 33, 1299–1310 (2006).
[CrossRef] [PubMed]

A. Joshi, W. Bangerth, K. Hwang, J. C. Rasmussen, and E. M. Sevick-Muraca, “Plane-wave fluorescence tomography with adaptive finite elements,” Opt. Lett. 31, 193–195(2006).
[CrossRef] [PubMed]

Hyde, D.

Jagjivan, B.

Q. Zhu, S. H. Kurtzman, P. Hedge, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7, 263–270 (2005).
[CrossRef] [PubMed]

Jakubowski, D.

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” J. Biomed. Opt. 9, 534–540 (2004).
[CrossRef] [PubMed]

Jakubowski, D. B.

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–238 (2004).
[CrossRef] [PubMed]

Jayachandran, B.

B. Jayachandran, J. Ge, S. Regalado, and A. Godavarty, “Design and development of a hand-held optical probe towards fluorescence diagnostic imaging,” J. Biomed. Opt. 12, 054014(2007).
[CrossRef] [PubMed]

Joshi, A.

A. Joshi, W. Bangerth, K. Hwang, J. C. Rasmussen, and E. M. Sevick-Muraca, “Fully adaptive FEM based fluorescence optical tomography from time-dependent measurements with area illumination and detection,” Med. Phys. 33, 1299–1310 (2006).
[CrossRef] [PubMed]

A. Joshi, W. Bangerth, K. Hwang, J. C. Rasmussen, and E. M. Sevick-Muraca, “Plane-wave fluorescence tomography with adaptive finite elements,” Opt. Lett. 31, 193–195(2006).
[CrossRef] [PubMed]

Kane, M.

Q. Zhu, S. H. Kurtzman, P. Hedge, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7, 263–270 (2005).
[CrossRef] [PubMed]

Kepshire, D. S.

Kopans, D. B.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J. Biomed. Opt. 10, 024033 (2005).
[CrossRef] [PubMed]

Kurtzman, S. H.

Q. Zhu, S. H. Kurtzman, P. Hedge, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7, 263–270 (2005).
[CrossRef] [PubMed]

Kwong, R.

K. S. No, Q. Xie, R. Kwong, A. Cerussi, B. J. Tromberg, and P. Chou, “HBS: a handheld breast cancer detector based on frequency domain photon migration with full heterodyne,” in Proceedings of the IEEE Biomedical Circuits and Systems Conference (IEEE, 2006), pp. 114–117.
[CrossRef]

Lasser, T.

Li, A.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J. Biomed. Opt. 10, 024033 (2005).
[CrossRef] [PubMed]

Lin, Y.

Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Phys. Med. Biol. 52, 5569–5585 (2007).
[CrossRef] [PubMed]

Markel, V. A.

V. A. Markel and J. C. Schotland, “Multiple projection optical diffusion tomography with plane wave illumination,” Phys. Med. Biol. 50, 2351–2364 (2005).
[CrossRef] [PubMed]

V. A. Markel and J. C. Schotland, “Dual-projection optical diffusion tomography,” Opt. Lett. 29, 2019–2021 (2004).
[CrossRef] [PubMed]

Moore, R. H.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J. Biomed. Opt. 10, 024033 (2005).
[CrossRef] [PubMed]

Nalcioglu, O.

Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Phys. Med. Biol. 52, 5569–5585 (2007).
[CrossRef] [PubMed]

Nioka, S.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12, 925–933 (2005).
[CrossRef] [PubMed]

No, K. S.

K. S. No, Q. Xie, R. Kwong, A. Cerussi, B. J. Tromberg, and P. Chou, “HBS: a handheld breast cancer detector based on frequency domain photon migration with full heterodyne,” in Proceedings of the IEEE Biomedical Circuits and Systems Conference (IEEE, 2006), pp. 114–117.
[CrossRef]

K. S. No and P. H. Chou, “Mini-FDPM and heterodyne mini-FDPM: handheld non-invasive breast cancer detectors based on frequency domain photon migration,” IEEE Trans. Circuits Syst. 52, 2672–2685 (2005).
[CrossRef]

Ntziachristos, V.

Orel, S. G.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12, 925–933 (2005).
[CrossRef] [PubMed]

Paulsen, K. D.

Pham, D.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Cross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Pham, T.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Cross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Pham, T. H.

T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71, 2500–2513 (2000).
[CrossRef]

Piao, D.

N. Chen, M. Huang, H. Xia, and D. Piao, “Portable near-infrared diffusive light imager for breast cancer detection,” J. Biomed. Opt. 9, 504–510 (2004).
[CrossRef] [PubMed]

Pogue, B. W.

