Abstract

Irradiation of a high-power laser pulse (above 109W/cm2) on thin metal foil causes ablation, which is characterized by a strong plasma-shock formation followed by a rapid expulsion of surface matter. The shock propagates through the foil and reverberates on the rear side causing instant deformation of the metal foil, whose surface is treated with microparticles prior to ablation. Based on this principle of microparticle ejection, we develop a laser-based injector that features controllability and stability. We also perform characterization of the penetration depths at varying confinements and energy levels. The confinement media include glass (BK7), water, and ultrasound gel. Biological tissue was replicated by a gelatin–water solution at a 3% weight ratio. Present data show that the confinement effect results in a significant enhancement of penetration depth reached by 5μm cobalt microparticles. Also, there exists an optimal thickness at each energy level when using liquid confinement for enhanced particle delivery.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. M. Klein, E. D. Wolf, R. Wu, and J. C. Sanford, “High-velocity microprojectiles for delivering nucleic acids into living cells,” Nature 327, 70–73 (1987).
    [CrossRef]
  2. N. J. Quinlan, M. Kendall, B. J. Bellhouse, and R. W. Ainsworth, “Investigations of gas and particle dynamics in first generation needle-free drug delivery devices,” Shock Waves 10, 395–404 (2001).
    [CrossRef]
  3. M. Kendall, “The delivery of particulate vaccines and drugs to human skin with a practical, hand-held shock tube-based system,” Shock Waves 12, 23 (2002).
    [CrossRef]
  4. R. E. Russo, “Laser ablation,” Appl. Spectrosc. 49, 14A–28A(1995).
    [CrossRef]
  5. B. P. Fairand and A. H. Clauer, “Laser generation of high-amplitude stress waves in materials,” J. Appl. Phys. 50, 1497–1502 (1979).
    [CrossRef]
  6. L. Berthe, R. Fabbro, P. Perye, and E. Bartnicki, “Wavelength dependent of laser shock-wave generation in the water-confinement regime,” J. Appl. Phys. 85, 7552–7555 (1999).
    [CrossRef]
  7. V. Menezes and K. Takayama, “Laser-ablation-assisted microparticle acceleration for drug delivery,” Appl. Phys. Lett. 87, 163504 (2005).
    [CrossRef]
  8. R. Fabbro, J. Fournier, P. Ballard, and D. Devaux, “Physical study of laser-produced plasma in confined geometry,” J. Appl. Phys. 68, 775–784 (1990).
    [CrossRef]
  9. Z. Zheng, J. Zhang, Z. Hao, X. Yuan, Z. Zhang, X. Lu, Z. Wang, and Z. Wei, “The characteristics of confined ablation in laser propulsion,” Chin. Phys. Soc. 15, 580–584 (2006).
    [CrossRef]
  10. J. H. Choi, A. B. Gojani, H. H. Lee, and J. J. Yoh, “Development of bio-ballistic device for laser ablation induced drug delivery,” Int. J. Prec. Eng. Manufact. 9, 68–71 (2008).
  11. A. E. Siegman, Lasers (University Science, 1986), pp. 664–669.
  12. J. J. Yoh, H. H. Lee, J. H. Choi, K. C. Lee, and K. H. Kim, “Ablation induced explosion of metal using a high-power Nd:YAG laser,” J. Appl. Phys. 103, 043511 (2008).
    [CrossRef]
  13. H. Shangguan, L. W. Casperson, A. Shearin, K. W. Gregory, and S. A. Prahl, “Drug delivery with microsecond laser pulses into gelatin,” Appl. Opt. 35, 3347–3357 (1996).
    [CrossRef] [PubMed]
  14. T. Kodama, “Study on the behavior of cavitation bubbles near flexible boundaries,” Ph.D. dissertation (Tohoku University, 1992).
  15. U. Rosenschein, A. Frimerman, S. Laniado, and H. I. Miller, “Study of the mechanism of ultrasound angioplasty from human thrombi and bovine aorta,” Am. J. Cardiol. 74, 1263–1266 (1994).
    [CrossRef] [PubMed]
  16. Z. Y. Zheng, J. Zhang, Y. Zhang, F. Liu, M. Chen, X. Lu, and Y. T. Li, “Enhancement of coupling coefficient of laser plasma propulsion by water confinement,” Appl. Phys. A 85, 441–443(2006).
    [CrossRef]
  17. X. M. Liu, J. He, J. Lu, and W. N. Xiao, “Mechanical effects during pulsed laser and metals interaction in glycerol-water mixtures,” Proc. SPIE 6825, 682513 (2007).
    [CrossRef]

2008

J. H. Choi, A. B. Gojani, H. H. Lee, and J. J. Yoh, “Development of bio-ballistic device for laser ablation induced drug delivery,” Int. J. Prec. Eng. Manufact. 9, 68–71 (2008).

