Abstract

Nodules have been planted in an HfO2/SiO2 multilayer system with absorptive gold nanoparticle seeds located on the surface of a substrate. The topography of nodules was scanned by an atomic force microscope and imaged by a scanning electron microscope. The underlying characteristics of nodules were revealed by a focused ion beam. The cross-sectional profiles reveal that nodules grown from small seeds have a continuous boundary and better mechanical stability. A laser-induced damage test shows that nodules decrease the laser-induced damage threshold by up to 3 times. The damage pits are exclusively caused by nodular ejection and triggered by the absorptive seeds. The distribution of electric field and average temperature rise in the nodules were analyzed. Theoretical results met experimental results very well. The strong absorptive seed and microlens effect of the nodule play important roles in laser- induced damage of a planted nodule.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. C. Staggs, M. Balooch, M. R. Kozlowski, and W. J. Siekhaus, “In-situ atomic-force microscopy of laser-conditioned and laser-damaged HfO2/SiO2 dielectric mirror coatings,” Proc. SPIE 1624, 375–385 (1992).
    [CrossRef]
  2. M. R. Kozlowski and R. Chow, “Role of defects in laser damage of multilayer coatings,” Proc. SPIE 2114, 640–649(1994).
    [CrossRef]
  3. R. J. Tench, R. Chow, and M. R. Kozlowski, “Characterization of defect geometries in multilayer optical coatings,” J. Vac. Sci. Technol. A 12, 2808–2813 (1994).
    [CrossRef]
  4. C. J. Stolz, R. J. Tench, M. R. Kozlowski, and A. Fornier, “Comparison of nodular defect seed geometries from different deposition techniques,” Proc. SPIE 2714, 374–382 (1996).
    [CrossRef]
  5. M. Poulingue, J. Dijon, P. Garrec, and P. Lyan, “1.06μm laser irradiation on high-reflection coatings inside a scanning electron microscope,” Proc. SPIE 3578, 188–195 (1999).
    [CrossRef]
  6. M. Poulingue, J. Dijon, M. Ignat, H. Leplan, and B. Pinot, “New approach for the critical size of nodular defects: the mechanical connection,” Proc. SPIE 3578, 370–381 (1999).
    [CrossRef]
  7. F. Y. Genin and C. J. Stolz, “Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings,” Proc. SPIE 2870, 439–448 (1996).
    [CrossRef]
  8. P. Marc, D. Jean, B. Rafin, L. Herve, and I. Michel, “Generation of defects with diamond and silica particles inside high-reflection coatings: influence on the laser damage threshold,” Proc. SPIE 3738, 325–336 (1999).
    [CrossRef]
  9. R. H. Sawicki, C. C. Shang, and T. L. Swatloski, “Failure characterization of nodular defects in multilayer dielectric coatings,” Proc. SPIE 2428, 333–343 (1995).
    [CrossRef]
  10. C. J. Stolz, M. D. Feit, and T. V. Pistor, “Laser intensification by spherical inclusions embedded within multilayer coatings,” Appl. Opt. 45, 1594–1601 (2006).
    [CrossRef] [PubMed]
  11. J. F. De Ford and M. R. Kozlowski, “Modeling of electric-field enhancement at nodular defects in dielectric mirror coatings,” Proc. SPIE 1848, 455–472 (1993).
    [CrossRef]
  12. J. Dijon, M. Poulingue, and J. Hue, “Thermomechanical model of mirror laser damage at 1.06μm: I. Nodule ejection,” Proc. SPIE 3578, 387–397 (1999).
    [CrossRef]
  13. S. Papernov and A. W. Schmid, “Using gold nanoparticles as artificial defects in thin films: what have we learned about laser-induced damage driven by localized absorbers?” Proc. SPIE 6403, 64030D (2006).
    [CrossRef]
  14. “Lasers and laser-related equipment—Determination of laser-induced damage threshold of optical surfaces—Part I: 1-on-1 test,”ISO11254-1:2000, (International Organization for Standardization, 2000).
  15. X. Liu, D. Li, Y. A. Zhao, X. Li, and J. Shao, “Characteristics of nodular defect in HfO2/SiO2 multilayer optical coatings,” Appl. Surf. Sci. 256, 3783–3788 (2010).
    [CrossRef]
  16. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat. 14, 302–307 (1966).
    [CrossRef]
  17. H. Goldenberg and C. J. Tranter, “Heat flow in an infinite medium heated by a sphere,” Br. J. Appl. Phys. 3, 296–301(1952).
    [CrossRef]
  18. R. W. Hopper and D. R. Uhlmann, “Mechanism of inclusion damage in laser glass,” J. Appl. Phys. 41, 4023–4037(1970).
    [CrossRef]
  19. C. J. Stolz, F. Y. Genin, T. A. Reitter, and N. Molau, “Effect of SiO2 overcoat thickness on laser damage morphology of HfO2/SiO2 Brewster’s angle polarizers at 1064nm,” Proc. SPIE 2966, 265–272 (1997).
    [CrossRef]

