Abstract

We demonstrate a polarization-independent tunable optical filter based on switchable polarization gratings (PGs) formed using reactive and nonreactive liquid crystals (LCs). PGs are anisotropic diffraction gratings that exhibit unique properties, including a zero-order transmittance that is independent of incident polarization and that can vary from 0% to 100%, depending on wavelength and applied voltage. A stack of several PGs of varying thicknesses combined with an elemental angle filter yields polarization-independent bandpass tuning with minimal loss. We introduce a novel hybrid PG consisting of both reactive and nonreactive LC layers, which allows very thick gratings to be created with thin active LC layers. We demonstrate a tunable optical filter with a peak transmittance of 84% of unpolarized light, a minimum full width at half-maximum of 64nm, and a maximum tuning range of 140nm.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Woltman, G. Jay, and G. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6, 929–938 (2007).
    [CrossRef] [PubMed]
  2. N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
    [CrossRef]
  3. G. Keiser, “A review of WDM technology and applications,” Opt. Fiber Technol. 5, 3–39 (1999).
    [CrossRef]
  4. C. Bacon, Y. Mattley, and R. DeFrece, “Miniature spectroscopic instrumentation: applications to biology and chemistry,” Rev. Sci. Instrum. 75, 1–16 (2004).
    [CrossRef]
  5. K. Rosfjord, R. Villalaz, and T. Gaylord, “Constant-bandwidth scanning of the Czerny–Turner monochromator,” Appl. Opt. 39, 568–572 (2000).
    [CrossRef]
  6. A. Kenda, W. Scherf, R. Hauser, H. Gruger, and H. Schenk, “A compact spectrometer based on a micromachined torsional mirror device,” in Proceedings of IEEE Sensors, 2004 (IEEE, 2004), pp. 1312–1315.
    [CrossRef]
  7. A. Kutyrev, C. Bennett, S. Moseley, D. Rapchun, and K. Stewart, “Near infrared cryogenic tunable solid Fabry–Perot spectrometer,” Proc. SPIE 5492, 1172–1178 (2004).
    [CrossRef]
  8. K. Hirabayashi, H. Tsuda, and T. Kurokawa, “Tunable liquid-crystal Fabry–Perot interferometer filter for wavelength-division multiplexing communication systems,” J. Lightwave Technol. 11, 2033–2043 (1993).
    [CrossRef]
  9. H. Xianyu, S. Faris, and G. Crawford, “In-plane switching of cholesteric liquid crystals for visible and near-infrared applications,” Appl. Opt. 43, 5006–5015 (2004).
    [CrossRef] [PubMed]
  10. J. McMurdy, G. Crawford, and G. Jay, “Ferroelectric liquid crystal based tunable microspectrometer,” Mol. Cryst. Liq. Cryst. 476, 61–76 (2007).
    [CrossRef]
  11. O. Aharon and I. Abdulhalim, “Tunable optical filter having a large dynamic range,” Opt. Lett. 34, 2114–2116 (2009).
    [CrossRef] [PubMed]
  12. H. Morris, C. Hoyt, P. Miller, and P. Treado, “Liquid crystal tunable filter Raman chemical imaging,” Appl. Spectrosc. 50, 805–811 (1996).
    [CrossRef]
  13. L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” J. Mod. Opt. 31, 579–588 (1984).
    [CrossRef]
  14. C. Oh and M. Escuti, “Numerical analysis of polarization gratings using the finite-difference time-domain method,” Phys. Rev. A 76, 043815 (2007).
    [CrossRef]
  15. C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89, 121105 (2006).
    [CrossRef]
  16. S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18, 1–47 (2009).
    [CrossRef]
  17. M. Escuti and W. Jones, “Polarization-independent switching with high contrast from a liquid crystal polarization grating,” SID Symposium Digest 37, 1443–1446 (2006).
    [CrossRef]
  18. J. Eakin, Y. Xie, R. Pelcovits, M. Radcliffe, and G. Crawford, “Zero voltage Freedericksz transition in periodically aligned liquid crystals,” Appl. Phys. Lett. 85, 1671–1673(2004).
    [CrossRef]
  19. M. Escuti, C. Oh, C. Sánchez, C. Bastiaansen, and D. Broer, “Simplified spectropolarimetry using reactive mesogen polarization gratings,” Proc. SPIE 6302, 630207 (2006).
    [CrossRef]
  20. E. Nicolescu and M. Escuti, “Polarization-independent tunable optical filters based on liquid crystal polarization gratings,” Proc. SPIE 6654, 665405 (2007).
    [CrossRef]
  21. R. Komanduri and M. Escuti, “Elastic continuum analysis of the liquid crystal polarization grating,” Phys. Rev. E 76, 021701 (2007).
    [CrossRef]
  22. I. Dozov, D. Stoenescu, S. Lamarque-Forget, P. Martinot-Lagarde, and E. Polossat, “Planar degenerated anchoring of liquid crystals obtained by surface memory passivation,” Appl. Phys. Lett. 77, 4124–4126 (2000).
    [CrossRef]
  23. R. Komanduri and M. Escuti, “High efficiency reflective liquid crystal polarization gratings,” Appl. Phys. Lett. 95, 091106(2009).
    [CrossRef]
  24. M. Escuti, D. Cairns, and G. Crawford, “Optical-strain characteristics of anisotropic polymer films fabricated from a liquid crystal diacrylate,” J. Appl. Phys. 95, 2386–2390(2004).
    [CrossRef]
  25. C. Oh, J. Kim, J. Muth, and M. Escuti, “A new beam steering concept: Risley gratings,” Proc. SPIE 7466, 746619(2009).