J. J. Yoh, H. H. Lee, J. H. Choi, K. C. Lee, and K. H. Kim, “Ablation induced explosion of metal using a high-power Nd:YAG laser,” J. Appl. Phys. 103, 043511 (2008).
[CrossRef]

2007

X. M. Liu, J. He, J. Lu, and W. N. Xiao, “Mechanical effects during pulsed laser and metals interaction in glycerol-water mixtures,” Proc. SPIE 6825, 682513 (2007).
[CrossRef]

2006

Z. Y. Zheng, J. Zhang, Y. Zhang, F. Liu, M. Chen, X. Lu, and Y. T. Li, “Enhancement of coupling coefficient of laser plasma propulsion by water confinement,” Appl. Phys. A 85, 441–443(2006).
[CrossRef]

Z. Zheng, J. Zhang, Z. Hao, X. Yuan, Z. Zhang, X. Lu, Z. Wang, and Z. Wei, “The characteristics of confined ablation in laser propulsion,” Chin. Phys. Soc. 15, 580–584 (2006).
[CrossRef]

2005

V. Menezes and K. Takayama, “Laser-ablation-assisted microparticle acceleration for drug delivery,” Appl. Phys. Lett. 87, 163504 (2005).
[CrossRef]

2002

M. Kendall, “The delivery of particulate vaccines and drugs to human skin with a practical, hand-held shock tube-based system,” Shock Waves 12, 23 (2002).
[CrossRef]

2001

N. J. Quinlan, M. Kendall, B. J. Bellhouse, and R. W. Ainsworth, “Investigations of gas and particle dynamics in first generation needle-free drug delivery devices,” Shock Waves 10, 395–404 (2001).
[CrossRef]

1999

L. Berthe, R. Fabbro, P. Perye, and E. Bartnicki, “Wavelength dependent of laser shock-wave generation in the water-confinement regime,” J. Appl. Phys. 85, 7552–7555 (1999).
[CrossRef]

1996

1995

1994

U. Rosenschein, A. Frimerman, S. Laniado, and H. I. Miller, “Study of the mechanism of ultrasound angioplasty from human thrombi and bovine aorta,” Am. J. Cardiol. 74, 1263–1266 (1994).
[CrossRef] [PubMed]

1990

R. Fabbro, J. Fournier, P. Ballard, and D. Devaux, “Physical study of laser-produced plasma in confined geometry,” J. Appl. Phys. 68, 775–784 (1990).
[CrossRef]

1987

T. M. Klein, E. D. Wolf, R. Wu, and J. C. Sanford, “High-velocity microprojectiles for delivering nucleic acids into living cells,” Nature 327, 70–73 (1987).
[CrossRef]

1979

B. P. Fairand and A. H. Clauer, “Laser generation of high-amplitude stress waves in materials,” J. Appl. Phys. 50, 1497–1502 (1979).
[CrossRef]

Ainsworth, R. W.

N. J. Quinlan, M. Kendall, B. J. Bellhouse, and R. W. Ainsworth, “Investigations of gas and particle dynamics in first generation needle-free drug delivery devices,” Shock Waves 10, 395–404 (2001).
[CrossRef]

Ballard, P.

R. Fabbro, J. Fournier, P. Ballard, and D. Devaux, “Physical study of laser-produced plasma in confined geometry,” J. Appl. Phys. 68, 775–784 (1990).
[CrossRef]

Bartnicki, E.

L. Berthe, R. Fabbro, P. Perye, and E. Bartnicki, “Wavelength dependent of laser shock-wave generation in the water-confinement regime,” J. Appl. Phys. 85, 7552–7555 (1999).
[CrossRef]

Bellhouse, B. J.

N. J. Quinlan, M. Kendall, B. J. Bellhouse, and R. W. Ainsworth, “Investigations of gas and particle dynamics in first generation needle-free drug delivery devices,” Shock Waves 10, 395–404 (2001).
[CrossRef]

Berthe, L.

L. Berthe, R. Fabbro, P. Perye, and E. Bartnicki, “Wavelength dependent of laser shock-wave generation in the water-confinement regime,” J. Appl. Phys. 85, 7552–7555 (1999).
[CrossRef]

Casperson, L. W.

Chen, M.

Z. Y. Zheng, J. Zhang, Y. Zhang, F. Liu, M. Chen, X. Lu, and Y. T. Li, “Enhancement of coupling coefficient of laser plasma propulsion by water confinement,” Appl. Phys. A 85, 441–443(2006).
[CrossRef]

Choi, J. H.

J. J. Yoh, H. H. Lee, J. H. Choi, K. C. Lee, and K. H. Kim, “Ablation induced explosion of metal using a high-power Nd:YAG laser,” J. Appl. Phys. 103, 043511 (2008).
[CrossRef]

J. H. Choi, A. B. Gojani, H. H. Lee, and J. J. Yoh, “Development of bio-ballistic device for laser ablation induced drug delivery,” Int. J. Prec. Eng. Manufact. 9, 68–71 (2008).

