Abstract

We propose a method for identifying clear-sky scenarios from a measurement time series over satellite-observed ground pixels of unknown surface albedo and aerosol type. The lack of a general monotonic relationship between aerosol loading and observed reflectance encumbers the ordering of the observation time series according to aerosol loading. This problem is ameliorated by using two wavelengths at which the surface albedos are known to differ. Treating an observation as being cloud/aerosol free allows for the determination of the corresponding Lambertian equivalent albedo, the relative contrast of which at the two wavelengths varies monotonically with respect to aerosol-loading, clear-sky and completely clouded scenarios representing the extreme cases. Applying this method to the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography measurements over a nondark surface, we validate it by comparing measured against modeled O2 A- and B-band absorption at the retrieved albedo in an aerosol-free atmosphere.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. J. Kaufman, D. Tanre, L. A. Remer, E. F. Vermote, A. Chu, and B. N. Holben, “Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer,” J. Geophys. Res. 102, 51–56 (1997).
    [CrossRef]
  2. M. D. King, Y. J. Kaufman, D. Tanré, and T. Nakajima, “Remote sensing of tropospheric aerosols from space: past, present, and future,” Bull. Am. Meteorol. Soc. 80, 2229–2259 (1999).
    [CrossRef]
  3. J. L. Deuze, F. M. Breon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, G. Perry, and D. Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res. 106, 4913–4926 (2001).
    [CrossRef]
  4. P. Palmer, D. Jacob, K. Chance, R. Martin, R. J. D. Spurr, and Q. Li, “Air mass factor formulation for spectroscopic measurements from satellites: application to formaldehyde retrievals from the Global Ozone Monitoring Experiment,” J. Geophys. Res. 106, 14539–14550 (2001).
    [CrossRef]
  5. A. Richter and J. P. Burrows, “Tropospheric NO2 from GOME measurements,” Adv. Space Res. 29, 1673–1683 (2002).
    [CrossRef]
  6. J. R. Herman and E. A. Celarier, “Earth surface reflectivity climatology at 340–380nm from TOMS data,” J. Geophys. Res. Atmos. 102, 28003–28011 (1997).
    [CrossRef]
  7. R. B. A. Koelemeijer, J. F. de Haan, and P. Stammes, “A database of spectral surface reflectivity in the range 335–772nm derived from 5.5 years of GOME observations,” J. Geophys. Res. 1084070–4083 (2003).
    [CrossRef]
  8. P. Stammes and R. Noordhoek, “OMI algorithm theoretical basis document volume III: clouds, aerosols, and surface UV irradiance,” Tech. Rep. ATBD-OMI-03, Version 2.0 (2002).
  9. D. Wylie, D. Jackson, W. Menzel, and J. Bates, “Trends in global cloud cover in two decades of HIRS observations,” J. Clim. 18, 3021–3031 (2005).
    [CrossRef]

2005 (1)

D. Wylie, D. Jackson, W. Menzel, and J. Bates, “Trends in global cloud cover in two decades of HIRS observations,” J. Clim. 18, 3021–3031 (2005).
[CrossRef]

2003 (1)

R. B. A. Koelemeijer, J. F. de Haan, and P. Stammes, “A database of spectral surface reflectivity in the range 335–772nm derived from 5.5 years of GOME observations,” J. Geophys. Res. 1084070–4083 (2003).
[CrossRef]

2002 (1)

A. Richter and J. P. Burrows, “Tropospheric NO2 from GOME measurements,” Adv. Space Res. 29, 1673–1683 (2002).
[CrossRef]

2001 (2)

J. L. Deuze, F. M. Breon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, G. Perry, and D. Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res. 106, 4913–4926 (2001).
[CrossRef]

P. Palmer, D. Jacob, K. Chance, R. Martin, R. J. D. Spurr, and Q. Li, “Air mass factor formulation for spectroscopic measurements from satellites: application to formaldehyde retrievals from the Global Ozone Monitoring Experiment,” J. Geophys. Res. 106, 14539–14550 (2001).
[CrossRef]

1999 (1)

M. D. King, Y. J. Kaufman, D. Tanré, and T. Nakajima, “Remote sensing of tropospheric aerosols from space: past, present, and future,” Bull. Am. Meteorol. Soc. 80, 2229–2259 (1999).
[CrossRef]

1997 (2)

Y. J. Kaufman, D. Tanre, L. A. Remer, E. F. Vermote, A. Chu, and B. N. Holben, “Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer,” J. Geophys. Res. 102, 51–56 (1997).
[CrossRef]

J. R. Herman and E. A. Celarier, “Earth surface reflectivity climatology at 340–380nm from TOMS data,” J. Geophys. Res. Atmos. 102, 28003–28011 (1997).
[CrossRef]

Bates, J.

