Abstract

Recent work discovered the remarkable optical scattering properties of the scales of the white beetle Cyphochilus. It was suggested that its brilliant whiteness and brightness were due to optimization of the microstructure within its scales. Here we compare the microstructure of Cyphochilus scales to those of two other white beetles, Lepidiota stigma and Calothyrza margaritifera. Extensive optical modeling and experimental data suggest that each species displays structural optimization designed to maximize optical scatter. Optimization of the scale filling fraction is observed, as well as optimization of scattering center spacing and diameter. Cyphochilus, in particular, displays a high degree of structural optimization, resulting in its bright white appearance.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. K. Liebherr and J. V. McHugh in Encyclopedia of Insects, V.H.Resh and R.T.Carde, eds. (Academic, 2003), pp. 209–230.
  2. A. R. Parker, D. R. McKenzie, and C. J. Large, “Multilayer reflectors in animals using green and gold beetles as contrasting examples,” J. Exp. Biol. 201, 1307–1313 (1998).
  3. J. P. Vigneron, J. F. Colomer, N. Vigneron, and V. Lousse, “Natural layer-by-layer photonic structure in the squamae of Hoplia coerulea (Coleoptera),” Phys. Rev. E 72, 061904 (2005).
    [CrossRef]
  4. P. Vukusic, “Natural coatings,” in Optical Interference Coatings, N.Kaiser and H.K.Pulker, eds. (Springer2003), pp. 1–34.
  5. T. F. Anderson and A. G. Richards, Jr., “An electron microscope study of some structural colours of insects,” J. Appl. Phys. 13, 748–758 (1942).
    [CrossRef]
  6. C. W. Mason, “Structural colours in insects. II,” J. Phys. Chem. 31, 321–354 (1927).
    [CrossRef]
  7. A. R. Parker, V. L. Welch, D. Driver, and N. Martini, “Structural color: opal analogue discovered in a weevil,” Nature 426, 786–787 (2003).
    [CrossRef] [PubMed]
  8. V. L. Welch and J. P. Vigneron, “Beyond butterflies—the diversity of biological photonic crystals,” Opt. Quantum Electron. 39, 295–303 (2007).
    [CrossRef]
  9. A. E. Seago, P. Brady, J.-P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera),” J. R. Soc. Interface 6, S165–S184 (2009).
  10. P. Vukusic, R. Kelly, and I. Hooper, “A biological sub-micron thickness optical broadband reflector characterized using both light and microwaves,” J. R. Soc. Interface 6, S193–S201 (2009).
  11. M. Srinivasarao, “Nano-optics in the biological world,” Chem. Rev. 99, 1935–1961 (1999).
    [CrossRef]
  12. T. Hariyama, M. Hironaka, H. Horiguchi, and D. G. Stavenga, “The leaf beetle, the jewel beetle and the damselfly: insects with a multilayers show case,” in Structural Colors in Biological Systems—principles and Applications, S.Kinoshita and S.Yoshioka, eds. (Osaka U. Press, 2005), pp. 153–176.
  13. S. Yoshioka and S. Kinoshita, “Structural or pigmentary? Origin of the distinctive white stripe on the blue wing of a Morpho butterfly,” Proc. R. Soc. London Ser. B 273, 129–134 (2006).
    [CrossRef]
  14. L. E. Gilbert, H. S. Forrest, T. D. Schultz, and D. J. Harvey, “Correlations of ultrastructure and pigmentation suggest how genes control development of wing scales of Heliconius butterflies,” J. Res. Lepid. 26, 141–160 (1988).
  15. C. W. Mason, “Structural colors in insects. I,”’ J. Phys. Chem. 30, 383–395 (1926).
    [CrossRef]
  16. D. L. Fox, Animal Biochromes and Structural Colors(Cambridge U. Press, 1953).
  17. S. M. Luke, P. Vukusic, and B. T. Hallam, “Measuring and modeling optical scattering and the color quality of white pierid butterfly scales,” Opt. Express 17, 14729–14743 (2009).
    [CrossRef] [PubMed]
  18. D. G. Stavenga, S. Stowe, K. Siebke, J. Zeil, and K. Arikawa, “Butterfly wing colors: scale beads make white pierid wings brighter,” Proc. R. Soc. London Ser. B 271, 1577–1584 (2004).
    [CrossRef]
  19. P. Vukusic, B. T. Hallam, and J. Noyes, “Brilliant whiteness in ultrathin beetle scales,” Science 315, 348–348 (2007).
    [CrossRef] [PubMed]
  20. B. T. Hallam, A. G. Hiorns, and P. Vukusic, “Developing optical efficiency through optimized coating structure: biomimetic inspiration from white beetles,” Appl. Opt. 48, 3243–3249(2009).
    [CrossRef] [PubMed]
  21. F. B. Stieg, “Opaque white pigments in coatings,” in Applied Polymer Science, 2nd ed., Vol. 285 of ACS Symposium Series, R.W.Tess and G.W.Poehlein, eds. (American Chemical Society, 1985), pp 1249–1269.
    [CrossRef]
  22. L. E. McNeil and R. H. French, “Multiple scattering from rutile TiO2 particles,” Acta Mater. 48, 4571–4576 (2000).
    [CrossRef]
  23. F. B. Stieg, “Ending the ‘crowding/spacing theory’ debate,” J. Coat. Technol. 59, 96–97 (1987).
  24. J. H. Braun, “Crowding and spacing of titanium dioxide pigments,” J. Coat. Technol. 60, 67–71 (1988).
  25. M. F. Land, “The physics and biology of animal reflectors,” Prog. Biophys. Molec. Biol. 24, 75–106 (1972).
    [CrossRef]
  26. S. Berthier, E. Charron, and A. Da Silva, “Determination of the cuticle index of the scales of the iridescent butterfly Morpho menelaus,” Opt. Commun. 228, 349–356 (2003).
    [CrossRef]
  27. P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. London Ser. B 266, 1403–1411(1999).
    [CrossRef]
  28. P. Kubelka and F. Munk, “Ein Beitrag zur Optik der Farbanstriche," Z. Tech. Phys. 11a, 593–601 (1931).
  29. N. Pauler, Paper Optics (Lorentzen & Wettre, 2000).
  30. E. Ganz, “Whiteness: photometric specification and colorimetric evaluation,” Appl. Opt. 15, 2039–2058 (1976).
    [CrossRef] [PubMed]
  31. M. Carrascosa, F. Cusso, and F. Agullo-Lopez, “Lambert emitters: a simple Monte-Carlo approach to optical diffusers,” Eur. J. Phys. 6, 183–187 (1985).
    [CrossRef]
  32. J. Yip, S-P. Ng, and K-H. Wong, “Brilliant whiteness from electrospun nanofibre webs,” Text. Res. J. 79, 771–779(2009).
    [CrossRef]
  33. S. M. Doucet and M. G. Meadows, “Iridescence: a functional perspective,” J. R. Soc. Interface 6, S115–S132 (2009).
    [PubMed]
  34. N. F. Hadley, A. Savill, and T. D. Schultz, “Coloration and its thermal consequences in the New Zealand tiger beetle Neocicindela perhispida,” J. Therm. Biol. 17(1), 55–61 (1992).
    [CrossRef]
  35. R. L. Rutowski, J. M. Macedonia, N. I. Morehouse, and L. Taylor-Taft, “Pterin pigments amplify iridescent ultraviolet signal in males of the orange sulphur butterfly, Colias eurytheme,” Proc. R. Soc. London Ser. B 272, 2329–2335 (2005).
    [CrossRef]
  36. D. J. Kemp, P. Vukusic, and R. L. Rutowski, “Stress-mediated covariance between nano-structural architecture and ultraviolet butterfly coloration,” Funct. Ecol. 20, 282–289 (2006).
    [CrossRef]
  37. D. J. Kemp, “Female butterflies prefer males bearing bright iridescent ornamentation,” Proc. R. Soc. London Ser. B 274, 1043–1047 (2007).
    [CrossRef]
  38. A. Loyau, D. Gomez, B. Moureau, M. Théry, N. S. Hart, M. Saint Jalme, A. T. D. Bennett, and G. Sorci, “Iridescent structurally based coloration of eyespots correlates with mating success in the peacock,” Behav. Ecol. 18, 1123–1131 (2007).
    [CrossRef]

