Abstract

Current accurate applications of reflection interference contrast microscopy (RICM) are limited to known geometries; when the geometry of the object is unknown, an approximated fringe spacing analysis is usually performed. To complete an accurate RICM analysis in more general situations, we review and improve the formulation for intensity calculation based on nonplanar interface image formation theory and develop a method for its practical implementation in wedges and convex surfaces. In addition, a suitable RICM model for an arbitrary convex surface, with or without a uniform layer such as a membrane or ultrathin coating, is presented. Experimental work with polymer vesicles shows that the coupling of the improved RICM image formation theory, the calculation method, and the surface model allow an accurate reconstruction of the convex bottom shape of an object close to the substrate by fitting its experimental intensity pattern.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Wiegand, K. R. Neumaier, and E. Sackmann, “Microinterferometry: three-dimensional reconstruction of surface microtopography for thin-film and wetting studies by reflection interference contrast microscopy (RICM),” Appl. Opt. 37, 6892–6905 (1998).
    [CrossRef]
  2. N. G. Clack and J. T. Groves, “Many-particle tracking with nanometer resolution in three dimensions by reflection interference contrast microscopy,” Langmuir 21, 6430–6435(2005).
    [CrossRef] [PubMed]
  3. E. W. Gomez, N. G. Clack, H. J. Wu, and J. T. Groves, “Like-charge interactions between colloidal particles are asymmetric with respect to sign,” Soft Matt. 5, 1931–1936 (2009).
    [CrossRef]
  4. A. Albersdorfer, T. Feder, and E. Sackmann, “Adhesion-induced domain formation by interplay of long-range repulsion and short-range attraction force: a model membrane study,” Biophys. J. 73, 245–257 (1997).
    [CrossRef] [PubMed]
  5. A. Kloboucek, A. Behrisch, J. Faix, and E. Sackmann, “Adhesion-induced receptor segregation and adhesion plaque formation: a model membrane study,” Biophys. J. 77, 2311–2328 (1999).
    [CrossRef] [PubMed]
  6. E. Sackmann and R. F. Bruinsma, “Cell adhesion as wetting transition?” Chem. Phys. Chem. 3, 262–269 (2002).
    [CrossRef] [PubMed]
  7. E. Sackmann and S. Goennenwein, “Cell adhesion as dynamic interplay of lock-and-key, generic and elastic forces,” Prog. Theor. Phys. Suppl. 78–99 (2006).
    [CrossRef]
  8. S. Moulinet and D. Bartolo, “Life and death of a fakir droplet: impalement transitions on superhydrophobic surfaces,” Eur. Phys. J. E 24, 251–260 (2007).
    [CrossRef] [PubMed]
  9. M. Sundberg, A. Mansson, and S. Tagerud, “Contact angle measurements by confocal microscopy for non-destructive microscale surface characterization,” J. Colloid Interface Sci. 313, 454–460 (2007).
    [CrossRef] [PubMed]
  10. B. M. Discher, Y. Y. Won, D. S. Ege, J. C. M. Lee, F. S. Bates, D. E. Discher, and D. A. Hammer, “Polymersomes: tough vesicles made from diblock copolymers,” Science 284, 1143–1146(1999).
    [CrossRef] [PubMed]
  11. B. M. Discher, H. Bermudez, D. A. Hammer, D. E. Discher, Y. Y. Won, and F. S. Bates, “Cross-linked polymersome membranes: vesicles with broadly adjustable properties,” J. Phys. Chem. B 106, 2848–2854 (2002).
    [CrossRef]
  12. K. Kita-Tokarczyk, J. Grumelard, T. Haefele, and W. Meier, “Block copolymer vesicles—using concepts from polymer chemistry to mimic biomembranes,” Polymer 46, 3540–3563(2005).
    [CrossRef]
  13. A. Mecke, C. Dittrich, and W. Meier, “Biomimetic membranes designed from amphiphilic block copolymers,” Soft Matt. 2, 751–759 (2006).
    [CrossRef]
  14. G. B. Sukhorukov, E. Donath, H. Lichtenfeld, E. Knippel, M. Knippel, A. Budde, and H. Mohwald, “Layer-by-layer self assembly of polyelectrolytes on colloidal particles,” Colloids Surf. A 137, 253–266 (1998).
    [CrossRef]
  15. Y. Wang, A. S. Angelatos, and F. Caruso, “Template synthesis of nanostructured materials via layer-by-layer assembly,” Chem. Mater. 20, 848–858 (2008).
    [CrossRef]
  16. K. K. Liu, “Deformation behaviour of soft particles: a review,” J. Phys. D 39, R189–R199 (2006).
    [CrossRef]
  17. D. Gingell and I. Todd, “Interference reflection microscopy—a quantitative theory for image interpretation and its application to cell-substratum separation measurement,” Biophys. J. 26, 507–526 (1979).
    [CrossRef] [PubMed]
  18. J. Radler and E. Sackmann, “Imaging optical thicknesses and separation distances of phospholipid vesicles at solid surfaces,” J. Phys. (Paris) II 3, 727–748 (1993).
    [CrossRef]
  19. M. Kuhner and E. Sackmann, “Ultrathin hydrated dextran films grafted on glass: Preparation and characterization of structural, viscous, and elastic properties by quantitative microinterferometry,” Langmuir 12, 4866–4876 (1996).
    [CrossRef]
  20. O. Theodoly, Z.-H. Huang, and M.-P. Valignat, “New modeling of reflection interference contrast microscopy including polarization and numerical aperture effects: application to nanometric distance measurements and object profile reconstruction,” Langmuir 26, 1940–1948 (2010).
    [CrossRef]
  21. E. W. Weisstein, “Change of variables theorem,” retrieved from http://mathworld.wolfram.com/ChangeofVariablesTheorem.html.
  22. D. E. Discher and A. Eisenberg, “Polymer vesicles,” Science 297, 967–973 (2002).
    [CrossRef] [PubMed]
  23. J. Radler and E. Sackmann, “On the measurement of weak repulsive and frictional colloidal forces by reflection interference contrast microscopy,” Langmuir 8, 848–853 (1992).
    [CrossRef]
  24. H. Bermudez, A. K. Brannan, D. A. Hammer, F. S. Bates, and D. E. Discher, “Molecular weight dependence of polymersome membrane structure, elasticity, and stability,” Macromol. 35, 8203–8208 (2002).
    [CrossRef]
  25. J. E. Mark, Polymer Data Handbook (Oxford U. Press, 1999).
  26. L. Limozin and K. Sengupta, “Modulation of vesicle adhesion and spreading kinetics by hyaluronan cushions,” Biophys. J. 93, 3300–3313 (2007).
    [CrossRef] [PubMed]
  27. G. Wiegand, T. Jaworek, G. Wegner, and E. Sackmann, “Studies of structure and local wetting properties on heterogeneous, micropatterned solid surfaces by microinterferometry,” J. Colloid Interface Sci. 196, 299–312 (1997).
    [CrossRef]
  28. K. W. Stockelhuber, B. Radoev, and H. J. Schulze, “Some new observations on line tension of microscopic droplets,” Colloids Surf. A 156, 323–333 (1999).
    [CrossRef]
  29. E. W. Weisstein, “Delaunay triangulation,” retrieved from http://mathworld.wolfram.com/DelaunayTriangulation.html.

