Abstract

Based on the standards for optical components in telecommunications (Telcordia) and general printed circuit boards (Institute of Printed Circuits and International Electro Technical Commission), three environmental stability verification tests are concluded for polysiloxane-based electrical-optical circuit boards (EOCBs). In terms of defined test models, the respective acceleration factors are determined. Combining the acceleration factors and proposed reliability objective of 400 failures in time (FITs) (one FIT is equal to one device failure in 109 device hours of operation) at the 90% confidence level, EOCB test sample size to each acceleration test are deduced, and a corresponding amount of samples are prepared for mechanical and optical stabilities verification. In addition to the good mechanical stability the results exhibit, the packaged EOCBs have low and stable optical loss values (<0.1dB/cm) and numerical aperture even at extreme environmental conditions. Furthermore, a total failure rate of 400 FITs is predicted for 14.4yr of operation at 25°C and moderate humidity conditions (20% relative humidity).

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. K. Cai and A. Neyer, “Realization of electrical-optical-circuit-board self-packaging,” in Proceedings of IEEE Conference on Electronic Components and Technology Conference (IEEE, 2007), pp. 1368–1374.
    [CrossRef]
  2. D. K. Cai and A. Neyer, “Quality standardization for polydimethylsiloxane-based optical interconnect production from optical aspects,” IEEE Photon. Technol. Lett. 22, 996–998(2010).
    [CrossRef]
  3. D. K. Cai and A. Neyer , “Realization of Kapton based optical interconnect by KMnO4 wet etching,” Appl. Phys. A 99, 783–789 (2010).
    [CrossRef]
  4. D. K. Cai and A. Neyer, “Cost-effective and reliable sealing method for PDMS (PolyDiMethylSiloxane)-based microfluidic devices with various substrates,” Microfluidics Nanofluidics (2010).
    [CrossRef]
  5. D. K. Cai and A. Neyer, “Cost-effective waveguide integration method for large-scale electrical-optical-circuit-board production,” Electron. Lett. 46, 581–583 (2010).
    [CrossRef]
  6. P. Lall, “Challenges in accelerated life testing,” in The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2004. ITHERM ’04, Vol. 2 (IEEE, 2004), p. 727.
    [CrossRef]
  7. E. Suhir, “Accelerated life testing (ALT) in microelectronics and photonics: its role, attributes, challenges, pitfalls, and interaction with qualification tests,” J. Electron. Packaging 124, 281–291 (2002).
    [CrossRef]
  8. N. Sinnadurai and K. Wilson, “The aging behavior of commercial thick-film resistors,” IEEE Trans. Compon. Hybrids Manuf. Technol. 5, 308–317 (1982).
    [CrossRef]
  9. H. Nagata, Li Yagang, K. R. Voisine, and W. R. Bosenberg, “Reliability of nonhermetic bias-free LiNbO3 modulators,” IEEE Photonics Technol. Lett. 16, 2457–2459 (2004).
    [CrossRef]
  10. D. Crowe, Design for Reliability (CRC Press, 2001).
    [CrossRef]
  11. J. W. Osenbach and T. L. Evanosky, “Temperature-humidity-bias-behavior and acceleration model for InP planar PIN photodiodes,” J. Lightwave Technol. 14, 1865–1881 (1996).
    [CrossRef]
  12. J. W. C. de Vriesa, M. Y. Jansena, and W. D. van Drielb, “On the difference between thermal cycling and thermal shock testing for board level reliability of soldered interconnections,” Microelectron. Reliab. 47, 444–449 (2007).
    [CrossRef]
  13. M. R. Douglass, “Lifetime estimates and unique failure mechanisms of the digital micromirror device (DMD),” in 1998 International Reliability Physics Symposium Proceedings (IEEE, 1998), pp. 9–16.
  14. D. K. Cai, A. Neyer, R. Kuckuk, and M. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. 30, 1157–1161(2008).
    [CrossRef]
  15. S. Kopetz, D. K. Cai, E. Rabe, A. Neyer, “PDMS-based optical waveguide layer for integration in electrical-optical circuit boards,” AEU-Int. J. Electron. Commun. 61, 163–167 (2007).
    [CrossRef]
  16. D. Kececioglu, Reliability and Life Testing Handbook, Vol. 2 (DEStech Publications, 2002).