2009 (6)

A. E. Seago, P. Brady, J.-P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera),” J. R. Soc. Interface 6, S165–S184 (2009).

P. Vukusic, R. Kelly, and I. Hooper, “A biological sub-micron thickness optical broadband reflector characterized using both light and microwaves,” J. R. Soc. Interface 6, S193–S201 (2009).

J. Yip, S-P. Ng, and K-H. Wong, “Brilliant whiteness from electrospun nanofibre webs,” Text. Res. J. 79, 771–779(2009).
[CrossRef]

S. M. Doucet and M. G. Meadows, “Iridescence: a functional perspective,” J. R. Soc. Interface 6, S115–S132 (2009).
[PubMed]

B. T. Hallam, A. G. Hiorns, and P. Vukusic, “Developing optical efficiency through optimized coating structure: biomimetic inspiration from white beetles,” Appl. Opt. 48, 3243–3249(2009).
[CrossRef] [PubMed]

S. M. Luke, P. Vukusic, and B. T. Hallam, “Measuring and modeling optical scattering and the color quality of white pierid butterfly scales,” Opt. Express 17, 14729–14743 (2009).
[CrossRef] [PubMed]

2007 (4)

D. J. Kemp, “Female butterflies prefer males bearing bright iridescent ornamentation,” Proc. R. Soc. London Ser. B 274, 1043–1047 (2007).
[CrossRef]

A. Loyau, D. Gomez, B. Moureau, M. Théry, N. S. Hart, M. Saint Jalme, A. T. D. Bennett, and G. Sorci, “Iridescent structurally based coloration of eyespots correlates with mating success in the peacock,” Behav. Ecol. 18, 1123–1131 (2007).
[CrossRef]

P. Vukusic, B. T. Hallam, and J. Noyes, “Brilliant whiteness in ultrathin beetle scales,” Science 315, 348–348 (2007).
[CrossRef] [PubMed]

V. L. Welch and J. P. Vigneron, “Beyond butterflies—the diversity of biological photonic crystals,” Opt. Quantum Electron. 39, 295–303 (2007).
[CrossRef]

2006 (2)

S. Yoshioka and S. Kinoshita, “Structural or pigmentary? Origin of the distinctive white stripe on the blue wing of a Morpho butterfly,” Proc. R. Soc. London Ser. B 273, 129–134 (2006).
[CrossRef]

D. J. Kemp, P. Vukusic, and R. L. Rutowski, “Stress-mediated covariance between nano-structural architecture and ultraviolet butterfly coloration,” Funct. Ecol. 20, 282–289 (2006).
[CrossRef]

2005 (2)

R. L. Rutowski, J. M. Macedonia, N. I. Morehouse, and L. Taylor-Taft, “Pterin pigments amplify iridescent ultraviolet signal in males of the orange sulphur butterfly, Colias eurytheme,” Proc. R. Soc. London Ser. B 272, 2329–2335 (2005).
[CrossRef]