2010 (1)

X. Liu, D. Li, Y. A. Zhao, X. Li, and J. Shao, “Characteristics of nodular defect in HfO2/SiO2 multilayer optical coatings,” Appl. Surf. Sci. 256, 3783–3788 (2010).
[CrossRef]

2006 (2)

C. J. Stolz, M. D. Feit, and T. V. Pistor, “Laser intensification by spherical inclusions embedded within multilayer coatings,” Appl. Opt. 45, 1594–1601 (2006).
[CrossRef] [PubMed]

S. Papernov and A. W. Schmid, “Using gold nanoparticles as artificial defects in thin films: what have we learned about laser-induced damage driven by localized absorbers?” Proc. SPIE 6403, 64030D (2006).
[CrossRef]

1999 (4)

J. Dijon, M. Poulingue, and J. Hue, “Thermomechanical model of mirror laser damage at 1.06μm: I. Nodule ejection,” Proc. SPIE 3578, 387–397 (1999).
[CrossRef]

M. Poulingue, J. Dijon, P. Garrec, and P. Lyan, “1.06μm laser irradiation on high-reflection coatings inside a scanning electron microscope,” Proc. SPIE 3578, 188–195 (1999).
[CrossRef]

M. Poulingue, J. Dijon, M. Ignat, H. Leplan, and B. Pinot, “New approach for the critical size of nodular defects: the mechanical connection,” Proc. SPIE 3578, 370–381 (1999).
[CrossRef]

P. Marc, D. Jean, B. Rafin, L. Herve, and I. Michel, “Generation of defects with diamond and silica particles inside high-reflection coatings: influence on the laser damage threshold,” Proc. SPIE 3738, 325–336 (1999).
[CrossRef]

1997 (1)

C. J. Stolz, F. Y. Genin, T. A. Reitter, and N. Molau, “Effect of SiO2 overcoat thickness on laser damage morphology of HfO2/SiO2 Brewster’s angle polarizers at 1064nm,” Proc. SPIE 2966, 265–272 (1997).
[CrossRef]

1996 (2)

F. Y. Genin and C. J. Stolz, “Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings,” Proc. SPIE 2870, 439–448 (1996).
[CrossRef]

C. J. Stolz, R. J. Tench, M. R. Kozlowski, and A. Fornier, “Comparison of nodular defect seed geometries from different deposition techniques,” Proc. SPIE 2714, 374–382 (1996).
[CrossRef]

1995 (1)

R. H. Sawicki, C. C. Shang, and T. L. Swatloski, “Failure characterization of nodular defects in multilayer dielectric coatings,” Proc. SPIE 2428, 333–343 (1995).
[CrossRef]

1994 (2)

M. R. Kozlowski and R. Chow, “Role of defects in laser damage of multilayer coatings,” Proc. SPIE 2114, 640–649(1994).
[CrossRef]

R. J. Tench, R. Chow, and M. R. Kozlowski, “Characterization of defect geometries in multilayer optical coatings,” J. Vac. Sci. Technol. A 12, 2808–2813 (1994).
[CrossRef]

1993 (1)

J. F. De Ford and M. R. Kozlowski, “Modeling of electric-field enhancement at nodular defects in dielectric mirror coatings,” Proc. SPIE 1848, 455–472 (1993).
[CrossRef]