2010

D. K. Cai and A. Neyer, “Quality standardization for polydimethylsiloxane-based optical interconnect production from optical aspects,” IEEE Photon. Technol. Lett. 22, 996–998(2010).
[CrossRef]

D. K. Cai and A. Neyer , “Realization of Kapton based optical interconnect by KMnO4 wet etching,” Appl. Phys. A 99, 783–789 (2010).
[CrossRef]

D. K. Cai and A. Neyer, “Cost-effective and reliable sealing method for PDMS (PolyDiMethylSiloxane)-based microfluidic devices with various substrates,” Microfluidics Nanofluidics (2010).
[CrossRef]

D. K. Cai and A. Neyer, “Cost-effective waveguide integration method for large-scale electrical-optical-circuit-board production,” Electron. Lett. 46, 581–583 (2010).
[CrossRef]

2008

D. K. Cai, A. Neyer, R. Kuckuk, and M. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. 30, 1157–1161(2008).
[CrossRef]

2007

S. Kopetz, D. K. Cai, E. Rabe, A. Neyer, “PDMS-based optical waveguide layer for integration in electrical-optical circuit boards,” AEU-Int. J. Electron. Commun. 61, 163–167 (2007).
[CrossRef]

J. W. C. de Vriesa, M. Y. Jansena, and W. D. van Drielb, “On the difference between thermal cycling and thermal shock testing for board level reliability of soldered interconnections,” Microelectron. Reliab. 47, 444–449 (2007).
[CrossRef]

2004

H. Nagata, Li Yagang, K. R. Voisine, and W. R. Bosenberg, “Reliability of nonhermetic bias-free LiNbO3 modulators,” IEEE Photonics Technol. Lett. 16, 2457–2459 (2004).
[CrossRef]

2002

E. Suhir, “Accelerated life testing (ALT) in microelectronics and photonics: its role, attributes, challenges, pitfalls, and interaction with qualification tests,” J. Electron. Packaging 124, 281–291 (2002).
[CrossRef]

1996

J. W. Osenbach and T. L. Evanosky, “Temperature-humidity-bias-behavior and acceleration model for InP planar PIN photodiodes,” J. Lightwave Technol. 14, 1865–1881 (1996).
[CrossRef]

1982

N. Sinnadurai and K. Wilson, “The aging behavior of commercial thick-film resistors,” IEEE Trans. Compon. Hybrids Manuf. Technol. 5, 308–317 (1982).
[CrossRef]

Bosenberg, W. R.

H. Nagata, Li Yagang, K. R. Voisine, and W. R. Bosenberg, “Reliability of nonhermetic bias-free LiNbO3 modulators,” IEEE Photonics Technol. Lett. 16, 2457–2459 (2004).
[CrossRef]

Cai, D. K.

D. K. Cai and A. Neyer, “Quality standardization for polydimethylsiloxane-based optical interconnect production from optical aspects,” IEEE Photon. Technol. Lett. 22, 996–998(2010).
[CrossRef]

Cai, D. K.