Rafferty, E.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J. Biomed. Opt. 10, 024033 (2005).
[CrossRef] [PubMed]

Rasmussen, J. C.

A. Joshi, W. Bangerth, K. Hwang, J. C. Rasmussen, and E. M. Sevick-Muraca, “Plane-wave fluorescence tomography with adaptive finite elements,” Opt. Lett. 31, 193–195(2006).
[CrossRef] [PubMed]

A. Joshi, W. Bangerth, K. Hwang, J. C. Rasmussen, and E. M. Sevick-Muraca, “Fully adaptive FEM based fluorescence optical tomography from time-dependent measurements with area illumination and detection,” Med. Phys. 33, 1299–1310 (2006).
[CrossRef] [PubMed]

Regalado, S.

S. Regalado, S. J. Erickson, B. Zhu, J. Ge, and A. Godavarty, “Automated real-time coregistered imaging using a hand-held probe-based optical imager,” Rev. Sci. Instrum. 81, 023702(2010).
[CrossRef] [PubMed]

J. Ge, B. Zhu, S. Regalado, and A. Godavarty, “Three-dimensional fluorescence-enhanced optical tomography using a hand-held probe based imaging system,” Med. Phys. 35, 3354–3363 (2008).
[CrossRef] [PubMed]

B. Jayachandran, J. Ge, S. Regalado, and A. Godavarty, “Design and development of a hand-held optical probe towards fluorescence diagnostic imaging,” J. Biomed. Opt. 12, 054014(2007).
[CrossRef] [PubMed]

Ripoll, J.

Roy, R.

A. Godavarty, A. B. Thompson, R. Roy, M. J. Eppstein, C. Zhang, M. Gurfinkel, and E. M. Sevick-Muraca, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9(3), 488–496(2004).
[CrossRef] [PubMed]

Schnall, M. D.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12, 925–933 (2005).
[CrossRef] [PubMed]

Schotland, J. C.

V. A. Markel and J. C. Schotland, “Multiple projection optical diffusion tomography with plane wave illumination,” Phys. Med. Biol. 50, 2351–2364 (2005).
[CrossRef] [PubMed]

V. A. Markel and J. C. Schotland, “Dual-projection optical diffusion tomography,” Opt. Lett. 29, 2019–2021 (2004).
[CrossRef] [PubMed]

Sevick-Muraca, E. M.

A. Joshi, W. Bangerth, K. Hwang, J. C. Rasmussen, and E. M. Sevick-Muraca, “Plane-wave fluorescence tomography with adaptive finite elements,” Opt. Lett. 31, 193–195(2006).
[CrossRef] [PubMed]

A. Joshi, W. Bangerth, K. Hwang, J. C. Rasmussen, and E. M. Sevick-Muraca, “Fully adaptive FEM based fluorescence optical tomography from time-dependent measurements with area illumination and detection,” Med. Phys. 33, 1299–1310 (2006).
[CrossRef] [PubMed]

A. Godavarty, A. B. Thompson, R. Roy, M. J. Eppstein, C. Zhang, M. Gurfinkel, and E. M. Sevick-Muraca, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9(3), 488–496(2004).
[CrossRef] [PubMed]

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain modulated ICCD camera,” Phys. Med. Biol. 48, 1701–1720 (2003).
[CrossRef] [PubMed]

M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz, and E. M. Sevick-Muraca, “Three dimensional bayesian optical image reconstruction with domain decomposition,” IEEE Trans. Med. Imaging 20, 147–163 (2001).
[CrossRef] [PubMed]

Shah, N.

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–238 (2004).
[CrossRef] [PubMed]

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” J. Biomed. Opt. 9, 534–540 (2004).
[CrossRef] [PubMed]

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. J. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
[CrossRef] [PubMed]

Soubret, A.

Stott, J. J.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J. Biomed. Opt. 10, 024033 (2005).
[CrossRef] [PubMed]

Tannenbaum, S.

Q. Zhu, S. H. Kurtzman, P. Hedge, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7, 263–270 (2005).
[CrossRef] [PubMed]

Tchou, J. C.

Theru, S.

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain modulated ICCD camera,” Phys. Med. Biol. 48, 1701–1720 (2003).
[CrossRef] [PubMed]

Thompson, A. B.

A. Godavarty, A. B. Thompson, R. Roy, M. J. Eppstein, C. Zhang, M. Gurfinkel, and E. M. Sevick-Muraca, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9(3), 488–496(2004).
[CrossRef] [PubMed]

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain modulated ICCD camera,” Phys. Med. Biol. 48, 1701–1720 (2003).
[CrossRef] [PubMed]

Tromberg, B. J.