D. Wylie, D. Jackson, W. Menzel, and J. Bates, “Trends in global cloud cover in two decades of HIRS observations,” J. Clim. 18, 3021–3031 (2005).
[CrossRef]

Breon, F. M.

J. L. Deuze, F. M. Breon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, G. Perry, and D. Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res. 106, 4913–4926 (2001).
[CrossRef]

Burrows, J. P.

A. Richter and J. P. Burrows, “Tropospheric NO2 from GOME measurements,” Adv. Space Res. 29, 1673–1683 (2002).
[CrossRef]

Celarier, E. A.

J. R. Herman and E. A. Celarier, “Earth surface reflectivity climatology at 340–380nm from TOMS data,” J. Geophys. Res. Atmos. 102, 28003–28011 (1997).
[CrossRef]

Chance, K.

P. Palmer, D. Jacob, K. Chance, R. Martin, R. J. D. Spurr, and Q. Li, “Air mass factor formulation for spectroscopic measurements from satellites: application to formaldehyde retrievals from the Global Ozone Monitoring Experiment,” J. Geophys. Res. 106, 14539–14550 (2001).
[CrossRef]

Chu, A.

Y. J. Kaufman, D. Tanre, L. A. Remer, E. F. Vermote, A. Chu, and B. N. Holben, “Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer,” J. Geophys. Res. 102, 51–56 (1997).
[CrossRef]

de Haan, J. F.

R. B. A. Koelemeijer, J. F. de Haan, and P. Stammes, “A database of spectral surface reflectivity in the range 335–772nm derived from 5.5 years of GOME observations,” J. Geophys. Res. 1084070–4083 (2003).
[CrossRef]

Deuze, J. L.

J. L. Deuze, F. M. Breon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, G. Perry, and D. Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res. 106, 4913–4926 (2001).
[CrossRef]

Devaux, C.

J. L. Deuze, F. M. Breon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, G. Perry, and D. Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res. 106, 4913–4926 (2001).
[CrossRef]

Goloub, P.

J. L. Deuze, F. M. Breon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, G. Perry, and D. Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res. 106, 4913–4926 (2001).
[CrossRef]

Herman, J. R.

J. R. Herman and E. A. Celarier, “Earth surface reflectivity climatology at 340–380nm from TOMS data,” J. Geophys. Res. Atmos. 102, 28003–28011 (1997).
[CrossRef]

Herman, M.

J. L. Deuze, F. M. Breon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, G. Perry, and D. Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res. 106, 4913–4926 (2001).
[CrossRef]

Holben, B. N.

Y. J. Kaufman, D. Tanre, L. A. Remer, E. F. Vermote, A. Chu, and B. N. Holben, “Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer,” J. Geophys. Res. 102, 51–56 (1997).
[CrossRef]

Jackson, D.

D. Wylie, D. Jackson, W. Menzel, and J. Bates, “Trends in global cloud cover in two decades of HIRS observations,” J. Clim. 18, 3021–3031 (2005).
[CrossRef]

Jacob, D.

P. Palmer, D. Jacob, K. Chance, R. Martin, R. J. D. Spurr, and Q. Li, “Air mass factor formulation for spectroscopic measurements from satellites: application to formaldehyde retrievals from the Global Ozone Monitoring Experiment,” J. Geophys. Res. 106, 14539–14550 (2001).
[CrossRef]

Kaufman, Y. J.

M. D. King, Y. J. Kaufman, D. Tanré, and T. Nakajima, “Remote sensing of tropospheric aerosols from space: past, present, and future,” Bull. Am. Meteorol. Soc. 80, 2229–2259 (1999).
[CrossRef]

Y. J. Kaufman, D. Tanre, L. A. Remer, E. F. Vermote, A. Chu, and B. N. Holben, “Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer,” J. Geophys. Res. 102, 51–56 (1997).
[CrossRef]

King, M. D.