D. K. Cai and A. Neyer , “Realization of Kapton based optical interconnect by KMnO4 wet etching,” Appl. Phys. A 99, 783–789 (2010).
[CrossRef]

D. K. Cai and A. Neyer, “Cost-effective and reliable sealing method for PDMS (PolyDiMethylSiloxane)-based microfluidic devices with various substrates,” Microfluidics Nanofluidics (2010).
[CrossRef]

D. K. Cai and A. Neyer, “Cost-effective waveguide integration method for large-scale electrical-optical-circuit-board production,” Electron. Lett. 46, 581–583 (2010).
[CrossRef]

D. K. Cai, A. Neyer, R. Kuckuk, and M. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. 30, 1157–1161(2008).
[CrossRef]

S. Kopetz, D. K. Cai, E. Rabe, A. Neyer, “PDMS-based optical waveguide layer for integration in electrical-optical circuit boards,” AEU-Int. J. Electron. Commun. 61, 163–167 (2007).
[CrossRef]

D. K. Cai and A. Neyer, “Realization of electrical-optical-circuit-board self-packaging,” in Proceedings of IEEE Conference on Electronic Components and Technology Conference (IEEE, 2007), pp. 1368–1374.
[CrossRef]

Crowe, D.

D. Crowe, Design for Reliability (CRC Press, 2001).
[CrossRef]

de Vriesa, J. W. C.

J. W. C. de Vriesa, M. Y. Jansena, and W. D. van Drielb, “On the difference between thermal cycling and thermal shock testing for board level reliability of soldered interconnections,” Microelectron. Reliab. 47, 444–449 (2007).
[CrossRef]

Douglass, M. R.

M. R. Douglass, “Lifetime estimates and unique failure mechanisms of the digital micromirror device (DMD),” in 1998 International Reliability Physics Symposium Proceedings (IEEE, 1998), pp. 9–16.

Evanosky, T. L.

J. W. Osenbach and T. L. Evanosky, “Temperature-humidity-bias-behavior and acceleration model for InP planar PIN photodiodes,” J. Lightwave Technol. 14, 1865–1881 (1996).
[CrossRef]

Heise, M.

D. K. Cai, A. Neyer, R. Kuckuk, and M. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. 30, 1157–1161(2008).
[CrossRef]

Jansena, M. Y.

J. W. C. de Vriesa, M. Y. Jansena, and W. D. van Drielb, “On the difference between thermal cycling and thermal shock testing for board level reliability of soldered interconnections,” Microelectron. Reliab. 47, 444–449 (2007).
[CrossRef]

Kececioglu, D.

D. Kececioglu, Reliability and Life Testing Handbook, Vol. 2 (DEStech Publications, 2002).

Kopetz, S.

S. Kopetz, D. K. Cai, E. Rabe, A. Neyer, “PDMS-based optical waveguide layer for integration in electrical-optical circuit boards,” AEU-Int. J. Electron. Commun. 61, 163–167 (2007).
[CrossRef]

Kuckuk, R.

D. K. Cai, A. Neyer, R. Kuckuk, and M. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. 30, 1157–1161(2008).
[CrossRef]

Lall, P.

P. Lall, “Challenges in accelerated life testing,” in The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2004. ITHERM ’04, Vol. 2 (IEEE, 2004), p. 727.
[CrossRef]

Nagata, H.

H. Nagata, Li Yagang, K. R. Voisine, and W. R. Bosenberg, “Reliability of nonhermetic bias-free LiNbO3 modulators,” IEEE Photonics Technol. Lett. 16, 2457–2459 (2004).
[CrossRef]

Neyer, A.

D. K. Cai and A. Neyer, “Cost-effective waveguide integration method for large-scale electrical-optical-circuit-board production,” Electron. Lett. 46, 581–583 (2010).
[CrossRef]

D. K. Cai and A. Neyer, “Quality standardization for polydimethylsiloxane-based optical interconnect production from optical aspects,” IEEE Photon. Technol. Lett. 22, 996–998(2010).
[CrossRef]

D. K. Cai and A. Neyer, “Cost-effective and reliable sealing method for PDMS (PolyDiMethylSiloxane)-based microfluidic devices with various substrates,” Microfluidics Nanofluidics (2010).
[CrossRef]

D. K. Cai and A. Neyer , “Realization of Kapton based optical interconnect by KMnO4 wet etching,” Appl. Phys. A 99, 783–789 (2010).
[CrossRef]