2009 (4)

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18, 1–47 (2009).
[CrossRef]

R. Komanduri and M. Escuti, “High efficiency reflective liquid crystal polarization gratings,” Appl. Phys. Lett. 95, 091106(2009).
[CrossRef]

C. Oh, J. Kim, J. Muth, and M. Escuti, “A new beam steering concept: Risley gratings,” Proc. SPIE 7466, 746619(2009).

O. Aharon and I. Abdulhalim, “Tunable optical filter having a large dynamic range,” Opt. Lett. 34, 2114–2116 (2009).
[CrossRef] [PubMed]

2007 (5)

E. Nicolescu and M. Escuti, “Polarization-independent tunable optical filters based on liquid crystal polarization gratings,” Proc. SPIE 6654, 665405 (2007).
[CrossRef]

R. Komanduri and M. Escuti, “Elastic continuum analysis of the liquid crystal polarization grating,” Phys. Rev. E 76, 021701 (2007).
[CrossRef]

S. Woltman, G. Jay, and G. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6, 929–938 (2007).
[CrossRef] [PubMed]

J. McMurdy, G. Crawford, and G. Jay, “Ferroelectric liquid crystal based tunable microspectrometer,” Mol. Cryst. Liq. Cryst. 476, 61–76 (2007).
[CrossRef]

C. Oh and M. Escuti, “Numerical analysis of polarization gratings using the finite-difference time-domain method,” Phys. Rev. A 76, 043815 (2007).
[CrossRef]

2006 (3)

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89, 121105 (2006).
[CrossRef]

M. Escuti and W. Jones, “Polarization-independent switching with high contrast from a liquid crystal polarization grating,” SID Symposium Digest 37, 1443–1446 (2006).
[CrossRef]

M. Escuti, C. Oh, C. Sánchez, C. Bastiaansen, and D. Broer, “Simplified spectropolarimetry using reactive mesogen polarization gratings,” Proc. SPIE 6302, 630207 (2006).
[CrossRef]

2004 (5)

H. Xianyu, S. Faris, and G. Crawford, “In-plane switching of cholesteric liquid crystals for visible and near-infrared applications,” Appl. Opt. 43, 5006–5015 (2004).
[CrossRef] [PubMed]

J. Eakin, Y. Xie, R. Pelcovits, M. Radcliffe, and G. Crawford, “Zero voltage Freedericksz transition in periodically aligned liquid crystals,” Appl. Phys. Lett. 85, 1671–1673(2004).
[CrossRef]

M. Escuti, D. Cairns, and G. Crawford, “Optical-strain characteristics of anisotropic polymer films fabricated from a liquid crystal diacrylate,” J. Appl. Phys. 95, 2386–2390(2004).
[CrossRef]

C. Bacon, Y. Mattley, and R. DeFrece, “Miniature spectroscopic instrumentation: applications to biology and chemistry,” Rev. Sci. Instrum. 75, 1–16 (2004).
[CrossRef]