1992 (1)

M. C. Staggs, M. Balooch, M. R. Kozlowski, and W. J. Siekhaus, “In-situ atomic-force microscopy of laser-conditioned and laser-damaged HfO2/SiO2 dielectric mirror coatings,” Proc. SPIE 1624, 375–385 (1992).
[CrossRef]

1970 (1)

R. W. Hopper and D. R. Uhlmann, “Mechanism of inclusion damage in laser glass,” J. Appl. Phys. 41, 4023–4037(1970).
[CrossRef]

1966 (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat. 14, 302–307 (1966).
[CrossRef]

1952 (1)

H. Goldenberg and C. J. Tranter, “Heat flow in an infinite medium heated by a sphere,” Br. J. Appl. Phys. 3, 296–301(1952).
[CrossRef]

Balooch, M.

M. C. Staggs, M. Balooch, M. R. Kozlowski, and W. J. Siekhaus, “In-situ atomic-force microscopy of laser-conditioned and laser-damaged HfO2/SiO2 dielectric mirror coatings,” Proc. SPIE 1624, 375–385 (1992).
[CrossRef]

Chow, R.

R. J. Tench, R. Chow, and M. R. Kozlowski, “Characterization of defect geometries in multilayer optical coatings,” J. Vac. Sci. Technol. A 12, 2808–2813 (1994).
[CrossRef]

M. R. Kozlowski and R. Chow, “Role of defects in laser damage of multilayer coatings,” Proc. SPIE 2114, 640–649(1994).
[CrossRef]

De Ford, J. F.

J. F. De Ford and M. R. Kozlowski, “Modeling of electric-field enhancement at nodular defects in dielectric mirror coatings,” Proc. SPIE 1848, 455–472 (1993).
[CrossRef]

Dijon, J.

J. Dijon, M. Poulingue, and J. Hue, “Thermomechanical model of mirror laser damage at 1.06μm: I. Nodule ejection,” Proc. SPIE 3578, 387–397 (1999).
[CrossRef]

M. Poulingue, J. Dijon, P. Garrec, and P. Lyan, “1.06μm laser irradiation on high-reflection coatings inside a scanning electron microscope,” Proc. SPIE 3578, 188–195 (1999).
[CrossRef]

M. Poulingue, J. Dijon, M. Ignat, H. Leplan, and B. Pinot, “New approach for the critical size of nodular defects: the mechanical connection,” Proc. SPIE 3578, 370–381 (1999).
[CrossRef]

Feit, M. D.

Fornier, A.

C. J. Stolz, R. J. Tench, M. R. Kozlowski, and A. Fornier, “Comparison of nodular defect seed geometries from different deposition techniques,” Proc. SPIE 2714, 374–382 (1996).
[CrossRef]

Garrec, P.

M. Poulingue, J. Dijon, P. Garrec, and P. Lyan, “1.06μm laser irradiation on high-reflection coatings inside a scanning electron microscope,” Proc. SPIE 3578, 188–195 (1999).
[CrossRef]

Genin, F. Y.

C. J. Stolz, F. Y. Genin, T. A. Reitter, and N. Molau, “Effect of SiO2 overcoat thickness on laser damage morphology of HfO2/SiO2 Brewster’s angle polarizers at 1064nm,” Proc. SPIE 2966, 265–272 (1997).
[CrossRef]

F. Y. Genin and C. J. Stolz, “Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings,” Proc. SPIE 2870, 439–448 (1996).
[CrossRef]

Goldenberg, H.

H. Goldenberg and C. J. Tranter, “Heat flow in an infinite medium heated by a sphere,” Br. J. Appl. Phys. 3, 296–301(1952).
[CrossRef]

Herve, L.

P. Marc, D. Jean, B. Rafin, L. Herve, and I. Michel, “Generation of defects with diamond and silica particles inside high-reflection coatings: influence on the laser damage threshold,” Proc. SPIE 3738, 325–336 (1999).
[CrossRef]

Hopper, R. W.