2010 (1)

O. Theodoly, Z.-H. Huang, and M.-P. Valignat, “New modeling of reflection interference contrast microscopy including polarization and numerical aperture effects: application to nanometric distance measurements and object profile reconstruction,” Langmuir 26, 1940–1948 (2010).
[CrossRef]

2009 (1)

E. W. Gomez, N. G. Clack, H. J. Wu, and J. T. Groves, “Like-charge interactions between colloidal particles are asymmetric with respect to sign,” Soft Matt. 5, 1931–1936 (2009).
[CrossRef]

2008 (1)

Y. Wang, A. S. Angelatos, and F. Caruso, “Template synthesis of nanostructured materials via layer-by-layer assembly,” Chem. Mater. 20, 848–858 (2008).
[CrossRef]

2007 (3)

S. Moulinet and D. Bartolo, “Life and death of a fakir droplet: impalement transitions on superhydrophobic surfaces,” Eur. Phys. J. E 24, 251–260 (2007).
[CrossRef] [PubMed]

M. Sundberg, A. Mansson, and S. Tagerud, “Contact angle measurements by confocal microscopy for non-destructive microscale surface characterization,” J. Colloid Interface Sci. 313, 454–460 (2007).
[CrossRef] [PubMed]

L. Limozin and K. Sengupta, “Modulation of vesicle adhesion and spreading kinetics by hyaluronan cushions,” Biophys. J. 93, 3300–3313 (2007).
[CrossRef] [PubMed]

2006 (3)

K. K. Liu, “Deformation behaviour of soft particles: a review,” J. Phys. D 39, R189–R199 (2006).
[CrossRef]

E. Sackmann and S. Goennenwein, “Cell adhesion as dynamic interplay of lock-and-key, generic and elastic forces,” Prog. Theor. Phys. Suppl. 78–99 (2006).
[CrossRef]

A. Mecke, C. Dittrich, and W. Meier, “Biomimetic membranes designed from amphiphilic block copolymers,” Soft Matt. 2, 751–759 (2006).
[CrossRef]

2005 (2)

K. Kita-Tokarczyk, J. Grumelard, T. Haefele, and W. Meier, “Block copolymer vesicles—using concepts from polymer chemistry to mimic biomembranes,” Polymer 46, 3540–3563(2005).
[CrossRef]

N. G. Clack and J. T. Groves, “Many-particle tracking with nanometer resolution in three dimensions by reflection interference contrast microscopy,” Langmuir 21, 6430–6435(2005).
[CrossRef] [PubMed]

2002 (4)

E. Sackmann and R. F. Bruinsma, “Cell adhesion as wetting transition?” Chem. Phys. Chem. 3, 262–269 (2002).
[CrossRef] [PubMed]

B. M. Discher, H. Bermudez, D. A. Hammer, D. E. Discher, Y. Y. Won, and F. S. Bates, “Cross-linked polymersome membranes: vesicles with broadly adjustable properties,” J. Phys. Chem. B 106, 2848–2854 (2002).
[CrossRef]

D. E. Discher and A. Eisenberg, “Polymer vesicles,” Science 297, 967–973 (2002).
[CrossRef] [PubMed]

H. Bermudez, A. K. Brannan, D. A. Hammer, F. S. Bates, and D. E. Discher, “Molecular weight dependence of polymersome membrane structure, elasticity, and stability,” Macromol. 35, 8203–8208 (2002).
[CrossRef]

1999 (3)

K. W. Stockelhuber, B. Radoev, and H. J. Schulze, “Some new observations on line tension of microscopic droplets,” Colloids Surf. A 156, 323–333 (1999).
[CrossRef]

A. Kloboucek, A. Behrisch, J. Faix, and E. Sackmann, “Adhesion-induced receptor segregation and adhesion plaque formation: a model membrane study,” Biophys. J. 77, 2311–2328 (1999).
[CrossRef] [PubMed]

B. M. Discher, Y. Y. Won, D. S. Ege, J. C. M. Lee, F. S. Bates, D. E. Discher, and D. A. Hammer, “Polymersomes: tough vesicles made from diblock copolymers,” Science 284, 1143–1146(1999).
[CrossRef] [PubMed]

1998 (2)

G. Wiegand, K. R. Neumaier, and E. Sackmann, “Microinterferometry: three-dimensional reconstruction of surface microtopography for thin-film and wetting studies by reflection interference contrast microscopy (RICM),” Appl. Opt. 37, 6892–6905 (1998).
[CrossRef]

G. B. Sukhorukov, E. Donath, H. Lichtenfeld, E. Knippel, M. Knippel, A. Budde, and H. Mohwald, “Layer-by-layer self assembly of polyelectrolytes on colloidal particles,” Colloids Surf. A 137, 253–266 (1998).
[CrossRef]

1997 (2)

A. Albersdorfer, T. Feder, and E. Sackmann, “Adhesion-induced domain formation by interplay of long-range repulsion and short-range attraction force: a model membrane study,” Biophys. J. 73, 245–257 (1997).
[CrossRef] [PubMed]