Clauer, A. H.

B. P. Fairand and A. H. Clauer, “Laser generation of high-amplitude stress waves in materials,” J. Appl. Phys. 50, 1497–1502 (1979).
[CrossRef]

Devaux, D.

R. Fabbro, J. Fournier, P. Ballard, and D. Devaux, “Physical study of laser-produced plasma in confined geometry,” J. Appl. Phys. 68, 775–784 (1990).
[CrossRef]

Fabbro, R.

L. Berthe, R. Fabbro, P. Perye, and E. Bartnicki, “Wavelength dependent of laser shock-wave generation in the water-confinement regime,” J. Appl. Phys. 85, 7552–7555 (1999).
[CrossRef]

R. Fabbro, J. Fournier, P. Ballard, and D. Devaux, “Physical study of laser-produced plasma in confined geometry,” J. Appl. Phys. 68, 775–784 (1990).
[CrossRef]

Fairand, B. P.

B. P. Fairand and A. H. Clauer, “Laser generation of high-amplitude stress waves in materials,” J. Appl. Phys. 50, 1497–1502 (1979).
[CrossRef]

Fournier, J.

R. Fabbro, J. Fournier, P. Ballard, and D. Devaux, “Physical study of laser-produced plasma in confined geometry,” J. Appl. Phys. 68, 775–784 (1990).
[CrossRef]

Frimerman, A.

U. Rosenschein, A. Frimerman, S. Laniado, and H. I. Miller, “Study of the mechanism of ultrasound angioplasty from human thrombi and bovine aorta,” Am. J. Cardiol. 74, 1263–1266 (1994).
[CrossRef] [PubMed]

Gojani, A. B.

J. H. Choi, A. B. Gojani, H. H. Lee, and J. J. Yoh, “Development of bio-ballistic device for laser ablation induced drug delivery,” Int. J. Prec. Eng. Manufact. 9, 68–71 (2008).

Gregory, K. W.

Hao, Z.

Z. Zheng, J. Zhang, Z. Hao, X. Yuan, Z. Zhang, X. Lu, Z. Wang, and Z. Wei, “The characteristics of confined ablation in laser propulsion,” Chin. Phys. Soc. 15, 580–584 (2006).
[CrossRef]

He, J.

X. M. Liu, J. He, J. Lu, and W. N. Xiao, “Mechanical effects during pulsed laser and metals interaction in glycerol-water mixtures,” Proc. SPIE 6825, 682513 (2007).
[CrossRef]

Kendall, M.

M. Kendall, “The delivery of particulate vaccines and drugs to human skin with a practical, hand-held shock tube-based system,” Shock Waves 12, 23 (2002).
[CrossRef]

N. J. Quinlan, M. Kendall, B. J. Bellhouse, and R. W. Ainsworth, “Investigations of gas and particle dynamics in first generation needle-free drug delivery devices,” Shock Waves 10, 395–404 (2001).
[CrossRef]

Kim, K. H.

J. J. Yoh, H. H. Lee, J. H. Choi, K. C. Lee, and K. H. Kim, “Ablation induced explosion of metal using a high-power Nd:YAG laser,” J. Appl. Phys. 103, 043511 (2008).
[CrossRef]

Klein, T. M.

T. M. Klein, E. D. Wolf, R. Wu, and J. C. Sanford, “High-velocity microprojectiles for delivering nucleic acids into living cells,” Nature 327, 70–73 (1987).
[CrossRef]

Kodama, T.

T. Kodama, “Study on the behavior of cavitation bubbles near flexible boundaries,” Ph.D. dissertation (Tohoku University, 1992).

Laniado, S.

U. Rosenschein, A. Frimerman, S. Laniado, and H. I. Miller, “Study of the mechanism of ultrasound angioplasty from human thrombi and bovine aorta,” Am. J. Cardiol. 74, 1263–1266 (1994).
[CrossRef] [PubMed]

Lee, H. H.

J. J. Yoh, H. H. Lee, J. H. Choi, K. C. Lee, and K. H. Kim, “Ablation induced explosion of metal using a high-power Nd:YAG laser,” J. Appl. Phys. 103, 043511 (2008).
[CrossRef]

J. H. Choi, A. B. Gojani, H. H. Lee, and J. J. Yoh, “Development of bio-ballistic device for laser ablation induced drug delivery,” Int. J. Prec. Eng. Manufact. 9, 68–71 (2008).

Lee, K. C.

J. J. Yoh, H. H. Lee, J. H. Choi, K. C. Lee, and K. H. Kim, “Ablation induced explosion of metal using a high-power Nd:YAG laser,” J. Appl. Phys. 103, 043511 (2008).
[CrossRef]

Li, Y. T.