R. W. Hopper and D. R. Uhlmann, “Mechanism of inclusion damage in laser glass,” J. Appl. Phys. 41, 4023–4037(1970).
[CrossRef]

Hue, J.

J. Dijon, M. Poulingue, and J. Hue, “Thermomechanical model of mirror laser damage at 1.06μm: I. Nodule ejection,” Proc. SPIE 3578, 387–397 (1999).
[CrossRef]

Ignat, M.

M. Poulingue, J. Dijon, M. Ignat, H. Leplan, and B. Pinot, “New approach for the critical size of nodular defects: the mechanical connection,” Proc. SPIE 3578, 370–381 (1999).
[CrossRef]

Jean, D.

P. Marc, D. Jean, B. Rafin, L. Herve, and I. Michel, “Generation of defects with diamond and silica particles inside high-reflection coatings: influence on the laser damage threshold,” Proc. SPIE 3738, 325–336 (1999).
[CrossRef]

Kozlowski, M. R.

C. J. Stolz, R. J. Tench, M. R. Kozlowski, and A. Fornier, “Comparison of nodular defect seed geometries from different deposition techniques,” Proc. SPIE 2714, 374–382 (1996).
[CrossRef]

R. J. Tench, R. Chow, and M. R. Kozlowski, “Characterization of defect geometries in multilayer optical coatings,” J. Vac. Sci. Technol. A 12, 2808–2813 (1994).
[CrossRef]

M. R. Kozlowski and R. Chow, “Role of defects in laser damage of multilayer coatings,” Proc. SPIE 2114, 640–649(1994).
[CrossRef]

J. F. De Ford and M. R. Kozlowski, “Modeling of electric-field enhancement at nodular defects in dielectric mirror coatings,” Proc. SPIE 1848, 455–472 (1993).
[CrossRef]

M. C. Staggs, M. Balooch, M. R. Kozlowski, and W. J. Siekhaus, “In-situ atomic-force microscopy of laser-conditioned and laser-damaged HfO2/SiO2 dielectric mirror coatings,” Proc. SPIE 1624, 375–385 (1992).
[CrossRef]

Leplan, H.

M. Poulingue, J. Dijon, M. Ignat, H. Leplan, and B. Pinot, “New approach for the critical size of nodular defects: the mechanical connection,” Proc. SPIE 3578, 370–381 (1999).
[CrossRef]

Li, D.

X. Liu, D. Li, Y. A. Zhao, X. Li, and J. Shao, “Characteristics of nodular defect in HfO2/SiO2 multilayer optical coatings,” Appl. Surf. Sci. 256, 3783–3788 (2010).
[CrossRef]

Li, X.

X. Liu, D. Li, Y. A. Zhao, X. Li, and J. Shao, “Characteristics of nodular defect in HfO2/SiO2 multilayer optical coatings,” Appl. Surf. Sci. 256, 3783–3788 (2010).
[CrossRef]

Liu, X.

X. Liu, D. Li, Y. A. Zhao, X. Li, and J. Shao, “Characteristics of nodular defect in HfO2/SiO2 multilayer optical coatings,” Appl. Surf. Sci. 256, 3783–3788 (2010).
[CrossRef]

Lyan, P.

M. Poulingue, J. Dijon, P. Garrec, and P. Lyan, “1.06μm laser irradiation on high-reflection coatings inside a scanning electron microscope,” Proc. SPIE 3578, 188–195 (1999).
[CrossRef]

Marc, P.

P. Marc, D. Jean, B. Rafin, L. Herve, and I. Michel, “Generation of defects with diamond and silica particles inside high-reflection coatings: influence on the laser damage threshold,” Proc. SPIE 3738, 325–336 (1999).
[CrossRef]

Michel, I.

P. Marc, D. Jean, B. Rafin, L. Herve, and I. Michel, “Generation of defects with diamond and silica particles inside high-reflection coatings: influence on the laser damage threshold,” Proc. SPIE 3738, 325–336 (1999).
[CrossRef]

Molau, N.

C. J. Stolz, F. Y. Genin, T. A. Reitter, and N. Molau, “Effect of SiO2 overcoat thickness on laser damage morphology of HfO2/SiO2 Brewster’s angle polarizers at 1064nm,” Proc. SPIE 2966, 265–272 (1997).
[CrossRef]

Papernov, S.