K. S. No, Q. Xie, R. Kwong, A. Cerussi, B. J. Tromberg, and P. Chou, “HBS: a handheld breast cancer detector based on frequency domain photon migration with full heterodyne,” in Proceedings of the IEEE Biomedical Circuits and Systems Conference (IEEE, 2006), pp. 114–117.
[CrossRef]

B. J. Tromberg, “Optical scanning and breast cancer,” Acad. Radiol. 12, 923–924 (2005).
[CrossRef] [PubMed]

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” J. Biomed. Opt. 9, 534–540 (2004).
[CrossRef] [PubMed]

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–238 (2004).
[CrossRef] [PubMed]

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. J. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
[CrossRef] [PubMed]

T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71, 2500–2513 (2000).
[CrossRef]

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Cross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Venugopalan, V.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Cross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Wen, S.

B. Chance, Z. Zhao, S. Wen, and Y. Chen, “Simple ac circuit for breast cancer detection and object detection,” Rev. Sci. Instrum. 77, 064301 (2006).
[CrossRef]

Wu, T.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J. Biomed. Opt. 10, 024033 (2005).
[CrossRef] [PubMed]

Xia, H.

N. Chen, M. Huang, H. Xia, and D. Piao, “Portable near-infrared diffusive light imager for breast cancer detection,” J. Biomed. Opt. 9, 504–510 (2004).
[CrossRef] [PubMed]

Xie, Q.

K. S. No, Q. Xie, R. Kwong, A. Cerussi, B. J. Tromberg, and P. Chou, “HBS: a handheld breast cancer detector based on frequency domain photon migration with full heterodyne,” in Proceedings of the IEEE Biomedical Circuits and Systems Conference (IEEE, 2006), pp. 114–117.
[CrossRef]

Yodh, A. G.

Yu, G.

Zarfos, K.

Q. Zhu, S. H. Kurtzman, P. Hedge, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7, 263–270 (2005).
[CrossRef] [PubMed]

Zhang, C.

A. Godavarty, A. B. Thompson, R. Roy, M. J. Eppstein, C. Zhang, M. Gurfinkel, and E. M. Sevick-Muraca, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9(3), 488–496(2004).
[CrossRef] [PubMed]

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain modulated ICCD camera,” Phys. Med. Biol. 48, 1701–1720 (2003).
[CrossRef] [PubMed]

Zhang, J.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12, 925–933 (2005).
[CrossRef] [PubMed]

Zhang, Q.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J. Biomed. Opt. 10, 024033 (2005).
[CrossRef] [PubMed]

Zhao, Z.

B. Chance, Z. Zhao, S. Wen, and Y. Chen, “Simple ac circuit for breast cancer detection and object detection,” Rev. Sci. Instrum. 77, 064301 (2006).
[CrossRef]

Zhou, C.

Zhu, B.

S. Regalado, S. J. Erickson, B. Zhu, J. Ge, and A. Godavarty, “Automated real-time coregistered imaging using a hand-held probe-based optical imager,” Rev. Sci. Instrum. 81, 023702(2010).
[CrossRef] [PubMed]

J. Ge, B. Zhu, S. Regalado, and A. Godavarty, “Three-dimensional fluorescence-enhanced optical tomography using a hand-held probe based imaging system,” Med. Phys. 35, 3354–3363 (2008).
[CrossRef] [PubMed]

Zhu, Q.

Q. Zhu, S. H. Kurtzman, P. Hedge, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7, 263–270 (2005).
[CrossRef] [PubMed]

Acad. Radiol.

B. J. Tromberg, “Optical scanning and breast cancer,” Acad. Radiol. 12, 923–924 (2005).
[CrossRef] [PubMed]

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12, 925–933 (2005).
[CrossRef] [PubMed]

Appl. Opt.

IEEE Trans. Circuits Syst.

K. S. No and P. H. Chou, “Mini-FDPM and heterodyne mini-FDPM: handheld non-invasive breast cancer detectors based on frequency domain photon migration,” IEEE Trans. Circuits Syst. 52, 2672–2685 (2005).
[CrossRef]

IEEE Trans. Med. Imaging

M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz, and E. M. Sevick-Muraca, “Three dimensional bayesian optical image reconstruction with domain decomposition,” IEEE Trans. Med. Imaging 20, 147–163 (2001).
[CrossRef] [PubMed]

J. Biomed. Opt.

A. Godavarty, A. B. Thompson, R. Roy, M. J. Eppstein, C. Zhang, M. Gurfinkel, and E. M. Sevick-Muraca, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9(3), 488–496(2004).
[CrossRef] [PubMed]