J. P. Vigneron, J. F. Colomer, N. Vigneron, and V. Lousse, “Natural layer-by-layer photonic structure in the squamae of Hoplia coerulea (Coleoptera),” Phys. Rev. E 72, 061904 (2005).
[CrossRef]

2004 (1)

D. G. Stavenga, S. Stowe, K. Siebke, J. Zeil, and K. Arikawa, “Butterfly wing colors: scale beads make white pierid wings brighter,” Proc. R. Soc. London Ser. B 271, 1577–1584 (2004).
[CrossRef]

2003 (2)

A. R. Parker, V. L. Welch, D. Driver, and N. Martini, “Structural color: opal analogue discovered in a weevil,” Nature 426, 786–787 (2003).
[CrossRef] [PubMed]

S. Berthier, E. Charron, and A. Da Silva, “Determination of the cuticle index of the scales of the iridescent butterfly Morpho menelaus,” Opt. Commun. 228, 349–356 (2003).
[CrossRef]

2000 (1)

L. E. McNeil and R. H. French, “Multiple scattering from rutile TiO2 particles,” Acta Mater. 48, 4571–4576 (2000).
[CrossRef]

1999 (2)

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. London Ser. B 266, 1403–1411(1999).
[CrossRef]

M. Srinivasarao, “Nano-optics in the biological world,” Chem. Rev. 99, 1935–1961 (1999).
[CrossRef]

1998 (1)

A. R. Parker, D. R. McKenzie, and C. J. Large, “Multilayer reflectors in animals using green and gold beetles as contrasting examples,” J. Exp. Biol. 201, 1307–1313 (1998).

1992 (1)

N. F. Hadley, A. Savill, and T. D. Schultz, “Coloration and its thermal consequences in the New Zealand tiger beetle Neocicindela perhispida,” J. Therm. Biol. 17(1), 55–61 (1992).
[CrossRef]

1988 (2)

L. E. Gilbert, H. S. Forrest, T. D. Schultz, and D. J. Harvey, “Correlations of ultrastructure and pigmentation suggest how genes control development of wing scales of Heliconius butterflies,” J. Res. Lepid. 26, 141–160 (1988).

J. H. Braun, “Crowding and spacing of titanium dioxide pigments,” J. Coat. Technol. 60, 67–71 (1988).

1987 (1)

F. B. Stieg, “Ending the ‘crowding/spacing theory’ debate,” J. Coat. Technol. 59, 96–97 (1987).

1985 (1)

M. Carrascosa, F. Cusso, and F. Agullo-Lopez, “Lambert emitters: a simple Monte-Carlo approach to optical diffusers,” Eur. J. Phys. 6, 183–187 (1985).
[CrossRef]

1976 (1)

1972 (1)

M. F. Land, “The physics and biology of animal reflectors,” Prog. Biophys. Molec. Biol. 24, 75–106 (1972).
[CrossRef]

1942 (1)

T. F. Anderson and A. G. Richards, Jr., “An electron microscope study of some structural colours of insects,” J. Appl. Phys. 13, 748–758 (1942).
[CrossRef]

1931 (1)

P. Kubelka and F. Munk, “Ein Beitrag zur Optik der Farbanstriche," Z. Tech. Phys. 11a, 593–601 (1931).

1927 (1)

C. W. Mason, “Structural colours in insects. II,” J. Phys. Chem. 31, 321–354 (1927).
[CrossRef]

1926 (1)

C. W. Mason, “Structural colors in insects. I,”’ J. Phys. Chem. 30, 383–395 (1926).
[CrossRef]

Agullo-Lopez, F.

M. Carrascosa, F. Cusso, and F. Agullo-Lopez, “Lambert emitters: a simple Monte-Carlo approach to optical diffusers,” Eur. J. Phys. 6, 183–187 (1985).
[CrossRef]

Anderson, T. F.

T. F. Anderson and A. G. Richards, Jr., “An electron microscope study of some structural colours of insects,” J. Appl. Phys. 13, 748–758 (1942).
[CrossRef]

Arikawa, K.

D. G. Stavenga, S. Stowe, K. Siebke, J. Zeil, and K. Arikawa, “Butterfly wing colors: scale beads make white pierid wings brighter,” Proc. R. Soc. London Ser. B 271, 1577–1584 (2004).
[CrossRef]

Bennett, A. T. D.

A. Loyau, D. Gomez, B. Moureau, M. Théry, N. S. Hart, M. Saint Jalme, A. T. D. Bennett, and G. Sorci, “Iridescent structurally based coloration of eyespots correlates with mating success in the peacock,” Behav. Ecol. 18, 1123–1131 (2007).
[CrossRef]

Berthier, S.

S. Berthier, E. Charron, and A. Da Silva, “Determination of the cuticle index of the scales of the iridescent butterfly Morpho menelaus,” Opt. Commun. 228, 349–356 (2003).
[CrossRef]

Brady, P.

A. E. Seago, P. Brady, J.-P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera),” J. R. Soc. Interface 6, S165–S184 (2009).

Braun, J. H.

J. H. Braun, “Crowding and spacing of titanium dioxide pigments,” J. Coat. Technol. 60, 67–71 (1988).

Carrascosa, M.

M. Carrascosa, F. Cusso, and F. Agullo-Lopez, “Lambert emitters: a simple Monte-Carlo approach to optical diffusers,” Eur. J. Phys. 6, 183–187 (1985).
[CrossRef]

Charron, E.

S. Berthier, E. Charron, and A. Da Silva, “Determination of the cuticle index of the scales of the iridescent butterfly Morpho menelaus,” Opt. Commun. 228, 349–356 (2003).
[CrossRef]

Colomer, J. F.

J. P. Vigneron, J. F. Colomer, N. Vigneron, and V. Lousse, “Natural layer-by-layer photonic structure in the squamae of Hoplia coerulea (Coleoptera),” Phys. Rev. E 72, 061904 (2005).
[CrossRef]

Cusso, F.