G. Wiegand, T. Jaworek, G. Wegner, and E. Sackmann, “Studies of structure and local wetting properties on heterogeneous, micropatterned solid surfaces by microinterferometry,” J. Colloid Interface Sci. 196, 299–312 (1997).
[CrossRef]

1996 (1)

M. Kuhner and E. Sackmann, “Ultrathin hydrated dextran films grafted on glass: Preparation and characterization of structural, viscous, and elastic properties by quantitative microinterferometry,” Langmuir 12, 4866–4876 (1996).
[CrossRef]

1993 (1)

J. Radler and E. Sackmann, “Imaging optical thicknesses and separation distances of phospholipid vesicles at solid surfaces,” J. Phys. (Paris) II 3, 727–748 (1993).
[CrossRef]

1992 (1)

J. Radler and E. Sackmann, “On the measurement of weak repulsive and frictional colloidal forces by reflection interference contrast microscopy,” Langmuir 8, 848–853 (1992).
[CrossRef]

1979 (1)

D. Gingell and I. Todd, “Interference reflection microscopy—a quantitative theory for image interpretation and its application to cell-substratum separation measurement,” Biophys. J. 26, 507–526 (1979).
[CrossRef] [PubMed]

Albersdorfer, A.

A. Albersdorfer, T. Feder, and E. Sackmann, “Adhesion-induced domain formation by interplay of long-range repulsion and short-range attraction force: a model membrane study,” Biophys. J. 73, 245–257 (1997).
[CrossRef] [PubMed]

Angelatos, A. S.

Y. Wang, A. S. Angelatos, and F. Caruso, “Template synthesis of nanostructured materials via layer-by-layer assembly,” Chem. Mater. 20, 848–858 (2008).
[CrossRef]

Bartolo, D.

S. Moulinet and D. Bartolo, “Life and death of a fakir droplet: impalement transitions on superhydrophobic surfaces,” Eur. Phys. J. E 24, 251–260 (2007).
[CrossRef] [PubMed]

Bates, F. S.

B. M. Discher, H. Bermudez, D. A. Hammer, D. E. Discher, Y. Y. Won, and F. S. Bates, “Cross-linked polymersome membranes: vesicles with broadly adjustable properties,” J. Phys. Chem. B 106, 2848–2854 (2002).
[CrossRef]

H. Bermudez, A. K. Brannan, D. A. Hammer, F. S. Bates, and D. E. Discher, “Molecular weight dependence of polymersome membrane structure, elasticity, and stability,” Macromol. 35, 8203–8208 (2002).
[CrossRef]

B. M. Discher, Y. Y. Won, D. S. Ege, J. C. M. Lee, F. S. Bates, D. E. Discher, and D. A. Hammer, “Polymersomes: tough vesicles made from diblock copolymers,” Science 284, 1143–1146(1999).
[CrossRef] [PubMed]

Behrisch, A.

A. Kloboucek, A. Behrisch, J. Faix, and E. Sackmann, “Adhesion-induced receptor segregation and adhesion plaque formation: a model membrane study,” Biophys. J. 77, 2311–2328 (1999).
[CrossRef] [PubMed]

Bermudez, H.

B. M. Discher, H. Bermudez, D. A. Hammer, D. E. Discher, Y. Y. Won, and F. S. Bates, “Cross-linked polymersome membranes: vesicles with broadly adjustable properties,” J. Phys. Chem. B 106, 2848–2854 (2002).
[CrossRef]

H. Bermudez, A. K. Brannan, D. A. Hammer, F. S. Bates, and D. E. Discher, “Molecular weight dependence of polymersome membrane structure, elasticity, and stability,” Macromol. 35, 8203–8208 (2002).
[CrossRef]

Brannan, A. K.

H. Bermudez, A. K. Brannan, D. A. Hammer, F. S. Bates, and D. E. Discher, “Molecular weight dependence of polymersome membrane structure, elasticity, and stability,” Macromol. 35, 8203–8208 (2002).
[CrossRef]

Bruinsma, R. F.

E. Sackmann and R. F. Bruinsma, “Cell adhesion as wetting transition?” Chem. Phys. Chem. 3, 262–269 (2002).
[CrossRef] [PubMed]

Budde, A.

G. B. Sukhorukov, E. Donath, H. Lichtenfeld, E. Knippel, M. Knippel, A. Budde, and H. Mohwald, “Layer-by-layer self assembly of polyelectrolytes on colloidal particles,” Colloids Surf. A 137, 253–266 (1998).
[CrossRef]

Caruso, F.

Y. Wang, A. S. Angelatos, and F. Caruso, “Template synthesis of nanostructured materials via layer-by-layer assembly,” Chem. Mater. 20, 848–858 (2008).
[CrossRef]

Clack, N. G.

E. W. Gomez, N. G. Clack, H. J. Wu, and J. T. Groves, “Like-charge interactions between colloidal particles are asymmetric with respect to sign,” Soft Matt. 5, 1931–1936 (2009).
[CrossRef]

N. G. Clack and J. T. Groves, “Many-particle tracking with nanometer resolution in three dimensions by reflection interference contrast microscopy,” Langmuir 21, 6430–6435(2005).
[CrossRef] [PubMed]

Discher, B. M.

B. M. Discher, H. Bermudez, D. A. Hammer, D. E. Discher, Y. Y. Won, and F. S. Bates, “Cross-linked polymersome membranes: vesicles with broadly adjustable properties,” J. Phys. Chem. B 106, 2848–2854 (2002).
[CrossRef]

B. M. Discher, Y. Y. Won, D. S. Ege, J. C. M. Lee, F. S. Bates, D. E. Discher, and D. A. Hammer, “Polymersomes: tough vesicles made from diblock copolymers,” Science 284, 1143–1146(1999).
[CrossRef] [PubMed]

Discher, D. E.