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J. Biomed. Opt. 10, 024033 (2005).
[CrossRef] [PubMed]

B. Jayachandran, J. Ge, S. Regalado, and A. Godavarty, “Design and development of a hand-held optical probe towards fluorescence diagnostic imaging,” J. Biomed. Opt. 12, 054014(2007).
[CrossRef] [PubMed]

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” J. Biomed. Opt. 9, 534–540 (2004).
[CrossRef] [PubMed]

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–238 (2004).
[CrossRef] [PubMed]

N. Chen, M. Huang, H. Xia, and D. Piao, “Portable near-infrared diffusive light imager for breast cancer detection,” J. Biomed. Opt. 9, 504–510 (2004).
[CrossRef] [PubMed]

Med. Image Anal.

T. Lasser and V. Ntziachristos, “Optimization of 360 degrees projection fluorescence molecular tomography,” Med. Image Anal. 11, 389–399 (2007).
[CrossRef] [PubMed]

Med. Phys.

A. Joshi, W. Bangerth, K. Hwang, J. C. Rasmussen, and E. M. Sevick-Muraca, “Fully adaptive FEM based fluorescence optical tomography from time-dependent measurements with area illumination and detection,” Med. Phys. 33, 1299–1310 (2006).
[CrossRef] [PubMed]

J. Ge, B. Zhu, S. Regalado, and A. Godavarty, “Three-dimensional fluorescence-enhanced optical tomography using a hand-held probe based imaging system,” Med. Phys. 35, 3354–3363 (2008).
[CrossRef] [PubMed]

Neoplasia

Q. Zhu, S. H. Kurtzman, P. Hedge, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7, 263–270 (2005).
[CrossRef] [PubMed]

Opt. Lett.

Philos. Trans. R. Soc. London Ser. B

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Cross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Phys. Med. Biol.

V. A. Markel and J. C. Schotland, “Multiple projection optical diffusion tomography with plane wave illumination,” Phys. Med. Biol. 50, 2351–2364 (2005).
[CrossRef] [PubMed]

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain modulated ICCD camera,” Phys. Med. Biol. 48, 1701–1720 (2003).
[CrossRef] [PubMed]

Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Phys. Med. Biol. 52, 5569–5585 (2007).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. J. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
[CrossRef] [PubMed]

Proc. SPIE

D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Challenges in sub-surface fluorescence diffuse optical imaging,” Proc. SPIE 6434, 64340R (2007).
[CrossRef]

Rev. Sci. Instrum.

S. Regalado, S. J. Erickson, B. Zhu, J. Ge, and A. Godavarty, “Automated real-time coregistered imaging using a hand-held probe-based optical imager,” Rev. Sci. Instrum. 81, 023702(2010).
[CrossRef] [PubMed]

T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71, 2500–2513 (2000).
[CrossRef]

B. Chance, Z. Zhao, S. Wen, and Y. Chen, “Simple ac circuit for breast cancer detection and object detection,” Rev. Sci. Instrum. 77, 064301 (2006).
[CrossRef]

Other

K. S. No, Q. Xie, R. Kwong, A. Cerussi, B. J. Tromberg, and P. Chou, “HBS: a handheld breast cancer detector based on frequency domain photon migration with full heterodyne,” in Proceedings of the IEEE Biomedical Circuits and Systems Conference (IEEE, 2006), pp. 114–117.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Instrumentation of the handheld-probe-based ICCD optical imager: (a) the entire imaging system, (b) the handheld probe in its flat position, and (c) the cubical phantom used for imaging, with the container filled with 1% Liposyn during experiments.

Fig. 2
Fig. 2

Two-sided surface contour plots of fluorescence amplitude obtained from frequency-domain multi-projection imaging studies for all experimental cases [(a) to (e) corresponding to cases 1 to 5]. The projected 2-D target location is shown as black open circles on Sides A and B of the phantom. The solid red sphere in the phantom represents the true 3-D target location. Each surface contour plot was normalized with respect to the maximum amplitude in that particular scan at a given probe location.