S. Papernov and A. W. Schmid, “Using gold nanoparticles as artificial defects in thin films: what have we learned about laser-induced damage driven by localized absorbers?” Proc. SPIE 6403, 64030D (2006).
[CrossRef]

Pinot, B.

M. Poulingue, J. Dijon, M. Ignat, H. Leplan, and B. Pinot, “New approach for the critical size of nodular defects: the mechanical connection,” Proc. SPIE 3578, 370–381 (1999).
[CrossRef]

Pistor, T. V.

Poulingue, M.

M. Poulingue, J. Dijon, M. Ignat, H. Leplan, and B. Pinot, “New approach for the critical size of nodular defects: the mechanical connection,” Proc. SPIE 3578, 370–381 (1999).
[CrossRef]

M. Poulingue, J. Dijon, P. Garrec, and P. Lyan, “1.06μm laser irradiation on high-reflection coatings inside a scanning electron microscope,” Proc. SPIE 3578, 188–195 (1999).
[CrossRef]

J. Dijon, M. Poulingue, and J. Hue, “Thermomechanical model of mirror laser damage at 1.06μm: I. Nodule ejection,” Proc. SPIE 3578, 387–397 (1999).
[CrossRef]

Rafin, B.

P. Marc, D. Jean, B. Rafin, L. Herve, and I. Michel, “Generation of defects with diamond and silica particles inside high-reflection coatings: influence on the laser damage threshold,” Proc. SPIE 3738, 325–336 (1999).
[CrossRef]

Reitter, T. A.

C. J. Stolz, F. Y. Genin, T. A. Reitter, and N. Molau, “Effect of SiO2 overcoat thickness on laser damage morphology of HfO2/SiO2 Brewster’s angle polarizers at 1064nm,” Proc. SPIE 2966, 265–272 (1997).
[CrossRef]

Sawicki, R. H.

R. H. Sawicki, C. C. Shang, and T. L. Swatloski, “Failure characterization of nodular defects in multilayer dielectric coatings,” Proc. SPIE 2428, 333–343 (1995).
[CrossRef]

Schmid, A. W.

S. Papernov and A. W. Schmid, “Using gold nanoparticles as artificial defects in thin films: what have we learned about laser-induced damage driven by localized absorbers?” Proc. SPIE 6403, 64030D (2006).
[CrossRef]

Shang, C. C.

R. H. Sawicki, C. C. Shang, and T. L. Swatloski, “Failure characterization of nodular defects in multilayer dielectric coatings,” Proc. SPIE 2428, 333–343 (1995).
[CrossRef]

Shao, J.

X. Liu, D. Li, Y. A. Zhao, X. Li, and J. Shao, “Characteristics of nodular defect in HfO2/SiO2 multilayer optical coatings,” Appl. Surf. Sci. 256, 3783–3788 (2010).
[CrossRef]

Siekhaus, W. J.

M. C. Staggs, M. Balooch, M. R. Kozlowski, and W. J. Siekhaus, “In-situ atomic-force microscopy of laser-conditioned and laser-damaged HfO2/SiO2 dielectric mirror coatings,” Proc. SPIE 1624, 375–385 (1992).
[CrossRef]

Staggs, M. C.

M. C. Staggs, M. Balooch, M. R. Kozlowski, and W. J. Siekhaus, “In-situ atomic-force microscopy of laser-conditioned and laser-damaged HfO2/SiO2 dielectric mirror coatings,” Proc. SPIE 1624, 375–385 (1992).
[CrossRef]

Stolz, C. J.