B. M. Discher, H. Bermudez, D. A. Hammer, D. E. Discher, Y. Y. Won, and F. S. Bates, “Cross-linked polymersome membranes: vesicles with broadly adjustable properties,” J. Phys. Chem. B 106, 2848–2854 (2002).
[CrossRef]

H. Bermudez, A. K. Brannan, D. A. Hammer, F. S. Bates, and D. E. Discher, “Molecular weight dependence of polymersome membrane structure, elasticity, and stability,” Macromol. 35, 8203–8208 (2002).
[CrossRef]

D. E. Discher and A. Eisenberg, “Polymer vesicles,” Science 297, 967–973 (2002).
[CrossRef] [PubMed]

B. M. Discher, Y. Y. Won, D. S. Ege, J. C. M. Lee, F. S. Bates, D. E. Discher, and D. A. Hammer, “Polymersomes: tough vesicles made from diblock copolymers,” Science 284, 1143–1146(1999).
[CrossRef] [PubMed]

Dittrich, C.

A. Mecke, C. Dittrich, and W. Meier, “Biomimetic membranes designed from amphiphilic block copolymers,” Soft Matt. 2, 751–759 (2006).
[CrossRef]

Donath, E.

G. B. Sukhorukov, E. Donath, H. Lichtenfeld, E. Knippel, M. Knippel, A. Budde, and H. Mohwald, “Layer-by-layer self assembly of polyelectrolytes on colloidal particles,” Colloids Surf. A 137, 253–266 (1998).
[CrossRef]

Ege, D. S.

B. M. Discher, Y. Y. Won, D. S. Ege, J. C. M. Lee, F. S. Bates, D. E. Discher, and D. A. Hammer, “Polymersomes: tough vesicles made from diblock copolymers,” Science 284, 1143–1146(1999).
[CrossRef] [PubMed]

Eisenberg, A.

D. E. Discher and A. Eisenberg, “Polymer vesicles,” Science 297, 967–973 (2002).
[CrossRef] [PubMed]

Faix, J.

A. Kloboucek, A. Behrisch, J. Faix, and E. Sackmann, “Adhesion-induced receptor segregation and adhesion plaque formation: a model membrane study,” Biophys. J. 77, 2311–2328 (1999).
[CrossRef] [PubMed]

Feder, T.

A. Albersdorfer, T. Feder, and E. Sackmann, “Adhesion-induced domain formation by interplay of long-range repulsion and short-range attraction force: a model membrane study,” Biophys. J. 73, 245–257 (1997).
[CrossRef] [PubMed]

Gingell, D.

D. Gingell and I. Todd, “Interference reflection microscopy—a quantitative theory for image interpretation and its application to cell-substratum separation measurement,” Biophys. J. 26, 507–526 (1979).
[CrossRef] [PubMed]

Goennenwein, S.

E. Sackmann and S. Goennenwein, “Cell adhesion as dynamic interplay of lock-and-key, generic and elastic forces,” Prog. Theor. Phys. Suppl. 78–99 (2006).
[CrossRef]

Gomez, E. W.

E. W. Gomez, N. G. Clack, H. J. Wu, and J. T. Groves, “Like-charge interactions between colloidal particles are asymmetric with respect to sign,” Soft Matt. 5, 1931–1936 (2009).
[CrossRef]

Groves, J. T.

E. W. Gomez, N. G. Clack, H. J. Wu, and J. T. Groves, “Like-charge interactions between colloidal particles are asymmetric with respect to sign,” Soft Matt. 5, 1931–1936 (2009).
[CrossRef]

N. G. Clack and J. T. Groves, “Many-particle tracking with nanometer resolution in three dimensions by reflection interference contrast microscopy,” Langmuir 21, 6430–6435(2005).
[CrossRef] [PubMed]

Grumelard, J.

K. Kita-Tokarczyk, J. Grumelard, T. Haefele, and W. Meier, “Block copolymer vesicles—using concepts from polymer chemistry to mimic biomembranes,” Polymer 46, 3540–3563(2005).
[CrossRef]

Haefele, T.

K. Kita-Tokarczyk, J. Grumelard, T. Haefele, and W. Meier, “Block copolymer vesicles—using concepts from polymer chemistry to mimic biomembranes,” Polymer 46, 3540–3563(2005).
[CrossRef]

Hammer, D. A.

H. Bermudez, A. K. Brannan, D. A. Hammer, F. S. Bates, and D. E. Discher, “Molecular weight dependence of polymersome membrane structure, elasticity, and stability,” Macromol. 35, 8203–8208 (2002).
[CrossRef]

B. M. Discher, H. Bermudez, D. A. Hammer, D. E. Discher, Y. Y. Won, and F. S. Bates, “Cross-linked polymersome membranes: vesicles with broadly adjustable properties,” J. Phys. Chem. B 106, 2848–2854 (2002).
[CrossRef]

B. M. Discher, Y. Y. Won, D. S. Ege, J. C. M. Lee, F. S. Bates, D. E. Discher, and D. A. Hammer, “Polymersomes: tough vesicles made from diblock copolymers,” Science 284, 1143–1146(1999).
[CrossRef] [PubMed]

Huang, Z.-H.

O. Theodoly, Z.-H. Huang, and M.-P. Valignat, “New modeling of reflection interference contrast microscopy including polarization and numerical aperture effects: application to nanometric distance measurements and object profile reconstruction,” Langmuir 26, 1940–1948 (2010).
[CrossRef]

Jaworek, T.

G. Wiegand, T. Jaworek, G. Wegner, and E. Sackmann, “Studies of structure and local wetting properties on heterogeneous, micropatterned solid surfaces by microinterferometry,” J. Colloid Interface Sci. 196, 299–312 (1997).
[CrossRef]

Kita-Tokarczyk, K.

K. Kita-Tokarczyk, J. Grumelard, T. Haefele, and W. Meier, “Block copolymer vesicles—using concepts from polymer chemistry to mimic biomembranes,” Polymer 46, 3540–3563(2005).
[CrossRef]

Kloboucek, A.

A. Kloboucek, A. Behrisch, J. Faix, and E. Sackmann, “Adhesion-induced receptor segregation and adhesion plaque formation: a model membrane study,” Biophys. J. 77, 2311–2328 (1999).
[CrossRef] [PubMed]

Knippel, E.

G. B. Sukhorukov, E. Donath, H. Lichtenfeld, E. Knippel, M. Knippel, A. Budde, and H. Mohwald, “Layer-by-layer self assembly of polyelectrolytes on colloidal particles,” Colloids Surf. A 137, 253–266 (1998).
[CrossRef]

Knippel, M.