M. D. King, Y. J. Kaufman, D. Tanré, and T. Nakajima, “Remote sensing of tropospheric aerosols from space: past, present, and future,” Bull. Am. Meteorol. Soc. 80, 2229–2259 (1999).
[CrossRef]

Koelemeijer, R. B. A.

R. B. A. Koelemeijer, J. F. de Haan, and P. Stammes, “A database of spectral surface reflectivity in the range 335–772nm derived from 5.5 years of GOME observations,” J. Geophys. Res. 1084070–4083 (2003).
[CrossRef]

Lafrance, B.

J. L. Deuze, F. M. Breon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, G. Perry, and D. Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res. 106, 4913–4926 (2001).
[CrossRef]

Li, Q.

P. Palmer, D. Jacob, K. Chance, R. Martin, R. J. D. Spurr, and Q. Li, “Air mass factor formulation for spectroscopic measurements from satellites: application to formaldehyde retrievals from the Global Ozone Monitoring Experiment,” J. Geophys. Res. 106, 14539–14550 (2001).
[CrossRef]

Maignan, F.

J. L. Deuze, F. M. Breon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, G. Perry, and D. Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res. 106, 4913–4926 (2001).
[CrossRef]

Marchand, A.

J. L. Deuze, F. M. Breon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, G. Perry, and D. Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res. 106, 4913–4926 (2001).
[CrossRef]

Martin, R.

P. Palmer, D. Jacob, K. Chance, R. Martin, R. J. D. Spurr, and Q. Li, “Air mass factor formulation for spectroscopic measurements from satellites: application to formaldehyde retrievals from the Global Ozone Monitoring Experiment,” J. Geophys. Res. 106, 14539–14550 (2001).
[CrossRef]

Menzel, W.

D. Wylie, D. Jackson, W. Menzel, and J. Bates, “Trends in global cloud cover in two decades of HIRS observations,” J. Clim. 18, 3021–3031 (2005).
[CrossRef]

Nadal, F.

J. L. Deuze, F. M. Breon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, G. Perry, and D. Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res. 106, 4913–4926 (2001).
[CrossRef]

Nakajima, T.

M. D. King, Y. J. Kaufman, D. Tanré, and T. Nakajima, “Remote sensing of tropospheric aerosols from space: past, present, and future,” Bull. Am. Meteorol. Soc. 80, 2229–2259 (1999).
[CrossRef]

Noordhoek, R.

P. Stammes and R. Noordhoek, “OMI algorithm theoretical basis document volume III: clouds, aerosols, and surface UV irradiance,” Tech. Rep. ATBD-OMI-03, Version 2.0 (2002).

Palmer, P.

P. Palmer, D. Jacob, K. Chance, R. Martin, R. J. D. Spurr, and Q. Li, “Air mass factor formulation for spectroscopic measurements from satellites: application to formaldehyde retrievals from the Global Ozone Monitoring Experiment,” J. Geophys. Res. 106, 14539–14550 (2001).
[CrossRef]

Perry, G.

J. L. Deuze, F. M. Breon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, G. Perry, and D. Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res. 106, 4913–4926 (2001).
[CrossRef]

Remer, L. A.

Y. J. Kaufman, D. Tanre, L. A. Remer, E. F. Vermote, A. Chu, and B. N. Holben, “Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer,” J. Geophys. Res. 102, 51–56 (1997).
[CrossRef]

Richter, A.

A. Richter and J. P. Burrows, “Tropospheric NO2 from GOME measurements,” Adv. Space Res. 29, 1673–1683 (2002).
[CrossRef]

Spurr, R. J. D.

P. Palmer, D. Jacob, K. Chance, R. Martin, R. J. D. Spurr, and Q. Li, “Air mass factor formulation for spectroscopic measurements from satellites: application to formaldehyde retrievals from the Global Ozone Monitoring Experiment,” J. Geophys. Res. 106, 14539–14550 (2001).
[CrossRef]

Stammes, P.