C. J. Stolz, M. D. Feit, and T. V. Pistor, “Laser intensification by spherical inclusions embedded within multilayer coatings,” Appl. Opt. 45, 1594–1601 (2006).
[CrossRef] [PubMed]

C. J. Stolz, F. Y. Genin, T. A. Reitter, and N. Molau, “Effect of SiO2 overcoat thickness on laser damage morphology of HfO2/SiO2 Brewster’s angle polarizers at 1064nm,” Proc. SPIE 2966, 265–272 (1997).
[CrossRef]

C. J. Stolz, R. J. Tench, M. R. Kozlowski, and A. Fornier, “Comparison of nodular defect seed geometries from different deposition techniques,” Proc. SPIE 2714, 374–382 (1996).
[CrossRef]

F. Y. Genin and C. J. Stolz, “Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings,” Proc. SPIE 2870, 439–448 (1996).
[CrossRef]

Swatloski, T. L.

R. H. Sawicki, C. C. Shang, and T. L. Swatloski, “Failure characterization of nodular defects in multilayer dielectric coatings,” Proc. SPIE 2428, 333–343 (1995).
[CrossRef]

Tench, R. J.

C. J. Stolz, R. J. Tench, M. R. Kozlowski, and A. Fornier, “Comparison of nodular defect seed geometries from different deposition techniques,” Proc. SPIE 2714, 374–382 (1996).
[CrossRef]

R. J. Tench, R. Chow, and M. R. Kozlowski, “Characterization of defect geometries in multilayer optical coatings,” J. Vac. Sci. Technol. A 12, 2808–2813 (1994).
[CrossRef]

Tranter, C. J.

H. Goldenberg and C. J. Tranter, “Heat flow in an infinite medium heated by a sphere,” Br. J. Appl. Phys. 3, 296–301(1952).
[CrossRef]

Uhlmann, D. R.

R. W. Hopper and D. R. Uhlmann, “Mechanism of inclusion damage in laser glass,” J. Appl. Phys. 41, 4023–4037(1970).
[CrossRef]

Yee, K. S.

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat. 14, 302–307 (1966).
[CrossRef]

Zhao, Y. A.

X. Liu, D. Li, Y. A. Zhao, X. Li, and J. Shao, “Characteristics of nodular defect in HfO2/SiO2 multilayer optical coatings,” Appl. Surf. Sci. 256, 3783–3788 (2010).
[CrossRef]

Appl. Opt. (1)

Appl. Surf. Sci. (1)

X. Liu, D. Li, Y. A. Zhao, X. Li, and J. Shao, “Characteristics of nodular defect in HfO2/SiO2 multilayer optical coatings,” Appl. Surf. Sci. 256, 3783–3788 (2010).
[CrossRef]

Br. J. Appl. Phys. (1)

H. Goldenberg and C. J. Tranter, “Heat flow in an infinite medium heated by a sphere,” Br. J. Appl. Phys. 3, 296–301(1952).
[CrossRef]

IEEE Trans. Antennas Propagat. (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat. 14, 302–307 (1966).
[CrossRef]

J. Appl. Phys. (1)

R. W. Hopper and D. R. Uhlmann, “Mechanism of inclusion damage in laser glass,” J. Appl. Phys. 41, 4023–4037(1970).
[CrossRef]

J. Vac. Sci. Technol. A (1)

R. J. Tench, R. Chow, and M. R. Kozlowski, “Characterization of defect geometries in multilayer optical coatings,” J. Vac. Sci. Technol. A 12, 2808–2813 (1994).
[CrossRef]

Proc. SPIE (12)

C. J. Stolz, R. J. Tench, M. R. Kozlowski, and A. Fornier, “Comparison of nodular defect seed geometries from different deposition techniques,” Proc. SPIE 2714, 374–382 (1996).
[CrossRef]

M. Poulingue, J. Dijon, P. Garrec, and P. Lyan, “1.06μm laser irradiation on high-reflection coatings inside a scanning electron microscope,” Proc. SPIE 3578, 188–195 (1999).
[CrossRef]

M. Poulingue, J. Dijon, M. Ignat, H. Leplan, and B. Pinot, “New approach for the critical size of nodular defects: the mechanical connection,” Proc. SPIE 3578, 370–381 (1999).
[CrossRef]

F. Y. Genin and C. J. Stolz, “Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings,” Proc. SPIE 2870, 439–448 (1996).
[CrossRef]

P. Marc, D. Jean, B. Rafin, L. Herve, and I. Michel, “Generation of defects with diamond and silica particles inside high-reflection coatings: influence on the laser damage threshold,” Proc. SPIE 3738, 325–336 (1999).
[CrossRef]