G. B. Sukhorukov, E. Donath, H. Lichtenfeld, E. Knippel, M. Knippel, A. Budde, and H. Mohwald, “Layer-by-layer self assembly of polyelectrolytes on colloidal particles,” Colloids Surf. A 137, 253–266 (1998).
[CrossRef]

Kuhner, M.

M. Kuhner and E. Sackmann, “Ultrathin hydrated dextran films grafted on glass: Preparation and characterization of structural, viscous, and elastic properties by quantitative microinterferometry,” Langmuir 12, 4866–4876 (1996).
[CrossRef]

Lee, J. C. M.

B. M. Discher, Y. Y. Won, D. S. Ege, J. C. M. Lee, F. S. Bates, D. E. Discher, and D. A. Hammer, “Polymersomes: tough vesicles made from diblock copolymers,” Science 284, 1143–1146(1999).
[CrossRef] [PubMed]

Lichtenfeld, H.

G. B. Sukhorukov, E. Donath, H. Lichtenfeld, E. Knippel, M. Knippel, A. Budde, and H. Mohwald, “Layer-by-layer self assembly of polyelectrolytes on colloidal particles,” Colloids Surf. A 137, 253–266 (1998).
[CrossRef]

Limozin, L.

L. Limozin and K. Sengupta, “Modulation of vesicle adhesion and spreading kinetics by hyaluronan cushions,” Biophys. J. 93, 3300–3313 (2007).
[CrossRef] [PubMed]

Liu, K. K.

K. K. Liu, “Deformation behaviour of soft particles: a review,” J. Phys. D 39, R189–R199 (2006).
[CrossRef]

Mansson, A.

M. Sundberg, A. Mansson, and S. Tagerud, “Contact angle measurements by confocal microscopy for non-destructive microscale surface characterization,” J. Colloid Interface Sci. 313, 454–460 (2007).
[CrossRef] [PubMed]

Mark, J. E.

J. E. Mark, Polymer Data Handbook (Oxford U. Press, 1999).

Mecke, A.

A. Mecke, C. Dittrich, and W. Meier, “Biomimetic membranes designed from amphiphilic block copolymers,” Soft Matt. 2, 751–759 (2006).
[CrossRef]

Meier, W.

A. Mecke, C. Dittrich, and W. Meier, “Biomimetic membranes designed from amphiphilic block copolymers,” Soft Matt. 2, 751–759 (2006).
[CrossRef]

K. Kita-Tokarczyk, J. Grumelard, T. Haefele, and W. Meier, “Block copolymer vesicles—using concepts from polymer chemistry to mimic biomembranes,” Polymer 46, 3540–3563(2005).
[CrossRef]

Mohwald, H.

G. B. Sukhorukov, E. Donath, H. Lichtenfeld, E. Knippel, M. Knippel, A. Budde, and H. Mohwald, “Layer-by-layer self assembly of polyelectrolytes on colloidal particles,” Colloids Surf. A 137, 253–266 (1998).
[CrossRef]

Moulinet, S.

S. Moulinet and D. Bartolo, “Life and death of a fakir droplet: impalement transitions on superhydrophobic surfaces,” Eur. Phys. J. E 24, 251–260 (2007).
[CrossRef] [PubMed]

Neumaier, K. R.

Radler, J.

J. Radler and E. Sackmann, “Imaging optical thicknesses and separation distances of phospholipid vesicles at solid surfaces,” J. Phys. (Paris) II 3, 727–748 (1993).
[CrossRef]

J. Radler and E. Sackmann, “On the measurement of weak repulsive and frictional colloidal forces by reflection interference contrast microscopy,” Langmuir 8, 848–853 (1992).
[CrossRef]

Radoev, B.

K. W. Stockelhuber, B. Radoev, and H. J. Schulze, “Some new observations on line tension of microscopic droplets,” Colloids Surf. A 156, 323–333 (1999).
[CrossRef]

Sackmann, E.

E. Sackmann and S. Goennenwein, “Cell adhesion as dynamic interplay of lock-and-key, generic and elastic forces,” Prog. Theor. Phys. Suppl. 78–99 (2006).
[CrossRef]

E. Sackmann and R. F. Bruinsma, “Cell adhesion as wetting transition?” Chem. Phys. Chem. 3, 262–269 (2002).
[CrossRef] [PubMed]

A. Kloboucek, A. Behrisch, J. Faix, and E. Sackmann, “Adhesion-induced receptor segregation and adhesion plaque formation: a model membrane study,” Biophys. J. 77, 2311–2328 (1999).
[CrossRef] [PubMed]

G. Wiegand, K. R. Neumaier, and E. Sackmann, “Microinterferometry: three-dimensional reconstruction of surface microtopography for thin-film and wetting studies by reflection interference contrast microscopy (RICM),” Appl. Opt. 37, 6892–6905 (1998).
[CrossRef]

A. Albersdorfer, T. Feder, and E. Sackmann, “Adhesion-induced domain formation by interplay of long-range repulsion and short-range attraction force: a model membrane study,” Biophys. J. 73, 245–257 (1997).
[CrossRef] [PubMed]

G. Wiegand, T. Jaworek, G. Wegner, and E. Sackmann, “Studies of structure and local wetting properties on heterogeneous, micropatterned solid surfaces by microinterferometry,” J. Colloid Interface Sci. 196, 299–312 (1997).
[CrossRef]

M. Kuhner and E. Sackmann, “Ultrathin hydrated dextran films grafted on glass: Preparation and characterization of structural, viscous, and elastic properties by quantitative microinterferometry,” Langmuir 12, 4866–4876 (1996).
[CrossRef]

J. Radler and E. Sackmann, “Imaging optical thicknesses and separation distances of phospholipid vesicles at solid surfaces,” J. Phys. (Paris) II 3, 727–748 (1993).
[CrossRef]

J. Radler and E. Sackmann, “On the measurement of weak repulsive and frictional colloidal forces by reflection interference contrast microscopy,” Langmuir 8, 848–853 (1992).
[CrossRef]

Schulze, H. J.