M. Carrascosa, F. Cusso, and F. Agullo-Lopez, “Lambert emitters: a simple Monte-Carlo approach to optical diffusers,” Eur. J. Phys. 6, 183–187 (1985).
[CrossRef]

Da Silva, A.

S. Berthier, E. Charron, and A. Da Silva, “Determination of the cuticle index of the scales of the iridescent butterfly Morpho menelaus,” Opt. Commun. 228, 349–356 (2003).
[CrossRef]

Doucet, S. M.

S. M. Doucet and M. G. Meadows, “Iridescence: a functional perspective,” J. R. Soc. Interface 6, S115–S132 (2009).
[PubMed]

Driver, D.

A. R. Parker, V. L. Welch, D. Driver, and N. Martini, “Structural color: opal analogue discovered in a weevil,” Nature 426, 786–787 (2003).
[CrossRef] [PubMed]

Forrest, H. S.

L. E. Gilbert, H. S. Forrest, T. D. Schultz, and D. J. Harvey, “Correlations of ultrastructure and pigmentation suggest how genes control development of wing scales of Heliconius butterflies,” J. Res. Lepid. 26, 141–160 (1988).

Fox, D. L.

D. L. Fox, Animal Biochromes and Structural Colors(Cambridge U. Press, 1953).

French, R. H.

L. E. McNeil and R. H. French, “Multiple scattering from rutile TiO2 particles,” Acta Mater. 48, 4571–4576 (2000).
[CrossRef]

Ganz, E.

Gilbert, L. E.

L. E. Gilbert, H. S. Forrest, T. D. Schultz, and D. J. Harvey, “Correlations of ultrastructure and pigmentation suggest how genes control development of wing scales of Heliconius butterflies,” J. Res. Lepid. 26, 141–160 (1988).

Gomez, D.

A. Loyau, D. Gomez, B. Moureau, M. Théry, N. S. Hart, M. Saint Jalme, A. T. D. Bennett, and G. Sorci, “Iridescent structurally based coloration of eyespots correlates with mating success in the peacock,” Behav. Ecol. 18, 1123–1131 (2007).
[CrossRef]

Hadley, N. F.

N. F. Hadley, A. Savill, and T. D. Schultz, “Coloration and its thermal consequences in the New Zealand tiger beetle Neocicindela perhispida,” J. Therm. Biol. 17(1), 55–61 (1992).
[CrossRef]

Hallam, B. T.

Hariyama, T.

T. Hariyama, M. Hironaka, H. Horiguchi, and D. G. Stavenga, “The leaf beetle, the jewel beetle and the damselfly: insects with a multilayers show case,” in Structural Colors in Biological Systems—principles and Applications, S.Kinoshita and S.Yoshioka, eds. (Osaka U. Press, 2005), pp. 153–176.

Hart, N. S.

A. Loyau, D. Gomez, B. Moureau, M. Théry, N. S. Hart, M. Saint Jalme, A. T. D. Bennett, and G. Sorci, “Iridescent structurally based coloration of eyespots correlates with mating success in the peacock,” Behav. Ecol. 18, 1123–1131 (2007).
[CrossRef]

Harvey, D. J.

L. E. Gilbert, H. S. Forrest, T. D. Schultz, and D. J. Harvey, “Correlations of ultrastructure and pigmentation suggest how genes control development of wing scales of Heliconius butterflies,” J. Res. Lepid. 26, 141–160 (1988).

Hiorns, A. G.

Hironaka, M.

T. Hariyama, M. Hironaka, H. Horiguchi, and D. G. Stavenga, “The leaf beetle, the jewel beetle and the damselfly: insects with a multilayers show case,” in Structural Colors in Biological Systems—principles and Applications, S.Kinoshita and S.Yoshioka, eds. (Osaka U. Press, 2005), pp. 153–176.

Hooper, I.

P. Vukusic, R. Kelly, and I. Hooper, “A biological sub-micron thickness optical broadband reflector characterized using both light and microwaves,” J. R. Soc. Interface 6, S193–S201 (2009).

Horiguchi, H.

T. Hariyama, M. Hironaka, H. Horiguchi, and D. G. Stavenga, “The leaf beetle, the jewel beetle and the damselfly: insects with a multilayers show case,” in Structural Colors in Biological Systems—principles and Applications, S.Kinoshita and S.Yoshioka, eds. (Osaka U. Press, 2005), pp. 153–176.

Kelly, R.

P. Vukusic, R. Kelly, and I. Hooper, “A biological sub-micron thickness optical broadband reflector characterized using both light and microwaves,” J. R. Soc. Interface 6, S193–S201 (2009).

Kemp, D. J.

D. J. Kemp, “Female butterflies prefer males bearing bright iridescent ornamentation,” Proc. R. Soc. London Ser. B 274, 1043–1047 (2007).
[CrossRef]

D. J. Kemp, P. Vukusic, and R. L. Rutowski, “Stress-mediated covariance between nano-structural architecture and ultraviolet butterfly coloration,” Funct. Ecol. 20, 282–289 (2006).
[CrossRef]

Kinoshita, S.

S. Yoshioka and S. Kinoshita, “Structural or pigmentary? Origin of the distinctive white stripe on the blue wing of a Morpho butterfly,” Proc. R. Soc. London Ser. B 273, 129–134 (2006).
[CrossRef]

Kubelka, P.

P. Kubelka and F. Munk, “Ein Beitrag zur Optik der Farbanstriche," Z. Tech. Phys. 11a, 593–601 (1931).

Land, M. F.