A. Kutyrev, C. Bennett, S. Moseley, D. Rapchun, and K. Stewart, “Near infrared cryogenic tunable solid Fabry–Perot spectrometer,” Proc. SPIE 5492, 1172–1178 (2004).
[CrossRef]

2000 (3)

N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
[CrossRef]

K. Rosfjord, R. Villalaz, and T. Gaylord, “Constant-bandwidth scanning of the Czerny–Turner monochromator,” Appl. Opt. 39, 568–572 (2000).
[CrossRef]

I. Dozov, D. Stoenescu, S. Lamarque-Forget, P. Martinot-Lagarde, and E. Polossat, “Planar degenerated anchoring of liquid crystals obtained by surface memory passivation,” Appl. Phys. Lett. 77, 4124–4126 (2000).
[CrossRef]

1999 (1)

G. Keiser, “A review of WDM technology and applications,” Opt. Fiber Technol. 5, 3–39 (1999).
[CrossRef]

1996 (1)

1993 (1)

K. Hirabayashi, H. Tsuda, and T. Kurokawa, “Tunable liquid-crystal Fabry–Perot interferometer filter for wavelength-division multiplexing communication systems,” J. Lightwave Technol. 11, 2033–2043 (1993).
[CrossRef]

1984 (1)

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” J. Mod. Opt. 31, 579–588 (1984).
[CrossRef]

Abdulhalim, I.

Aharon, O.

Bacon, C.

C. Bacon, Y. Mattley, and R. DeFrece, “Miniature spectroscopic instrumentation: applications to biology and chemistry,” Rev. Sci. Instrum. 75, 1–16 (2004).
[CrossRef]

Bastiaansen, C.

M. Escuti, C. Oh, C. Sánchez, C. Bastiaansen, and D. Broer, “Simplified spectropolarimetry using reactive mesogen polarization gratings,” Proc. SPIE 6302, 630207 (2006).
[CrossRef]

Bennett, C.

A. Kutyrev, C. Bennett, S. Moseley, D. Rapchun, and K. Stewart, “Near infrared cryogenic tunable solid Fabry–Perot spectrometer,” Proc. SPIE 5492, 1172–1178 (2004).
[CrossRef]

Broer, D.

M. Escuti, C. Oh, C. Sánchez, C. Bastiaansen, and D. Broer, “Simplified spectropolarimetry using reactive mesogen polarization gratings,” Proc. SPIE 6302, 630207 (2006).
[CrossRef]

Cairns, D.

M. Escuti, D. Cairns, and G. Crawford, “Optical-strain characteristics of anisotropic polymer films fabricated from a liquid crystal diacrylate,” J. Appl. Phys. 95, 2386–2390(2004).
[CrossRef]

Cipparrone, G.

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89, 121105 (2006).
[CrossRef]

Crawford, G.

J. McMurdy, G. Crawford, and G. Jay, “Ferroelectric liquid crystal based tunable microspectrometer,” Mol. Cryst. Liq. Cryst. 476, 61–76 (2007).
[CrossRef]

S. Woltman, G. Jay, and G. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6, 929–938 (2007).
[CrossRef] [PubMed]

J. Eakin, Y. Xie, R. Pelcovits, M. Radcliffe, and G. Crawford, “Zero voltage Freedericksz transition in periodically aligned liquid crystals,” Appl. Phys. Lett. 85, 1671–1673(2004).
[CrossRef]

M. Escuti, D. Cairns, and G. Crawford, “Optical-strain characteristics of anisotropic polymer films fabricated from a liquid crystal diacrylate,” J. Appl. Phys. 95, 2386–2390(2004).
[CrossRef]

H. Xianyu, S. Faris, and G. Crawford, “In-plane switching of cholesteric liquid crystals for visible and near-infrared applications,” Appl. Opt. 43, 5006–5015 (2004).
[CrossRef] [PubMed]

DeFrece, R.

C. Bacon, Y. Mattley, and R. DeFrece, “Miniature spectroscopic instrumentation: applications to biology and chemistry,” Rev. Sci. Instrum. 75, 1–16 (2004).
[CrossRef]

Dozov, I.

I. Dozov, D. Stoenescu, S. Lamarque-Forget, P. Martinot-Lagarde, and E. Polossat, “Planar degenerated anchoring of liquid crystals obtained by surface memory passivation,” Appl. Phys. Lett. 77, 4124–4126 (2000).
[CrossRef]

Eakin, J.