K. W. Stockelhuber, B. Radoev, and H. J. Schulze, “Some new observations on line tension of microscopic droplets,” Colloids Surf. A 156, 323–333 (1999).
[CrossRef]

Sengupta, K.

L. Limozin and K. Sengupta, “Modulation of vesicle adhesion and spreading kinetics by hyaluronan cushions,” Biophys. J. 93, 3300–3313 (2007).
[CrossRef] [PubMed]

Stockelhuber, K. W.

K. W. Stockelhuber, B. Radoev, and H. J. Schulze, “Some new observations on line tension of microscopic droplets,” Colloids Surf. A 156, 323–333 (1999).
[CrossRef]

Sukhorukov, G. B.

G. B. Sukhorukov, E. Donath, H. Lichtenfeld, E. Knippel, M. Knippel, A. Budde, and H. Mohwald, “Layer-by-layer self assembly of polyelectrolytes on colloidal particles,” Colloids Surf. A 137, 253–266 (1998).
[CrossRef]

Sundberg, M.

M. Sundberg, A. Mansson, and S. Tagerud, “Contact angle measurements by confocal microscopy for non-destructive microscale surface characterization,” J. Colloid Interface Sci. 313, 454–460 (2007).
[CrossRef] [PubMed]

Tagerud, S.

M. Sundberg, A. Mansson, and S. Tagerud, “Contact angle measurements by confocal microscopy for non-destructive microscale surface characterization,” J. Colloid Interface Sci. 313, 454–460 (2007).
[CrossRef] [PubMed]

Theodoly, O.

O. Theodoly, Z.-H. Huang, and M.-P. Valignat, “New modeling of reflection interference contrast microscopy including polarization and numerical aperture effects: application to nanometric distance measurements and object profile reconstruction,” Langmuir 26, 1940–1948 (2010).
[CrossRef]

Todd, I.

D. Gingell and I. Todd, “Interference reflection microscopy—a quantitative theory for image interpretation and its application to cell-substratum separation measurement,” Biophys. J. 26, 507–526 (1979).
[CrossRef] [PubMed]

Valignat, M.-P.

O. Theodoly, Z.-H. Huang, and M.-P. Valignat, “New modeling of reflection interference contrast microscopy including polarization and numerical aperture effects: application to nanometric distance measurements and object profile reconstruction,” Langmuir 26, 1940–1948 (2010).
[CrossRef]

Wang, Y.

Y. Wang, A. S. Angelatos, and F. Caruso, “Template synthesis of nanostructured materials via layer-by-layer assembly,” Chem. Mater. 20, 848–858 (2008).
[CrossRef]

Wegner, G.

G. Wiegand, T. Jaworek, G. Wegner, and E. Sackmann, “Studies of structure and local wetting properties on heterogeneous, micropatterned solid surfaces by microinterferometry,” J. Colloid Interface Sci. 196, 299–312 (1997).
[CrossRef]

Weisstein, E. W.

E. W. Weisstein, “Delaunay triangulation,” retrieved from http://mathworld.wolfram.com/DelaunayTriangulation.html.

E. W. Weisstein, “Change of variables theorem,” retrieved from http://mathworld.wolfram.com/ChangeofVariablesTheorem.html.

Wiegand, G.

G. Wiegand, K. R. Neumaier, and E. Sackmann, “Microinterferometry: three-dimensional reconstruction of surface microtopography for thin-film and wetting studies by reflection interference contrast microscopy (RICM),” Appl. Opt. 37, 6892–6905 (1998).
[CrossRef]

G. Wiegand, T. Jaworek, G. Wegner, and E. Sackmann, “Studies of structure and local wetting properties on heterogeneous, micropatterned solid surfaces by microinterferometry,” J. Colloid Interface Sci. 196, 299–312 (1997).
[CrossRef]

Won, Y. Y.

B. M. Discher, H. Bermudez, D. A. Hammer, D. E. Discher, Y. Y. Won, and F. S. Bates, “Cross-linked polymersome membranes: vesicles with broadly adjustable properties,” J. Phys. Chem. B 106, 2848–2854 (2002).
[CrossRef]

B. M. Discher, Y. Y. Won, D. S. Ege, J. C. M. Lee, F. S. Bates, D. E. Discher, and D. A. Hammer, “Polymersomes: tough vesicles made from diblock copolymers,” Science 284, 1143–1146(1999).
[CrossRef] [PubMed]

Wu, H. J.

E. W. Gomez, N. G. Clack, H. J. Wu, and J. T. Groves, “Like-charge interactions between colloidal particles are asymmetric with respect to sign,” Soft Matt. 5, 1931–1936 (2009).
[CrossRef]

Appl. Opt. (1)

Biophys. J. (4)

A. Albersdorfer, T. Feder, and E. Sackmann, “Adhesion-induced domain formation by interplay of long-range repulsion and short-range attraction force: a model membrane study,” Biophys. J. 73, 245–257 (1997).
[CrossRef] [PubMed]

A. Kloboucek, A. Behrisch, J. Faix, and E. Sackmann, “Adhesion-induced receptor segregation and adhesion plaque formation: a model membrane study,” Biophys. J. 77, 2311–2328 (1999).
[CrossRef] [PubMed]

D. Gingell and I. Todd, “Interference reflection microscopy—a quantitative theory for image interpretation and its application to cell-substratum separation measurement,” Biophys. J. 26, 507–526 (1979).
[CrossRef] [PubMed]

L. Limozin and K. Sengupta, “Modulation of vesicle adhesion and spreading kinetics by hyaluronan cushions,” Biophys. J. 93, 3300–3313 (2007).
[CrossRef] [PubMed]

Chem. Mater. (1)

Y. Wang, A. S. Angelatos, and F. Caruso, “Template synthesis of nanostructured materials via layer-by-layer assembly,” Chem. Mater. 20, 848–858 (2008).
[CrossRef]

Chem. Phys. Chem. (1)

E. Sackmann and R. F. Bruinsma, “Cell adhesion as wetting transition?” Chem. Phys. Chem. 3, 262–269 (2002).
[CrossRef] [PubMed]

Colloids Surf. A (2)

K. W. Stockelhuber, B. Radoev, and H. J. Schulze, “Some new observations on line tension of microscopic droplets,” Colloids Surf. A 156, 323–333 (1999).
[CrossRef]