Fig. 3
Fig. 3

Isosurface contour plots of the 3-D image reconstructions based on single-projection measurements presented in the X Y and X Z planes for Side A measurement-based reconstructions, and the Z Y and Z X planes for Side B measurement-based reconstructions, using 1% Liposyn phantom under perfect uptake conditions for Study I. Tomography studies performed using single- projection-based measurements at Side A of phantom ( X Y plane) is shown in (a) to (e) for experimental cases 1 to 5, respectively. Tomography studies performed using single-projection-based measurements at Side B of phantom ( Z Y plane) is shown in (f) to (j) for experimental cases 1 to 5, respectively. A single 0.45 cc target was located at [ 1.5 , 2.5 , 2 ] cm in (a) and (f), at [2, 2.5, 2.5] in (b) and (g), at [2.5, 2.5, 2] in (c) and (h), at [2, 2.5, 2.5] in (d) and (i), and at [2.5, 2.5, 2.5] in (e) and (j). The solid sphere in each plot represents the true target location and the irregular solid region represents the reconstructed target location. A cutoff value (selected based on the first break point of histogram plot of μ axf ) was applied to isosurface contour plots in order to differentiate the target from the background. Only 4 cm along the depth is presented in the plot, although the total depth for Side A is Z = 10 cm and for Side B is X = 10 cm .

Fig. 4
Fig. 4

Isosurface contour plots of the 3-D image reconstructions based on measurements from both Side A and Side B of phantom (i.e., X Y plane and Z Y plane of phantom) were presented in the X Y and X Z planes, using 1% Liposyn phantom under perfect uptake conditions for Study II. A single 0.45 cc target was located at (a) [1.5,  2.5, 2], (b) [2, 2.5, 2], (c) [2.5, 2.5, 2], (d) [2, 2.5, 2.5], and (e) [ 2.5 , 2.5 , 2.5 ] cm . The solid sphere in each plot represents the true target location and the irregular solid region represents the reconstructed target location. A cutoff value (selected based on the first break point of histogram plot of μ axf ) was applied to isosurface contour plots to differentiate the target from the background. Only 8 cm along the depth is presented in the plot, although the total depth for Side A is Z = 10 cm and for Side B is X = 10 cm .

Fig. 5
Fig. 5

Isosurface contour plots of the 3-D image reconstructions based on measurements from both Side A and Side B of phantom (i.e., X Y plane and Z Y plane of phantom) and guided using a priori information obtained from 2D surface imaging were presented in the X Y and X Z planes, using 1% Liposyn phantom under perfect uptake conditions for Study III. The a priori information for each experimental case was obtained using cutoff value of 80% and 10 1 target to background contrast values. A single 0.45 cc target was located at (a) [1.5, 2.5, 2], (b) [2, 2.5, 2], (c) [2.5, 2.5, 2], (d) [2, 2.5, 2.5], and (e) [ 2.5 , 2.5 , 2.5 ] cm . The solid sphere in each plot represents the true target location and the irregular solid region represents the reconstructed target location. A cutoff value (selected based on the first break point of the histogram plot of μ axf ) was applied to isosurface contour plots to differentiate the target from the background. Only 4 cm along the depth is presented in the plot, although the total depth, Z = 10 cm for Side A and X = 10 cm for Side B of the phantom.

Fig. 6
Fig. 6

Comparison of recovered target depth using single-projection and dual-projection measurements along with a priori information of the target location with true target depth. The top figure shows target depth with respect to side A of the phantom, while the bottom figure shows the target depth with respect to side B of the phantom.

Tables (9)

Tables Icon

Table 1 Optical Properties of Phantom and Fluorescent Target for All Experimental Cases

Tables Icon

Table 2 Target Location Details for All Experimental Cases

Tables Icon

Table 3 Details of Multi-Projection-Based Fluorescence-Enhanced Optical Tomography Studies

Tables Icon

Table 4 Estimated 3-D Target Location from Multi-Projection-Based Fluorescence Surface Imaging Studies for All Experimental Cases

Tables Icon

Table 5 Details of 3-D Image Reconstructions for a Perfect Uptake ( 1 0 ) Phantom Embedded with a Single 0.45 cc Fluorescing Target at [1.5, 2.5, 2] cm

Tables Icon

Table 6 Details of 3-D Image Reconstructions for a Perfect Uptake ( 1 0 ) Phantom Embedded with a Single 0.45 cc Fluorescing Target at [2, 2.5, 2] cm

Tables Icon

Table 7 Details of 3-D Image Reconstructions for a Perfect Uptake ( 1 0 ) Phantom Embedded with a Single 0.45 cc Fluorescing Target at [2.5, 2.5, 2] cm

Tables Icon

Table 8 Details of 3-D Image Reconstructions for a Perfect Uptake ( 1 0 ) Phantom Embedded with a Single 0.45 cc Fluorescing Target at [2, 2.5, 2.5] cm

Tables Icon

Table 9 Details of 3-D Image Reconstructions for a Perfect Uptake ( 1 0 ) Phantom Embedded with a Single 0.45 cc Fluorescing Target at [2.5, 2.5, 2.5] cm

Metrics