D. K. Cai, A. Neyer, R. Kuckuk, and M. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. 30, 1157–1161(2008).
[CrossRef]

S. Kopetz, D. K. Cai, E. Rabe, A. Neyer, “PDMS-based optical waveguide layer for integration in electrical-optical circuit boards,” AEU-Int. J. Electron. Commun. 61, 163–167 (2007).
[CrossRef]

D. K. Cai and A. Neyer, “Realization of electrical-optical-circuit-board self-packaging,” in Proceedings of IEEE Conference on Electronic Components and Technology Conference (IEEE, 2007), pp. 1368–1374.
[CrossRef]

Osenbach, J. W.

J. W. Osenbach and T. L. Evanosky, “Temperature-humidity-bias-behavior and acceleration model for InP planar PIN photodiodes,” J. Lightwave Technol. 14, 1865–1881 (1996).
[CrossRef]

Rabe, E.

S. Kopetz, D. K. Cai, E. Rabe, A. Neyer, “PDMS-based optical waveguide layer for integration in electrical-optical circuit boards,” AEU-Int. J. Electron. Commun. 61, 163–167 (2007).
[CrossRef]

Sinnadurai, N.

N. Sinnadurai and K. Wilson, “The aging behavior of commercial thick-film resistors,” IEEE Trans. Compon. Hybrids Manuf. Technol. 5, 308–317 (1982).
[CrossRef]

Suhir, E.

E. Suhir, “Accelerated life testing (ALT) in microelectronics and photonics: its role, attributes, challenges, pitfalls, and interaction with qualification tests,” J. Electron. Packaging 124, 281–291 (2002).
[CrossRef]

van Drielb, W. D.

J. W. C. de Vriesa, M. Y. Jansena, and W. D. van Drielb, “On the difference between thermal cycling and thermal shock testing for board level reliability of soldered interconnections,” Microelectron. Reliab. 47, 444–449 (2007).
[CrossRef]

Voisine, K. R.

H. Nagata, Li Yagang, K. R. Voisine, and W. R. Bosenberg, “Reliability of nonhermetic bias-free LiNbO3 modulators,” IEEE Photonics Technol. Lett. 16, 2457–2459 (2004).
[CrossRef]

Wilson, K.

N. Sinnadurai and K. Wilson, “The aging behavior of commercial thick-film resistors,” IEEE Trans. Compon. Hybrids Manuf. Technol. 5, 308–317 (1982).
[CrossRef]

Yagang, Li

H. Nagata, Li Yagang, K. R. Voisine, and W. R. Bosenberg, “Reliability of nonhermetic bias-free LiNbO3 modulators,” IEEE Photonics Technol. Lett. 16, 2457–2459 (2004).
[CrossRef]

AEU-Int. J. Electron. Commun.

S. Kopetz, D. K. Cai, E. Rabe, A. Neyer, “PDMS-based optical waveguide layer for integration in electrical-optical circuit boards,” AEU-Int. J. Electron. Commun. 61, 163–167 (2007).
[CrossRef]

Appl. Phys. A

D. K. Cai and A. Neyer , “Realization of Kapton based optical interconnect by KMnO4 wet etching,” Appl. Phys. A 99, 783–789 (2010).
[CrossRef]

Electron. Lett.

D. K. Cai and A. Neyer, “Cost-effective waveguide integration method for large-scale electrical-optical-circuit-board production,” Electron. Lett. 46, 581–583 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

D. K. Cai and A. Neyer, “Quality standardization for polydimethylsiloxane-based optical interconnect production from optical aspects,” IEEE Photon. Technol. Lett. 22, 996–998(2010).
[CrossRef]

IEEE Photonics Technol. Lett.

H. Nagata, Li Yagang, K. R. Voisine, and W. R. Bosenberg, “Reliability of nonhermetic bias-free LiNbO3 modulators,” IEEE Photonics Technol. Lett. 16, 2457–2459 (2004).
[CrossRef]

IEEE Trans. Compon. Hybrids Manuf. Technol.