G. B. Sukhorukov, E. Donath, H. Lichtenfeld, E. Knippel, M. Knippel, A. Budde, and H. Mohwald, “Layer-by-layer self assembly of polyelectrolytes on colloidal particles,” Colloids Surf. A 137, 253–266 (1998).
[CrossRef]

Eur. Phys. J. E (1)

S. Moulinet and D. Bartolo, “Life and death of a fakir droplet: impalement transitions on superhydrophobic surfaces,” Eur. Phys. J. E 24, 251–260 (2007).
[CrossRef] [PubMed]

J. Colloid Interface Sci. (2)

M. Sundberg, A. Mansson, and S. Tagerud, “Contact angle measurements by confocal microscopy for non-destructive microscale surface characterization,” J. Colloid Interface Sci. 313, 454–460 (2007).
[CrossRef] [PubMed]

G. Wiegand, T. Jaworek, G. Wegner, and E. Sackmann, “Studies of structure and local wetting properties on heterogeneous, micropatterned solid surfaces by microinterferometry,” J. Colloid Interface Sci. 196, 299–312 (1997).
[CrossRef]

J. Phys. (Paris) II (1)

J. Radler and E. Sackmann, “Imaging optical thicknesses and separation distances of phospholipid vesicles at solid surfaces,” J. Phys. (Paris) II 3, 727–748 (1993).
[CrossRef]

J. Phys. Chem. B (1)

B. M. Discher, H. Bermudez, D. A. Hammer, D. E. Discher, Y. Y. Won, and F. S. Bates, “Cross-linked polymersome membranes: vesicles with broadly adjustable properties,” J. Phys. Chem. B 106, 2848–2854 (2002).
[CrossRef]

J. Phys. D (1)

K. K. Liu, “Deformation behaviour of soft particles: a review,” J. Phys. D 39, R189–R199 (2006).
[CrossRef]

Langmuir (4)

M. Kuhner and E. Sackmann, “Ultrathin hydrated dextran films grafted on glass: Preparation and characterization of structural, viscous, and elastic properties by quantitative microinterferometry,” Langmuir 12, 4866–4876 (1996).
[CrossRef]

O. Theodoly, Z.-H. Huang, and M.-P. Valignat, “New modeling of reflection interference contrast microscopy including polarization and numerical aperture effects: application to nanometric distance measurements and object profile reconstruction,” Langmuir 26, 1940–1948 (2010).
[CrossRef]

N. G. Clack and J. T. Groves, “Many-particle tracking with nanometer resolution in three dimensions by reflection interference contrast microscopy,” Langmuir 21, 6430–6435(2005).
[CrossRef] [PubMed]

J. Radler and E. Sackmann, “On the measurement of weak repulsive and frictional colloidal forces by reflection interference contrast microscopy,” Langmuir 8, 848–853 (1992).
[CrossRef]

Macromol. (1)

H. Bermudez, A. K. Brannan, D. A. Hammer, F. S. Bates, and D. E. Discher, “Molecular weight dependence of polymersome membrane structure, elasticity, and stability,” Macromol. 35, 8203–8208 (2002).
[CrossRef]

Polymer (1)

K. Kita-Tokarczyk, J. Grumelard, T. Haefele, and W. Meier, “Block copolymer vesicles—using concepts from polymer chemistry to mimic biomembranes,” Polymer 46, 3540–3563(2005).
[CrossRef]

Prog. Theor. Phys. Suppl. (1)

E. Sackmann and S. Goennenwein, “Cell adhesion as dynamic interplay of lock-and-key, generic and elastic forces,” Prog. Theor. Phys. Suppl. 78–99 (2006).
[CrossRef]

Science (2)

B. M. Discher, Y. Y. Won, D. S. Ege, J. C. M. Lee, F. S. Bates, D. E. Discher, and D. A. Hammer, “Polymersomes: tough vesicles made from diblock copolymers,” Science 284, 1143–1146(1999).
[CrossRef] [PubMed]

D. E. Discher and A. Eisenberg, “Polymer vesicles,” Science 297, 967–973 (2002).
[CrossRef] [PubMed]

Soft Matt. (2)

E. W. Gomez, N. G. Clack, H. J. Wu, and J. T. Groves, “Like-charge interactions between colloidal particles are asymmetric with respect to sign,” Soft Matt. 5, 1931–1936 (2009).
[CrossRef]

A. Mecke, C. Dittrich, and W. Meier, “Biomimetic membranes designed from amphiphilic block copolymers,” Soft Matt. 2, 751–759 (2006).
[CrossRef]

Other (3)

E. W. Weisstein, “Change of variables theorem,” retrieved from http://mathworld.wolfram.com/ChangeofVariablesTheorem.html.

J. E. Mark, Polymer Data Handbook (Oxford U. Press, 1999).

E. W. Weisstein, “Delaunay triangulation,” retrieved from http://mathworld.wolfram.com/DelaunayTriangulation.html.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) RICM image formed due to the interference of rays reflected from different optical interfaces in the system when the object is illuminated from below using monochromatic light. (b) Nonplanar model in a single-layer system. The illumination source is considered monochromatic, pseudocoherent, and angularly limited by the INA of the microscope, which means all I 0 originate from within the cone defined by the maximum illumination angle, α I A . The normalized intensity at B in the image plane, I ( x , y ) , is calculated integrating over spherical coordinates ( θ 2 , ϕ 2 ) the contributions from rays I 1 and I 2 incident within the cone of detected light, α D A , determined by the numerical aperture (NA) of the objective. The path length and intensity corresponding to each particular ray are determined by backward ray tracing, taking into account reflection and transmission at every optical interface corresponding to a given geometry; however, multiple reflections are not considered.