J. Eakin, Y. Xie, R. Pelcovits, M. Radcliffe, and G. Crawford, “Zero voltage Freedericksz transition in periodically aligned liquid crystals,” Appl. Phys. Lett. 85, 1671–1673(2004).
[CrossRef]

Escuti, M.

C. Oh, J. Kim, J. Muth, and M. Escuti, “A new beam steering concept: Risley gratings,” Proc. SPIE 7466, 746619(2009).

R. Komanduri and M. Escuti, “High efficiency reflective liquid crystal polarization gratings,” Appl. Phys. Lett. 95, 091106(2009).
[CrossRef]

C. Oh and M. Escuti, “Numerical analysis of polarization gratings using the finite-difference time-domain method,” Phys. Rev. A 76, 043815 (2007).
[CrossRef]

R. Komanduri and M. Escuti, “Elastic continuum analysis of the liquid crystal polarization grating,” Phys. Rev. E 76, 021701 (2007).
[CrossRef]

E. Nicolescu and M. Escuti, “Polarization-independent tunable optical filters based on liquid crystal polarization gratings,” Proc. SPIE 6654, 665405 (2007).
[CrossRef]

M. Escuti and W. Jones, “Polarization-independent switching with high contrast from a liquid crystal polarization grating,” SID Symposium Digest 37, 1443–1446 (2006).
[CrossRef]

M. Escuti, C. Oh, C. Sánchez, C. Bastiaansen, and D. Broer, “Simplified spectropolarimetry using reactive mesogen polarization gratings,” Proc. SPIE 6302, 630207 (2006).
[CrossRef]

M. Escuti, D. Cairns, and G. Crawford, “Optical-strain characteristics of anisotropic polymer films fabricated from a liquid crystal diacrylate,” J. Appl. Phys. 95, 2386–2390(2004).
[CrossRef]

Faris, S.

Gat, N.

N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
[CrossRef]

Gaylord, T.

Gruger, H.

A. Kenda, W. Scherf, R. Hauser, H. Gruger, and H. Schenk, “A compact spectrometer based on a micromachined torsional mirror device,” in Proceedings of IEEE Sensors, 2004 (IEEE, 2004), pp. 1312–1315.
[CrossRef]

Hauser, R.

A. Kenda, W. Scherf, R. Hauser, H. Gruger, and H. Schenk, “A compact spectrometer based on a micromachined torsional mirror device,” in Proceedings of IEEE Sensors, 2004 (IEEE, 2004), pp. 1312–1315.
[CrossRef]

Hirabayashi, K.

K. Hirabayashi, H. Tsuda, and T. Kurokawa, “Tunable liquid-crystal Fabry–Perot interferometer filter for wavelength-division multiplexing communication systems,” J. Lightwave Technol. 11, 2033–2043 (1993).
[CrossRef]

Hoyt, C.

Jay, G.

J. McMurdy, G. Crawford, and G. Jay, “Ferroelectric liquid crystal based tunable microspectrometer,” Mol. Cryst. Liq. Cryst. 476, 61–76 (2007).
[CrossRef]

S. Woltman, G. Jay, and G. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6, 929–938 (2007).
[CrossRef] [PubMed]

Jones, W.

M. Escuti and W. Jones, “Polarization-independent switching with high contrast from a liquid crystal polarization grating,” SID Symposium Digest 37, 1443–1446 (2006).
[CrossRef]

Keiser, G.

G. Keiser, “A review of WDM technology and applications,” Opt. Fiber Technol. 5, 3–39 (1999).
[CrossRef]

Kenda, A.

A. Kenda, W. Scherf, R. Hauser, H. Gruger, and H. Schenk, “A compact spectrometer based on a micromachined torsional mirror device,” in Proceedings of IEEE Sensors, 2004 (IEEE, 2004), pp. 1312–1315.
[CrossRef]

Kim, J.

C. Oh, J. Kim, J. Muth, and M. Escuti, “A new beam steering concept: Risley gratings,” Proc. SPIE 7466, 746619(2009).

Kimball, B. R.

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18, 1–47 (2009).
[CrossRef]

Komanduri, R.