R. H. Sawicki, C. C. Shang, and T. L. Swatloski, “Failure characterization of nodular defects in multilayer dielectric coatings,” Proc. SPIE 2428, 333–343 (1995).
[CrossRef]

J. F. De Ford and M. R. Kozlowski, “Modeling of electric-field enhancement at nodular defects in dielectric mirror coatings,” Proc. SPIE 1848, 455–472 (1993).
[CrossRef]

J. Dijon, M. Poulingue, and J. Hue, “Thermomechanical model of mirror laser damage at 1.06μm: I. Nodule ejection,” Proc. SPIE 3578, 387–397 (1999).
[CrossRef]

S. Papernov and A. W. Schmid, “Using gold nanoparticles as artificial defects in thin films: what have we learned about laser-induced damage driven by localized absorbers?” Proc. SPIE 6403, 64030D (2006).
[CrossRef]

C. J. Stolz, F. Y. Genin, T. A. Reitter, and N. Molau, “Effect of SiO2 overcoat thickness on laser damage morphology of HfO2/SiO2 Brewster’s angle polarizers at 1064nm,” Proc. SPIE 2966, 265–272 (1997).
[CrossRef]

M. C. Staggs, M. Balooch, M. R. Kozlowski, and W. J. Siekhaus, “In-situ atomic-force microscopy of laser-conditioned and laser-damaged HfO2/SiO2 dielectric mirror coatings,” Proc. SPIE 1624, 375–385 (1992).
[CrossRef]

M. R. Kozlowski and R. Chow, “Role of defects in laser damage of multilayer coatings,” Proc. SPIE 2114, 640–649(1994).
[CrossRef]

Other (1)

“Lasers and laser-related equipment—Determination of laser-induced damage threshold of optical surfaces—Part I: 1-on-1 test,”ISO11254-1:2000, (International Organization for Standardization, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Normal nodules with gold seeds imaged by SEM; (b) nodule cluster is made up of abnormal nodules, which are larger and higher than normal nodules, imaged by SEM at a 52 ° angle.

Fig. 2
Fig. 2

Cross-sectional profiles of nodules grown from (a) a single seed and (b) two seeds; (c) cross-sectional profile of nodule cluster is in the corresponding position marked by the black line in Fig. 1b. Here the light layer and the dark layer correspond to the Hf O 2 and the Si O 2 layers.

Fig. 3
Fig. 3

(a) CP of nodules and (b) a sketch of a nodule; the CP is related to θ, the opening angle of the nodule.

Fig. 4
Fig. 4

Main features of damage morphology. (a) All damage sites are initiated by nodules; (b) a larger shell is lifted by nodular ejection; (c) a typical cone-terraced pit of nodular ejection.

Fig. 5
Fig. 5

(a) Cross-sectional profile of HR coatings without nodule; (b) the distribution of E-field amplitude in the simulation domain; (c) the E-field distribution ( x = 0 ) in the z direction. E 0 is incident field amplitude; the inset is a magnification near the surface of the substrate.

Fig. 6
Fig. 6

(a) Cross-sectional profile of HR coatings with a nodule; (b) the distribution of E-field amplitude in the simulation domain; (c) the E-field distribution ( x = 0 ) in the z direction. E 0 is incident field amplitude; the inset is a magnification around the seed.

Tables (1)

Tables Icon

Table 1 Material Parameters Used in Calculation [19]

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

W abs = σ abs m ( 1 R ) I laser ,
ρ c m V ( t ) d T ¯ d t = W abs ,
T ¯ = σ abs m ( 1 R ) ( r 0 + L D ( t ) ) F ρ c m V ( t ) r 0 ,
σ c E G 2 π r ,
σ θ θ = α E * T ¯ 3 ( 1 ν ) ,
T ¯ 3 ( 1 ν ) α E * E G 2 π r .
F th = 3 ( 1 ν ) ρ c m V ( t ) r 0 σ abs m ( 1 R ) ( r 0 + L D ( t ) ) α E * E G 2 π r .

Metrics