Fig. 2
Fig. 2

Intensity calculation for glass–water–air wedges of 30 ° (top row) and 40 ° (bottom row). The integration domains Ω 1 and Ω 2 , shown in the first and second figures for each wedge, remain the same for all image plane positions where intensities are calculated and plotted in the third figure, according to ( θ 1 , ϕ 1 ) and ( θ 2 , ϕ 2 ) indexing. To illustrate the transformation of Ω 1 into Ω 2 and vice versa, it can be seen how the boundaries of the integration domains, mainly determined by α I A and α TIR ; four arbitrary interior points, A, B, C, and D; and some arbitrary interior lines (white dashed lines) translate from one domain to the other in each wedge geometry. The intensity profiles show that the change of variables is successful for the 30 ° wedge but not for the 40 ° wedge because of I 1 * contributions present in Ω 1 but missing in Ω 2 . The simulations were performed with INA = 0.48 , NA = 1.25 , and refractive indices n glass = 1.5 , n water = 1.33 , and n air = 1 . Notice that θ 1 = 0 represents a single point E at the Ω 2 boundary and ϕ goes only up to π in order to exploit the symmetry of the problem.

Fig. 3
Fig. 3

Simulations corresponding to a 6 μm radius latex sphere in water and 100 nm above the glass surface, with INA = 0.78 , NA = 1.25 , and n latex = 1.55 , are performed to illustrate the behavior and convenience of the approximation given by Eqs. (11, 12) compared to the exact solution, Eqs. (4, 5). (a) Intensity without normalization is the calculation from the numerators of the mentioned equations, (b) normalization corresponds to the evaluation of their denominators, and (c) the final intensity value is obtained after normalization. It is important to point out that, in these calculations, there are no missing contributions in Ω 2 .

Fig. 4
Fig. 4

Using the corrected OPLD the correction factors for fringe spacing analysis in (a) wedges and (b) spheres have been determined. In addition, the factors calculated from the uncorrected OPLD are shown; they follow previously reported fittings obtained by using simulations of Eqs. (1, 2, 3). The systems studied correspond to glass-water-air for wedges and glass-water-latex for spheres contacting the substrate with INA = 0.48 and NA = 1.25 .

Fig. 5
Fig. 5

(a) Spline model for an arbitrary convex surface that fits different experimental situations by adjusting the RoR parameter. (b) Local geometry, approximations, and contributions to the intensity in the spline model extension to double-layer systems.

Fig. 6
Fig. 6

RICM in a spherical double-layer system. (a) Intensity at the center of the interferogram, I ( 0 ) , can be easily obtained from the planar theory, considering that the particle is close to the surface and the thickness of the coating is small. (b) Nonplanar theory gives the same information for I ( 0 ) , and it points out that the average intensity of the interferogram, Avg ( I ) , can be correlated with the thickness of the coating, as can be seen for the case when the particle is in contact with the glass. The simulations are performed with INA = 0.48 , NA = 1.25 , and R o R = infinity in the spline model.

Fig. 7
Fig. 7

(a) RICM image of a polymer vesicle in PBS and filled with sucrose solution when it is close to a glass surface coated with BSA. (b) Intensity at the center of the interferogram, given by the planar theory, is used to determine the height of the vesicle above the glass surface. (c) Intensity profile is obtained from a circular average of the picture shown in (a). Experimental data were fitted by using the improved nonplanar interface image formation theory and the spline model with R o R = infinity . (d) Reconstructed bottom shape of the vesicle according to the nonplanar and planar models.

Fig. 8
Fig. 8

Typical surface of integrand values approximated by the Delaunay triangulation method.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ) = E * E d Ω d Ω t ,
I ( x , y ) = I s + I p ,
I s , p = ( I 0 / 2 ) 0 2 π 0 α D A [ R s , p ( θ , ϕ ) * R s , p ( θ , ϕ ) ] sin ( θ ) d θ d ϕ 0 2 π 0 α I A sin ( θ ) d θ d ϕ ,
I ( x , y ) = Ω 1 E * E d Ω Ω 1 d Ω t = I s + I p ,
I s , p = 0 2 π 0 α I A [ R s , p ( θ 1 , ϕ 1 ) * R s , p ( θ 1 , ϕ 1 ) ] [ I 0 ( θ 1 ) / 2 ] sin ( θ 1 ) d θ 1 d ϕ 1 0 2 π 0 α I A sin ( θ 1 ) d θ 1 d ϕ 1 ,
Δ = n 1 ( A S ¯ + S B ¯ ) n 0 C B ¯ ; C B ¯ = sin ( θ 1 ) A B ¯ .
Δ = n 1 ( A S ¯ + S B ¯ ) + n 0 ( R 0 · B A ) ,
G : { θ i = θ i ( θ 1 , ϕ 1 ) ϕ i = ϕ i ( θ 1 , ϕ 1 ) ,
I ( x , y ) = Ω i E * E d Ω Ω i d Ω t = I s + I p ,
I s , p = { Ω i [ R s , p ( θ i , ϕ i ) * R s , p ( θ i , ϕ i ) ] [ I 0 ( θ 1 ( θ i , ϕ i ) ) / 2 ] J ( θ i , ϕ i ) d θ i d ϕ i } / { Ω i J ( θ i , ϕ i ) d θ i d ϕ i } .
I ( x , y ) Ω i E * E d Ω Ω i d Ω t = I s + I p ,
I s , p = { Ω i [ R s , p ( θ i , ϕ i ) * R s , p ( θ i , ϕ i ) ] [ I 0 ( θ 1 ( θ i , ϕ i ) ) / 2 ] sin ( θ i ) d θ i d ϕ i } / { Ω i sin ( θ i ) d θ i d ϕ i } .
G 1 : { θ 1 = θ 1 ( θ i , ϕ i ) ϕ 1 = ϕ 1 ( θ i , ϕ i ) ,
β C = β UC δ C , wedge ( β UC ) ,
ρ C = ρ UC δ C , sphere ( ρ UC ) ,
β max = α D A L 1 + α I A L 1 2 ,
R s , p ( θ 2 , ϕ 2 ) = Θ ( α I A θ 1 ) [ r 01 s , p ( θ 1 ) + Ψ ( A , Δ ) t 01 s , p ( θ 1 ) r 12 s , p ( θ refl ) t 10 s , p ( θ 2 L 1 ) × exp ( i k Δ ) ] ,
Ψ ( A , Δ ) = { 1 if     | A | < r FieldStop and     Δ < 30 μm 0 otherwise .
R s , p ( θ 1 , ϕ 1 ) = R s , p ( θ 2 , ϕ 2 ) .

Metrics