R. Komanduri and M. Escuti, “High efficiency reflective liquid crystal polarization gratings,” Appl. Phys. Lett. 95, 091106(2009).
[CrossRef]

R. Komanduri and M. Escuti, “Elastic continuum analysis of the liquid crystal polarization grating,” Phys. Rev. E 76, 021701 (2007).
[CrossRef]

Kurokawa, T.

K. Hirabayashi, H. Tsuda, and T. Kurokawa, “Tunable liquid-crystal Fabry–Perot interferometer filter for wavelength-division multiplexing communication systems,” J. Lightwave Technol. 11, 2033–2043 (1993).
[CrossRef]

Kutyrev, A.

A. Kutyrev, C. Bennett, S. Moseley, D. Rapchun, and K. Stewart, “Near infrared cryogenic tunable solid Fabry–Perot spectrometer,” Proc. SPIE 5492, 1172–1178 (2004).
[CrossRef]

Lamarque-Forget, S.

I. Dozov, D. Stoenescu, S. Lamarque-Forget, P. Martinot-Lagarde, and E. Polossat, “Planar degenerated anchoring of liquid crystals obtained by surface memory passivation,” Appl. Phys. Lett. 77, 4124–4126 (2000).
[CrossRef]

Martinot-Lagarde, P.

I. Dozov, D. Stoenescu, S. Lamarque-Forget, P. Martinot-Lagarde, and E. Polossat, “Planar degenerated anchoring of liquid crystals obtained by surface memory passivation,” Appl. Phys. Lett. 77, 4124–4126 (2000).
[CrossRef]

Mattley, Y.

C. Bacon, Y. Mattley, and R. DeFrece, “Miniature spectroscopic instrumentation: applications to biology and chemistry,” Rev. Sci. Instrum. 75, 1–16 (2004).
[CrossRef]

McMurdy, J.

J. McMurdy, G. Crawford, and G. Jay, “Ferroelectric liquid crystal based tunable microspectrometer,” Mol. Cryst. Liq. Cryst. 476, 61–76 (2007).
[CrossRef]

Miller, P.

Morris, H.

Moseley, S.

A. Kutyrev, C. Bennett, S. Moseley, D. Rapchun, and K. Stewart, “Near infrared cryogenic tunable solid Fabry–Perot spectrometer,” Proc. SPIE 5492, 1172–1178 (2004).
[CrossRef]

Muth, J.

C. Oh, J. Kim, J. Muth, and M. Escuti, “A new beam steering concept: Risley gratings,” Proc. SPIE 7466, 746619(2009).

Nersisyan, S. R.

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18, 1–47 (2009).
[CrossRef]

Nicolescu, E.

E. Nicolescu and M. Escuti, “Polarization-independent tunable optical filters based on liquid crystal polarization gratings,” Proc. SPIE 6654, 665405 (2007).
[CrossRef]

Nikolova, L.

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” J. Mod. Opt. 31, 579–588 (1984).
[CrossRef]

Oh, C.

C. Oh, J. Kim, J. Muth, and M. Escuti, “A new beam steering concept: Risley gratings,” Proc. SPIE 7466, 746619(2009).

C. Oh and M. Escuti, “Numerical analysis of polarization gratings using the finite-difference time-domain method,” Phys. Rev. A 76, 043815 (2007).
[CrossRef]

M. Escuti, C. Oh, C. Sánchez, C. Bastiaansen, and D. Broer, “Simplified spectropolarimetry using reactive mesogen polarization gratings,” Proc. SPIE 6302, 630207 (2006).
[CrossRef]

Pagliusi, P.

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89, 121105 (2006).
[CrossRef]

Pelcovits, R.

J. Eakin, Y. Xie, R. Pelcovits, M. Radcliffe, and G. Crawford, “Zero voltage Freedericksz transition in periodically aligned liquid crystals,” Appl. Phys. Lett. 85, 1671–1673(2004).
[CrossRef]

Polossat, E.

I. Dozov, D. Stoenescu, S. Lamarque-Forget, P. Martinot-Lagarde, and E. Polossat, “Planar degenerated anchoring of liquid crystals obtained by surface memory passivation,” Appl. Phys. Lett. 77, 4124–4126 (2000).
[CrossRef]

Provenzano, C.

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89, 121105 (2006).
[CrossRef]

Radcliffe, M.