M. F. Land, “The physics and biology of animal reflectors,” Prog. Biophys. Molec. Biol. 24, 75–106 (1972).
[CrossRef]

Large, C. J.

A. R. Parker, D. R. McKenzie, and C. J. Large, “Multilayer reflectors in animals using green and gold beetles as contrasting examples,” J. Exp. Biol. 201, 1307–1313 (1998).

Lawrence, C. R.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. London Ser. B 266, 1403–1411(1999).
[CrossRef]

Liebherr, J. K.

J. K. Liebherr and J. V. McHugh in Encyclopedia of Insects, V.H.Resh and R.T.Carde, eds. (Academic, 2003), pp. 209–230.

Lousse, V.

J. P. Vigneron, J. F. Colomer, N. Vigneron, and V. Lousse, “Natural layer-by-layer photonic structure in the squamae of Hoplia coerulea (Coleoptera),” Phys. Rev. E 72, 061904 (2005).
[CrossRef]

Loyau, A.

A. Loyau, D. Gomez, B. Moureau, M. Théry, N. S. Hart, M. Saint Jalme, A. T. D. Bennett, and G. Sorci, “Iridescent structurally based coloration of eyespots correlates with mating success in the peacock,” Behav. Ecol. 18, 1123–1131 (2007).
[CrossRef]

Luke, S. M.

Macedonia, J. M.

R. L. Rutowski, J. M. Macedonia, N. I. Morehouse, and L. Taylor-Taft, “Pterin pigments amplify iridescent ultraviolet signal in males of the orange sulphur butterfly, Colias eurytheme,” Proc. R. Soc. London Ser. B 272, 2329–2335 (2005).
[CrossRef]

Martini, N.

A. R. Parker, V. L. Welch, D. Driver, and N. Martini, “Structural color: opal analogue discovered in a weevil,” Nature 426, 786–787 (2003).
[CrossRef] [PubMed]

Mason, C. W.

C. W. Mason, “Structural colours in insects. II,” J. Phys. Chem. 31, 321–354 (1927).
[CrossRef]

C. W. Mason, “Structural colors in insects. I,”’ J. Phys. Chem. 30, 383–395 (1926).
[CrossRef]

McHugh, J. V.

J. K. Liebherr and J. V. McHugh in Encyclopedia of Insects, V.H.Resh and R.T.Carde, eds. (Academic, 2003), pp. 209–230.

McKenzie, D. R.

A. R. Parker, D. R. McKenzie, and C. J. Large, “Multilayer reflectors in animals using green and gold beetles as contrasting examples,” J. Exp. Biol. 201, 1307–1313 (1998).

McNeil, L. E.

L. E. McNeil and R. H. French, “Multiple scattering from rutile TiO2 particles,” Acta Mater. 48, 4571–4576 (2000).
[CrossRef]

Meadows, M. G.

S. M. Doucet and M. G. Meadows, “Iridescence: a functional perspective,” J. R. Soc. Interface 6, S115–S132 (2009).
[PubMed]

Morehouse, N. I.

R. L. Rutowski, J. M. Macedonia, N. I. Morehouse, and L. Taylor-Taft, “Pterin pigments amplify iridescent ultraviolet signal in males of the orange sulphur butterfly, Colias eurytheme,” Proc. R. Soc. London Ser. B 272, 2329–2335 (2005).
[CrossRef]

Moureau, B.

A. Loyau, D. Gomez, B. Moureau, M. Théry, N. S. Hart, M. Saint Jalme, A. T. D. Bennett, and G. Sorci, “Iridescent structurally based coloration of eyespots correlates with mating success in the peacock,” Behav. Ecol. 18, 1123–1131 (2007).
[CrossRef]

Munk, F.

P. Kubelka and F. Munk, “Ein Beitrag zur Optik der Farbanstriche," Z. Tech. Phys. 11a, 593–601 (1931).

Ng, S-P.

J. Yip, S-P. Ng, and K-H. Wong, “Brilliant whiteness from electrospun nanofibre webs,” Text. Res. J. 79, 771–779(2009).
[CrossRef]

Noyes, J.

P. Vukusic, B. T. Hallam, and J. Noyes, “Brilliant whiteness in ultrathin beetle scales,” Science 315, 348–348 (2007).
[CrossRef] [PubMed]

Parker, A. R.

A. R. Parker, V. L. Welch, D. Driver, and N. Martini, “Structural color: opal analogue discovered in a weevil,” Nature 426, 786–787 (2003).
[CrossRef] [PubMed]

A. R. Parker, D. R. McKenzie, and C. J. Large, “Multilayer reflectors in animals using green and gold beetles as contrasting examples,” J. Exp. Biol. 201, 1307–1313 (1998).

Pauler, N.

N. Pauler, Paper Optics (Lorentzen & Wettre, 2000).

Richards, A. G.

T. F. Anderson and A. G. Richards, Jr., “An electron microscope study of some structural colours of insects,” J. Appl. Phys. 13, 748–758 (1942).
[CrossRef]

Rutowski, R. L.

D. J. Kemp, P. Vukusic, and R. L. Rutowski, “Stress-mediated covariance between nano-structural architecture and ultraviolet butterfly coloration,” Funct. Ecol. 20, 282–289 (2006).
[CrossRef]

R. L. Rutowski, J. M. Macedonia, N. I. Morehouse, and L. Taylor-Taft, “Pterin pigments amplify iridescent ultraviolet signal in males of the orange sulphur butterfly, Colias eurytheme,” Proc. R. Soc. London Ser. B 272, 2329–2335 (2005).
[CrossRef]

Saint Jalme, M.