R. B. A. Koelemeijer, J. F. de Haan, and P. Stammes, “A database of spectral surface reflectivity in the range 335–772nm derived from 5.5 years of GOME observations,” J. Geophys. Res. 1084070–4083 (2003).
[CrossRef]

P. Stammes and R. Noordhoek, “OMI algorithm theoretical basis document volume III: clouds, aerosols, and surface UV irradiance,” Tech. Rep. ATBD-OMI-03, Version 2.0 (2002).

Tanre, D.

Y. J. Kaufman, D. Tanre, L. A. Remer, E. F. Vermote, A. Chu, and B. N. Holben, “Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer,” J. Geophys. Res. 102, 51–56 (1997).
[CrossRef]

Tanré, D.

J. L. Deuze, F. M. Breon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, G. Perry, and D. Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res. 106, 4913–4926 (2001).
[CrossRef]

M. D. King, Y. J. Kaufman, D. Tanré, and T. Nakajima, “Remote sensing of tropospheric aerosols from space: past, present, and future,” Bull. Am. Meteorol. Soc. 80, 2229–2259 (1999).
[CrossRef]

Vermote, E. F.

Y. J. Kaufman, D. Tanre, L. A. Remer, E. F. Vermote, A. Chu, and B. N. Holben, “Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer,” J. Geophys. Res. 102, 51–56 (1997).
[CrossRef]

Wylie, D.

D. Wylie, D. Jackson, W. Menzel, and J. Bates, “Trends in global cloud cover in two decades of HIRS observations,” J. Clim. 18, 3021–3031 (2005).
[CrossRef]

Adv. Space Res. (1)

A. Richter and J. P. Burrows, “Tropospheric NO2 from GOME measurements,” Adv. Space Res. 29, 1673–1683 (2002).
[CrossRef]

Bull. Am. Meteorol. Soc. (1)

M. D. King, Y. J. Kaufman, D. Tanré, and T. Nakajima, “Remote sensing of tropospheric aerosols from space: past, present, and future,” Bull. Am. Meteorol. Soc. 80, 2229–2259 (1999).
[CrossRef]

J. Clim. (1)

D. Wylie, D. Jackson, W. Menzel, and J. Bates, “Trends in global cloud cover in two decades of HIRS observations,” J. Clim. 18, 3021–3031 (2005).
[CrossRef]

J. Geophys. Res. (4)

Y. J. Kaufman, D. Tanre, L. A. Remer, E. F. Vermote, A. Chu, and B. N. Holben, “Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer,” J. Geophys. Res. 102, 51–56 (1997).
[CrossRef]

R. B. A. Koelemeijer, J. F. de Haan, and P. Stammes, “A database of spectral surface reflectivity in the range 335–772nm derived from 5.5 years of GOME observations,” J. Geophys. Res. 1084070–4083 (2003).
[CrossRef]

J. L. Deuze, F. M. Breon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, G. Perry, and D. Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res. 106, 4913–4926 (2001).
[CrossRef]

P. Palmer, D. Jacob, K. Chance, R. Martin, R. J. D. Spurr, and Q. Li, “Air mass factor formulation for spectroscopic measurements from satellites: application to formaldehyde retrievals from the Global Ozone Monitoring Experiment,” J. Geophys. Res. 106, 14539–14550 (2001).
[CrossRef]

J. Geophys. Res. Atmos. (1)

J. R. Herman and E. A. Celarier, “Earth surface reflectivity climatology at 340–380nm from TOMS data,” J. Geophys. Res. Atmos. 102, 28003–28011 (1997).
[CrossRef]

Other (1)

P. Stammes and R. Noordhoek, “OMI algorithm theoretical basis document volume III: clouds, aerosols, and surface UV irradiance,” Tech. Rep. ATBD-OMI-03, Version 2.0 (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Modeled overall (ground and atmosphere) single scattering (SS), multiple scattering (MS), and total (TS) reflectances seen by a nadir-pointing satellite detector at SZA = 0 ° (SZA stands for solar zenith angle) over Lambertian surfaces of different albedos for increasing aerosol optical thickness. The left panels show reflectances at an absorption-free wavelength ( 682 nm ) near the O 2 B band simulated for a clean marine aerosol type ( M clean ), and the right panels show the corresponding reflectances for a coarse biomass burning aerosol ( B coarse ).

Fig. 2
Fig. 2

Same as Fig. 1 except that the SZA = 60 ° .