J. Eakin, Y. Xie, R. Pelcovits, M. Radcliffe, and G. Crawford, “Zero voltage Freedericksz transition in periodically aligned liquid crystals,” Appl. Phys. Lett. 85, 1671–1673(2004).
[CrossRef]

Rapchun, D.

A. Kutyrev, C. Bennett, S. Moseley, D. Rapchun, and K. Stewart, “Near infrared cryogenic tunable solid Fabry–Perot spectrometer,” Proc. SPIE 5492, 1172–1178 (2004).
[CrossRef]

Rosfjord, K.

Sánchez, C.

M. Escuti, C. Oh, C. Sánchez, C. Bastiaansen, and D. Broer, “Simplified spectropolarimetry using reactive mesogen polarization gratings,” Proc. SPIE 6302, 630207 (2006).
[CrossRef]

Schenk, H.

A. Kenda, W. Scherf, R. Hauser, H. Gruger, and H. Schenk, “A compact spectrometer based on a micromachined torsional mirror device,” in Proceedings of IEEE Sensors, 2004 (IEEE, 2004), pp. 1312–1315.
[CrossRef]

Scherf, W.

A. Kenda, W. Scherf, R. Hauser, H. Gruger, and H. Schenk, “A compact spectrometer based on a micromachined torsional mirror device,” in Proceedings of IEEE Sensors, 2004 (IEEE, 2004), pp. 1312–1315.
[CrossRef]

Steeves, D. M.

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18, 1–47 (2009).
[CrossRef]

Stewart, K.

A. Kutyrev, C. Bennett, S. Moseley, D. Rapchun, and K. Stewart, “Near infrared cryogenic tunable solid Fabry–Perot spectrometer,” Proc. SPIE 5492, 1172–1178 (2004).
[CrossRef]

Stoenescu, D.

I. Dozov, D. Stoenescu, S. Lamarque-Forget, P. Martinot-Lagarde, and E. Polossat, “Planar degenerated anchoring of liquid crystals obtained by surface memory passivation,” Appl. Phys. Lett. 77, 4124–4126 (2000).
[CrossRef]

Tabiryan, N. V.

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18, 1–47 (2009).
[CrossRef]

Todorov, T.

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” J. Mod. Opt. 31, 579–588 (1984).
[CrossRef]

Treado, P.

Tsuda, H.

K. Hirabayashi, H. Tsuda, and T. Kurokawa, “Tunable liquid-crystal Fabry–Perot interferometer filter for wavelength-division multiplexing communication systems,” J. Lightwave Technol. 11, 2033–2043 (1993).
[CrossRef]

Villalaz, R.

Woltman, S.

S. Woltman, G. Jay, and G. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6, 929–938 (2007).
[CrossRef] [PubMed]

Xianyu, H.

Xie, Y.

J. Eakin, Y. Xie, R. Pelcovits, M. Radcliffe, and G. Crawford, “Zero voltage Freedericksz transition in periodically aligned liquid crystals,” Appl. Phys. Lett. 85, 1671–1673(2004).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89, 121105 (2006).
[CrossRef]

J. Eakin, Y. Xie, R. Pelcovits, M. Radcliffe, and G. Crawford, “Zero voltage Freedericksz transition in periodically aligned liquid crystals,” Appl. Phys. Lett. 85, 1671–1673(2004).
[CrossRef]

I. Dozov, D. Stoenescu, S. Lamarque-Forget, P. Martinot-Lagarde, and E. Polossat, “Planar degenerated anchoring of liquid crystals obtained by surface memory passivation,” Appl. Phys. Lett. 77, 4124–4126 (2000).
[CrossRef]

R. Komanduri and M. Escuti, “High efficiency reflective liquid crystal polarization gratings,” Appl. Phys. Lett. 95, 091106(2009).
[CrossRef]

Appl. Spectrosc. (1)

J. Appl. Phys. (1)

M. Escuti, D. Cairns, and G. Crawford, “Optical-strain characteristics of anisotropic polymer films fabricated from a liquid crystal diacrylate,” J. Appl. Phys. 95, 2386–2390(2004).
[CrossRef]

J. Lightwave Technol. (1)

K. Hirabayashi, H. Tsuda, and T. Kurokawa, “Tunable liquid-crystal Fabry–Perot interferometer filter for wavelength-division multiplexing communication systems,” J. Lightwave Technol. 11, 2033–2043 (1993).
[CrossRef]