A. Loyau, D. Gomez, B. Moureau, M. Théry, N. S. Hart, M. Saint Jalme, A. T. D. Bennett, and G. Sorci, “Iridescent structurally based coloration of eyespots correlates with mating success in the peacock,” Behav. Ecol. 18, 1123–1131 (2007).
[CrossRef]

Sambles, J. R.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. London Ser. B 266, 1403–1411(1999).
[CrossRef]

Savill, A.

N. F. Hadley, A. Savill, and T. D. Schultz, “Coloration and its thermal consequences in the New Zealand tiger beetle Neocicindela perhispida,” J. Therm. Biol. 17(1), 55–61 (1992).
[CrossRef]

Schultz, T. D.

A. E. Seago, P. Brady, J.-P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera),” J. R. Soc. Interface 6, S165–S184 (2009).

N. F. Hadley, A. Savill, and T. D. Schultz, “Coloration and its thermal consequences in the New Zealand tiger beetle Neocicindela perhispida,” J. Therm. Biol. 17(1), 55–61 (1992).
[CrossRef]

L. E. Gilbert, H. S. Forrest, T. D. Schultz, and D. J. Harvey, “Correlations of ultrastructure and pigmentation suggest how genes control development of wing scales of Heliconius butterflies,” J. Res. Lepid. 26, 141–160 (1988).

Seago, A. E.

A. E. Seago, P. Brady, J.-P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera),” J. R. Soc. Interface 6, S165–S184 (2009).

Siebke, K.

D. G. Stavenga, S. Stowe, K. Siebke, J. Zeil, and K. Arikawa, “Butterfly wing colors: scale beads make white pierid wings brighter,” Proc. R. Soc. London Ser. B 271, 1577–1584 (2004).
[CrossRef]

Sorci, G.

A. Loyau, D. Gomez, B. Moureau, M. Théry, N. S. Hart, M. Saint Jalme, A. T. D. Bennett, and G. Sorci, “Iridescent structurally based coloration of eyespots correlates with mating success in the peacock,” Behav. Ecol. 18, 1123–1131 (2007).
[CrossRef]

Srinivasarao, M.

M. Srinivasarao, “Nano-optics in the biological world,” Chem. Rev. 99, 1935–1961 (1999).
[CrossRef]

Stavenga, D. G.

D. G. Stavenga, S. Stowe, K. Siebke, J. Zeil, and K. Arikawa, “Butterfly wing colors: scale beads make white pierid wings brighter,” Proc. R. Soc. London Ser. B 271, 1577–1584 (2004).
[CrossRef]

T. Hariyama, M. Hironaka, H. Horiguchi, and D. G. Stavenga, “The leaf beetle, the jewel beetle and the damselfly: insects with a multilayers show case,” in Structural Colors in Biological Systems—principles and Applications, S.Kinoshita and S.Yoshioka, eds. (Osaka U. Press, 2005), pp. 153–176.

Stieg, F. B.

F. B. Stieg, “Ending the ‘crowding/spacing theory’ debate,” J. Coat. Technol. 59, 96–97 (1987).

F. B. Stieg, “Opaque white pigments in coatings,” in Applied Polymer Science, 2nd ed., Vol. 285 of ACS Symposium Series, R.W.Tess and G.W.Poehlein, eds. (American Chemical Society, 1985), pp 1249–1269.
[CrossRef]

Stowe, S.

D. G. Stavenga, S. Stowe, K. Siebke, J. Zeil, and K. Arikawa, “Butterfly wing colors: scale beads make white pierid wings brighter,” Proc. R. Soc. London Ser. B 271, 1577–1584 (2004).
[CrossRef]

Taylor-Taft, L.

R. L. Rutowski, J. M. Macedonia, N. I. Morehouse, and L. Taylor-Taft, “Pterin pigments amplify iridescent ultraviolet signal in males of the orange sulphur butterfly, Colias eurytheme,” Proc. R. Soc. London Ser. B 272, 2329–2335 (2005).
[CrossRef]

Théry, M.

A. Loyau, D. Gomez, B. Moureau, M. Théry, N. S. Hart, M. Saint Jalme, A. T. D. Bennett, and G. Sorci, “Iridescent structurally based coloration of eyespots correlates with mating success in the peacock,” Behav. Ecol. 18, 1123–1131 (2007).
[CrossRef]

Vigneron, J. P.

V. L. Welch and J. P. Vigneron, “Beyond butterflies—the diversity of biological photonic crystals,” Opt. Quantum Electron. 39, 295–303 (2007).
[CrossRef]

J. P. Vigneron, J. F. Colomer, N. Vigneron, and V. Lousse, “Natural layer-by-layer photonic structure in the squamae of Hoplia coerulea (Coleoptera),” Phys. Rev. E 72, 061904 (2005).
[CrossRef]

Vigneron, J.-P.

A. E. Seago, P. Brady, J.-P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera),” J. R. Soc. Interface 6, S165–S184 (2009).

Vigneron, N.

J. P. Vigneron, J. F. Colomer, N. Vigneron, and V. Lousse, “Natural layer-by-layer photonic structure in the squamae of Hoplia coerulea (Coleoptera),” Phys. Rev. E 72, 061904 (2005).
[CrossRef]

Vukusic, P.

S. M. Luke, P. Vukusic, and B. T. Hallam, “Measuring and modeling optical scattering and the color quality of white pierid butterfly scales,” Opt. Express 17, 14729–14743 (2009).
[CrossRef] [PubMed]

B. T. Hallam, A. G. Hiorns, and P. Vukusic, “Developing optical efficiency through optimized coating structure: biomimetic inspiration from white beetles,” Appl. Opt. 48, 3243–3249(2009).
[CrossRef] [PubMed]

P. Vukusic, R. Kelly, and I. Hooper, “A biological sub-micron thickness optical broadband reflector characterized using both light and microwaves,” J. R. Soc. Interface 6, S193–S201 (2009).