Fig. 3
Fig. 3

Comparison of terms used in the calculation of the relative contrast, ( ρ A ρ B ) / ( ρ A + ρ B ) (indicated by a solid black curve), for the B coarse aerosol type, for different combinations of ρ A and ρ B .

Fig. 4
Fig. 4

Comparison of terms used in the calculation of the relative contrast, ( ρ A ρ B ) / ( ρ A + ρ B ) (indicated by a solid black curve), for the B coarse aerosol type, in this case for ρ A = 0.2 and ρ B = 0.1 . The same general behavior is found to hold true for other aerosol types as well.

Fig. 5
Fig. 5

Top: apparent Lambertian equivalent albedos ρ A (triangles) and ρ B (diamonds) at 682 nm and 756 nm , respectively, plotted against the day of the year 2003 on which the scenario was recorded by SCIAMACHY over Kanpur, India. Bottom: relative contrast in the ALEA values at the two wavelengths. Solid vertical lines map the ALEA contrast for days that may correspond to clear-sky scenarios.

Fig. 6
Fig. 6

Observed (dark) and expected (light) reflectances under a clear-sky assumption for the selected spectral ranges around the O 2 B and A bands on the left- and right-hand sides, respectively. The top panel shows the reflectance spectra for 7 March 2003, and the bottom panel shows the residual spectrum which indicates the accuracy of the clear-sky assumption for the observed scenario.

Fig. 7
Fig. 7

Same as Fig. 6 except for 27 April 2003.

Fig. 8
Fig. 8

Same as Fig. 6 except for 31 July 2003.

Fig. 9
Fig. 9

Top: scatterplot of ( ρ A ρ B ) / ( ρ A + ρ B ) versus ρ B , Bottom: scatterplot of ( ρ A ρ B ) / ( ρ A + ρ B ) versus ρ A . It can be seen that while the minimum reflectance method and the maximum relative contrast method would yield the same results for a dark surface due to their linear variation as in the case of the B band, the same does not hold true for a brighter surface, as in the case of the A band. The larger diamonds indicate the days we have chosen as clear-sky candidates.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

R = R ss + R ms .
R ss = ( R ss Rayl + R ss aer ) + R ss g ( ρ ) = R ss a + R ss g ( ρ ) ,
R ( λ , ρ ) = R ss g ( λ , ρ ) + R ss a ( λ ) + R ms ( λ , ρ ) ,
R ss g ( λ ) = ρ ( λ ) π μ 0 exp { τ ( λ ) ( μ υ 1 + μ 0 1 ) } ,
ρ ( λ ) = R ( λ , ρ * ( λ ) ) ( R ss a ( λ ) + R ms ( λ , ρ ) ) exp { τ ( λ ) ( μ υ 1 + μ 0 1 ) } · ( μ 0 / π ) .
ρ i + 1 ( λ ) = R ( λ , ρ * ( λ ) ) ( R ss a ( λ ) + R ms ( λ , ρ i ) ) exp { τ ( λ ) ( μ υ 1 + μ 0 1 ) } ( μ 0 / π ) .
ρ app · ( μ 0 / π ) · exp ( τ Rayl / μ ¯ ) + R ss a 0 + R ms 0 = ρ true · ( μ 0 / π ) · exp ( ( τ Rayl + τ aer ) / μ ¯ ) + R ss a + R ms ,
ρ app = ρ true · exp ( τ aer / μ ¯ ) + ( R ss a R ss a 0 ) + ( R ms R ms 0 ) ( μ 0 / π ) · exp ( τ Rayl / μ ¯ ) ρ true · exp ( τ aer / μ ¯ ) + ( R ss a R ss a 0 ) + R ms ( μ 0 / π ) · exp ( τ Rayl / μ ¯ ) .
ρ app A ρ app B = ( ρ true A ρ true B ) · exp ( τ aer ¯ / μ ¯ ) + π μ 0 · [ ( ( R ss a A + R ms A ) ( R ss a A 0 + R ms A 0 ) ) exp ( τ Rayl A / μ ¯ ) ( ( R ss a B + R ms B ) ( R ss a B 0 + R ms B 0 ) ) exp ( τ Rayl B / μ ¯ ) ] .

Metrics