J. Mod. Opt. (1)

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” J. Mod. Opt. 31, 579–588 (1984).
[CrossRef]

J. Nonlinear Opt. Phys. Mater. (1)

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18, 1–47 (2009).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

J. McMurdy, G. Crawford, and G. Jay, “Ferroelectric liquid crystal based tunable microspectrometer,” Mol. Cryst. Liq. Cryst. 476, 61–76 (2007).
[CrossRef]

Nat. Mater. (1)

S. Woltman, G. Jay, and G. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6, 929–938 (2007).
[CrossRef] [PubMed]

Opt. Fiber Technol. (1)

G. Keiser, “A review of WDM technology and applications,” Opt. Fiber Technol. 5, 3–39 (1999).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (1)

C. Oh and M. Escuti, “Numerical analysis of polarization gratings using the finite-difference time-domain method,” Phys. Rev. A 76, 043815 (2007).
[CrossRef]

Phys. Rev. E (1)

R. Komanduri and M. Escuti, “Elastic continuum analysis of the liquid crystal polarization grating,” Phys. Rev. E 76, 021701 (2007).
[CrossRef]

Proc. SPIE (5)

A. Kutyrev, C. Bennett, S. Moseley, D. Rapchun, and K. Stewart, “Near infrared cryogenic tunable solid Fabry–Perot spectrometer,” Proc. SPIE 5492, 1172–1178 (2004).
[CrossRef]

M. Escuti, C. Oh, C. Sánchez, C. Bastiaansen, and D. Broer, “Simplified spectropolarimetry using reactive mesogen polarization gratings,” Proc. SPIE 6302, 630207 (2006).
[CrossRef]

E. Nicolescu and M. Escuti, “Polarization-independent tunable optical filters based on liquid crystal polarization gratings,” Proc. SPIE 6654, 665405 (2007).
[CrossRef]

C. Oh, J. Kim, J. Muth, and M. Escuti, “A new beam steering concept: Risley gratings,” Proc. SPIE 7466, 746619(2009).

N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
[CrossRef]

Rev. Sci. Instrum. (1)

C. Bacon, Y. Mattley, and R. DeFrece, “Miniature spectroscopic instrumentation: applications to biology and chemistry,” Rev. Sci. Instrum. 75, 1–16 (2004).
[CrossRef]

SID Symposium Digest (1)

M. Escuti and W. Jones, “Polarization-independent switching with high contrast from a liquid crystal polarization grating,” SID Symposium Digest 37, 1443–1446 (2006).
[CrossRef]

Other (1)

A. Kenda, W. Scherf, R. Hauser, H. Gruger, and H. Schenk, “A compact spectrometer based on a micromachined torsional mirror device,” in Proceedings of IEEE Sensors, 2004 (IEEE, 2004), pp. 1312–1315.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Stacked PG tunable optical filter concept. (a) Diffraction behavior of two stacked PGs. (b) General filter structure with PG stack and angle filter. (c) Representative transmittance spectra for filters with three and five stages, where each stage has twice the retardation of the previous, the peak wavelength is 600 nm , and the birefringence Δ n = 0.2 .

Fig. 2
Fig. 2

Theoretical plot of the relationship between the total number of PGs in the filter stack and the minimum FWHM achieved for the three filter configurations, where the peak wavelength is 600 nm , Δ n = 0.2 , and d 0 = 3 μm .

Fig. 3
Fig. 3

Structure of the BPG and experimental results of the BPG tunable optical filter. (a) BPG with no applied voltage, (b) BPG with applied voltage ( V V th ), (c) experimental spectra of three individual BPGs of exponentially increasing thickness, and (d) tuning characteristic of the entire three-stage BPG filter.

Tables (1)

Tables Icon

Table 1 Results for Three-Stage BPG Tunable Optical Filter with Unpolarized Input Light

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

η 0 ( λ ) = cos 2 ( Γ / 2 ) ,
T ( λ ) = K N n = 1 N η 0 , n ( λ ) = K N n = 1 N cos 2 ( π Δ n d n λ ) ,
Γ = 2 π ( Δ n p d p + Δ n LC d LC ) / λ ,
λ M = Δ n p d p / M + Δ n LC d LC / M ,
Ω arcsin ( λ min / 2 Λ ) ,
Ω π / N ,

Metrics