N. Sinnadurai and K. Wilson, “The aging behavior of commercial thick-film resistors,” IEEE Trans. Compon. Hybrids Manuf. Technol. 5, 308–317 (1982).
[CrossRef]

J. Electron. Packaging

E. Suhir, “Accelerated life testing (ALT) in microelectronics and photonics: its role, attributes, challenges, pitfalls, and interaction with qualification tests,” J. Electron. Packaging 124, 281–291 (2002).
[CrossRef]

J. Lightwave Technol.

J. W. Osenbach and T. L. Evanosky, “Temperature-humidity-bias-behavior and acceleration model for InP planar PIN photodiodes,” J. Lightwave Technol. 14, 1865–1881 (1996).
[CrossRef]

Microelectron. Reliab.

J. W. C. de Vriesa, M. Y. Jansena, and W. D. van Drielb, “On the difference between thermal cycling and thermal shock testing for board level reliability of soldered interconnections,” Microelectron. Reliab. 47, 444–449 (2007).
[CrossRef]

Opt. Mater.

D. K. Cai, A. Neyer, R. Kuckuk, and M. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. 30, 1157–1161(2008).
[CrossRef]

Other

D. Kececioglu, Reliability and Life Testing Handbook, Vol. 2 (DEStech Publications, 2002).

M. R. Douglass, “Lifetime estimates and unique failure mechanisms of the digital micromirror device (DMD),” in 1998 International Reliability Physics Symposium Proceedings (IEEE, 1998), pp. 9–16.

D. Crowe, Design for Reliability (CRC Press, 2001).
[CrossRef]

P. Lall, “Challenges in accelerated life testing,” in The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2004. ITHERM ’04, Vol. 2 (IEEE, 2004), p. 727.
[CrossRef]

D. K. Cai and A. Neyer, “Realization of electrical-optical-circuit-board self-packaging,” in Proceedings of IEEE Conference on Electronic Components and Technology Conference (IEEE, 2007), pp. 1368–1374.
[CrossRef]

D. K. Cai and A. Neyer, “Cost-effective and reliable sealing method for PDMS (PolyDiMethylSiloxane)-based microfluidic devices with various substrates,” Microfluidics Nanofluidics (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) SU-8 master form with straight channels. (b) Large size SU-8 master form on a glass substrate.

Fig. 2
Fig. 2

SU8 mold on a silicon wafer and hand- blading process.

Fig. 3
Fig. 3

Fabrication and self-packaging process of PDMS-based optical layer.

Fig. 4
Fig. 4

Principle of accelerated test.

Fig. 5
Fig. 5

Influence of different environmental conditions on optical waveguide materials’ refractive indices and NA.

Fig. 6
Fig. 6

(a). Influence of different environmental conditions and different PCB-carrier materials on optical waveguide loss. (b). Influence of dry heat treatment on optical waveguide loss.

Tables (2)

Tables Icon

Table 1 Minimum Sample Sizes for EOCB Environmental Stability Tests

Tables Icon

Table 2 Maximum Mechanical Strength After Different Environmental Tests

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

A T = exp { E a k B [ 1 T use 1 T stress ] } ; Test Time = Life Time / A T ,
A T = exp { E a k B [ 1 T use 1 T stress ] } ; A H = ( R stress R use ) m ; A T H = A T × A H ; Test Time = Life Time / A T H ,
A T = exp { ( 0.7     eV / 8.6173 × 10 5 eV / K ) × [ 1 / ( 273.15 + 25 ) 1 / ( 273.15 + 40 ) K ] } = 3.69.
A TS = ( N use R stress ) = ( Δ T stress Δ T use ) K ,
N = χ 2 ( γ , 2 Y + 2 ) 2 λ ¯ A t ,

Metrics