P. Vukusic, B. T. Hallam, and J. Noyes, “Brilliant whiteness in ultrathin beetle scales,” Science 315, 348–348 (2007).
[CrossRef] [PubMed]

D. J. Kemp, P. Vukusic, and R. L. Rutowski, “Stress-mediated covariance between nano-structural architecture and ultraviolet butterfly coloration,” Funct. Ecol. 20, 282–289 (2006).
[CrossRef]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. London Ser. B 266, 1403–1411(1999).
[CrossRef]

P. Vukusic, “Natural coatings,” in Optical Interference Coatings, N.Kaiser and H.K.Pulker, eds. (Springer2003), pp. 1–34.

Welch, V. L.

V. L. Welch and J. P. Vigneron, “Beyond butterflies—the diversity of biological photonic crystals,” Opt. Quantum Electron. 39, 295–303 (2007).
[CrossRef]

A. R. Parker, V. L. Welch, D. Driver, and N. Martini, “Structural color: opal analogue discovered in a weevil,” Nature 426, 786–787 (2003).
[CrossRef] [PubMed]

Wong, K-H.

J. Yip, S-P. Ng, and K-H. Wong, “Brilliant whiteness from electrospun nanofibre webs,” Text. Res. J. 79, 771–779(2009).
[CrossRef]

Wootton, R. J.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. London Ser. B 266, 1403–1411(1999).
[CrossRef]

Yip, J.

J. Yip, S-P. Ng, and K-H. Wong, “Brilliant whiteness from electrospun nanofibre webs,” Text. Res. J. 79, 771–779(2009).
[CrossRef]

Yoshioka, S.

S. Yoshioka and S. Kinoshita, “Structural or pigmentary? Origin of the distinctive white stripe on the blue wing of a Morpho butterfly,” Proc. R. Soc. London Ser. B 273, 129–134 (2006).
[CrossRef]

Zeil, J.

D. G. Stavenga, S. Stowe, K. Siebke, J. Zeil, and K. Arikawa, “Butterfly wing colors: scale beads make white pierid wings brighter,” Proc. R. Soc. London Ser. B 271, 1577–1584 (2004).
[CrossRef]

Acta Mater. (1)

L. E. McNeil and R. H. French, “Multiple scattering from rutile TiO2 particles,” Acta Mater. 48, 4571–4576 (2000).
[CrossRef]

Appl. Opt. (2)

Behav. Ecol. (1)

A. Loyau, D. Gomez, B. Moureau, M. Théry, N. S. Hart, M. Saint Jalme, A. T. D. Bennett, and G. Sorci, “Iridescent structurally based coloration of eyespots correlates with mating success in the peacock,” Behav. Ecol. 18, 1123–1131 (2007).
[CrossRef]

Chem. Rev. (1)

M. Srinivasarao, “Nano-optics in the biological world,” Chem. Rev. 99, 1935–1961 (1999).
[CrossRef]

Eur. J. Phys. (1)

M. Carrascosa, F. Cusso, and F. Agullo-Lopez, “Lambert emitters: a simple Monte-Carlo approach to optical diffusers,” Eur. J. Phys. 6, 183–187 (1985).
[CrossRef]

Funct. Ecol. (1)

D. J. Kemp, P. Vukusic, and R. L. Rutowski, “Stress-mediated covariance between nano-structural architecture and ultraviolet butterfly coloration,” Funct. Ecol. 20, 282–289 (2006).
[CrossRef]

J. Appl. Phys. (1)

T. F. Anderson and A. G. Richards, Jr., “An electron microscope study of some structural colours of insects,” J. Appl. Phys. 13, 748–758 (1942).
[CrossRef]

J. Coat. Technol. (2)

F. B. Stieg, “Ending the ‘crowding/spacing theory’ debate,” J. Coat. Technol. 59, 96–97 (1987).

J. H. Braun, “Crowding and spacing of titanium dioxide pigments,” J. Coat. Technol. 60, 67–71 (1988).

J. Exp. Biol. (1)

A. R. Parker, D. R. McKenzie, and C. J. Large, “Multilayer reflectors in animals using green and gold beetles as contrasting examples,” J. Exp. Biol. 201, 1307–1313 (1998).

J. Phys. Chem. (2)

C. W. Mason, “Structural colours in insects. II,” J. Phys. Chem. 31, 321–354 (1927).
[CrossRef]

C. W. Mason, “Structural colors in insects. I,”’ J. Phys. Chem. 30, 383–395 (1926).
[CrossRef]

J. R. Soc. Interface (3)

S. M. Doucet and M. G. Meadows, “Iridescence: a functional perspective,” J. R. Soc. Interface 6, S115–S132 (2009).
[PubMed]

A. E. Seago, P. Brady, J.-P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera),” J. R. Soc. Interface 6, S165–S184 (2009).

P. Vukusic, R. Kelly, and I. Hooper, “A biological sub-micron thickness optical broadband reflector characterized using both light and microwaves,” J. R. Soc. Interface 6, S193–S201 (2009).

J. Res. Lepid. (1)

L. E. Gilbert, H. S. Forrest, T. D. Schultz, and D. J. Harvey, “Correlations of ultrastructure and pigmentation suggest how genes control development of wing scales of Heliconius butterflies,” J. Res. Lepid. 26, 141–160 (1988).

J. Therm. Biol. (1)

N. F. Hadley, A. Savill, and T. D. Schultz, “Coloration and its thermal consequences in the New Zealand tiger beetle Neocicindela perhispida,” J. Therm. Biol. 17(1), 55–61 (1992).
[CrossRef]

Nature (1)

A. R. Parker, V. L. Welch, D. Driver, and N. Martini, “Structural color: opal analogue discovered in a weevil,” Nature 426, 786–787 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

S. Berthier, E. Charron, and A. Da Silva, “Determination of the cuticle index of the scales of the iridescent butterfly Morpho menelaus,” Opt. Commun. 228, 349–356 (2003).
[CrossRef]

Opt. Express (1)

Opt. Quantum Electron. (1)

V. L. Welch and J. P. Vigneron, “Beyond butterflies—the diversity of biological photonic crystals,” Opt. Quantum Electron. 39, 295–303 (2007).
[CrossRef]

Phys. Rev. E (1)

J. P. Vigneron, J. F. Colomer, N. Vigneron, and V. Lousse, “Natural layer-by-layer photonic structure in the squamae of Hoplia coerulea (Coleoptera),” Phys. Rev. E 72, 061904 (2005).
[CrossRef]

Proc. R. Soc. London Ser. B (5)

S. Yoshioka and S. Kinoshita, “Structural or pigmentary? Origin of the distinctive white stripe on the blue wing of a Morpho butterfly,” Proc. R. Soc. London Ser. B 273, 129–134 (2006).
[CrossRef]

D. G. Stavenga, S. Stowe, K. Siebke, J. Zeil, and K. Arikawa, “Butterfly wing colors: scale beads make white pierid wings brighter,” Proc. R. Soc. London Ser. B 271, 1577–1584 (2004).
[CrossRef]

R. L. Rutowski, J. M. Macedonia, N. I. Morehouse, and L. Taylor-Taft, “Pterin pigments amplify iridescent ultraviolet signal in males of the orange sulphur butterfly, Colias eurytheme,” Proc. R. Soc. London Ser. B 272, 2329–2335 (2005).
[CrossRef]

D. J. Kemp, “Female butterflies prefer males bearing bright iridescent ornamentation,” Proc. R. Soc. London Ser. B 274, 1043–1047 (2007).
[CrossRef]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. London Ser. B 266, 1403–1411(1999).
[CrossRef]

Prog. Biophys. Molec. Biol. (1)

M. F. Land, “The physics and biology of animal reflectors,” Prog. Biophys. Molec. Biol. 24, 75–106 (1972).
[CrossRef]

Science (1)

P. Vukusic, B. T. Hallam, and J. Noyes, “Brilliant whiteness in ultrathin beetle scales,” Science 315, 348–348 (2007).
[CrossRef] [PubMed]

Text. Res. J. (1)

J. Yip, S-P. Ng, and K-H. Wong, “Brilliant whiteness from electrospun nanofibre webs,” Text. Res. J. 79, 771–779(2009).
[CrossRef]

Z. Tech. Phys. (1)

P. Kubelka and F. Munk, “Ein Beitrag zur Optik der Farbanstriche," Z. Tech. Phys. 11a, 593–601 (1931).

Other (6)

N. Pauler, Paper Optics (Lorentzen & Wettre, 2000).

D. L. Fox, Animal Biochromes and Structural Colors(Cambridge U. Press, 1953).

F. B. Stieg, “Opaque white pigments in coatings,” in Applied Polymer Science, 2nd ed., Vol. 285 of ACS Symposium Series, R.W.Tess and G.W.Poehlein, eds. (American Chemical Society, 1985), pp 1249–1269.
[CrossRef]

J. K. Liebherr and J. V. McHugh in Encyclopedia of Insects, V.H.Resh and R.T.Carde, eds. (Academic, 2003), pp. 209–230.

T. Hariyama, M. Hironaka, H. Horiguchi, and D. G. Stavenga, “The leaf beetle, the jewel beetle and the damselfly: insects with a multilayers show case,” in Structural Colors in Biological Systems—principles and Applications, S.Kinoshita and S.Yoshioka, eds. (Osaka U. Press, 2005), pp. 153–176.

P. Vukusic, “Natural coatings,” in Optical Interference Coatings, N.Kaiser and H.K.Pulker, eds. (Springer2003), pp. 1–34.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Optical images of Cyphochilus (left), L. stigma (center), and C. margaritifera. Optical images of the scales imbricating the elytra of (b) Cyphochilus, (c) L. stigma, and (d) C. margaritifera. (e) Scanning electron micrograph showing the fractured edge of one of the white Cyphochilus scales shown in (b). (f) Scanning electron micrograph showing the fractured edge of one of the white L. stigma scales shown in (c). (g) Scanning electron micrograph showing the fractured edge of one of the white C. margaritifera scales shown in (d). Scale bars: (a) 1 cm , (b)–(d) 500 μm , (e) 3 μm , (f) 5 μm , and (g) 4 μm .

Fig. 2
Fig. 2

Transmission electron micrographs of the scales of (a) Cyphochilus, (b) L. stigma, and (c) C. margaritifera. (d) Theoretical reflectance, averaged over the wavelength range of 400 700 nm , versus filling fraction of the scale microstructure of each beetle species. Scale bars: (a) 1 μm , (b) 2 μm , and (c) 1 μm .

Fig. 3
Fig. 3

(a) Experimental reflectance data taken from the elytra of each beetle species, compared to those of polystyrene and 80 gsm white paper. (b) Experimental angle-dependent reflectance profiles ( λ = 550 nm ) taken from the elytra of the three beetle species compared to that of a synthetic white reference. (c) Surface profile data from the wing elytra of each beetle. A Walsh transform is performed on the surface profile to determine the frequency with which surface features of different sizes appear.

Fig. 4
Fig. 4

(a) Predicted optical scatter from particles with varying diameter modeled by using Mie Theory. (b) Optical scatter per scattering particle from synthetic particle-based systems with varying particle separation. (Inset, total optical scatter from the same synthetic systems with varying particle separations).

Metrics