Z. Y. Zheng, J. Zhang, Y. Zhang, F. Liu, M. Chen, X. Lu, and Y. T. Li, “Enhancement of coupling coefficient of laser plasma propulsion by water confinement,” Appl. Phys. A 85, 441–443(2006).
[CrossRef]

Liu, F.

Z. Y. Zheng, J. Zhang, Y. Zhang, F. Liu, M. Chen, X. Lu, and Y. T. Li, “Enhancement of coupling coefficient of laser plasma propulsion by water confinement,” Appl. Phys. A 85, 441–443(2006).
[CrossRef]

Liu, X. M.

X. M. Liu, J. He, J. Lu, and W. N. Xiao, “Mechanical effects during pulsed laser and metals interaction in glycerol-water mixtures,” Proc. SPIE 6825, 682513 (2007).
[CrossRef]

Lu, J.

X. M. Liu, J. He, J. Lu, and W. N. Xiao, “Mechanical effects during pulsed laser and metals interaction in glycerol-water mixtures,” Proc. SPIE 6825, 682513 (2007).
[CrossRef]

Lu, X.

Z. Zheng, J. Zhang, Z. Hao, X. Yuan, Z. Zhang, X. Lu, Z. Wang, and Z. Wei, “The characteristics of confined ablation in laser propulsion,” Chin. Phys. Soc. 15, 580–584 (2006).
[CrossRef]

Z. Y. Zheng, J. Zhang, Y. Zhang, F. Liu, M. Chen, X. Lu, and Y. T. Li, “Enhancement of coupling coefficient of laser plasma propulsion by water confinement,” Appl. Phys. A 85, 441–443(2006).
[CrossRef]

Menezes, V.

V. Menezes and K. Takayama, “Laser-ablation-assisted microparticle acceleration for drug delivery,” Appl. Phys. Lett. 87, 163504 (2005).
[CrossRef]

Miller, H. I.

U. Rosenschein, A. Frimerman, S. Laniado, and H. I. Miller, “Study of the mechanism of ultrasound angioplasty from human thrombi and bovine aorta,” Am. J. Cardiol. 74, 1263–1266 (1994).
[CrossRef] [PubMed]

Perye, P.

L. Berthe, R. Fabbro, P. Perye, and E. Bartnicki, “Wavelength dependent of laser shock-wave generation in the water-confinement regime,” J. Appl. Phys. 85, 7552–7555 (1999).
[CrossRef]

Prahl, S. A.

Quinlan, N. J.

N. J. Quinlan, M. Kendall, B. J. Bellhouse, and R. W. Ainsworth, “Investigations of gas and particle dynamics in first generation needle-free drug delivery devices,” Shock Waves 10, 395–404 (2001).
[CrossRef]

Rosenschein, U.

U. Rosenschein, A. Frimerman, S. Laniado, and H. I. Miller, “Study of the mechanism of ultrasound angioplasty from human thrombi and bovine aorta,” Am. J. Cardiol. 74, 1263–1266 (1994).
[CrossRef] [PubMed]

Russo, R. E.

Sanford, J. C.

T. M. Klein, E. D. Wolf, R. Wu, and J. C. Sanford, “High-velocity microprojectiles for delivering nucleic acids into living cells,” Nature 327, 70–73 (1987).
[CrossRef]

Shangguan, H.

Shearin, A.

Siegman, A. E.

A. E. Siegman, Lasers (University Science, 1986), pp. 664–669.

Takayama, K.

V. Menezes and K. Takayama, “Laser-ablation-assisted microparticle acceleration for drug delivery,” Appl. Phys. Lett. 87, 163504 (2005).
[CrossRef]

Wang, Z.

Z. Zheng, J. Zhang, Z. Hao, X. Yuan, Z. Zhang, X. Lu, Z. Wang, and Z. Wei, “The characteristics of confined ablation in laser propulsion,” Chin. Phys. Soc. 15, 580–584 (2006).
[CrossRef]

Wei, Z.

Z. Zheng, J. Zhang, Z. Hao, X. Yuan, Z. Zhang, X. Lu, Z. Wang, and Z. Wei, “The characteristics of confined ablation in laser propulsion,” Chin. Phys. Soc. 15, 580–584 (2006).
[CrossRef]

Wolf, E. D.

T. M. Klein, E. D. Wolf, R. Wu, and J. C. Sanford, “High-velocity microprojectiles for delivering nucleic acids into living cells,” Nature 327, 70–73 (1987).
[CrossRef]

Wu, R.

T. M. Klein, E. D. Wolf, R. Wu, and J. C. Sanford, “High-velocity microprojectiles for delivering nucleic acids into living cells,” Nature 327, 70–73 (1987).
[CrossRef]

Xiao, W. N.

X. M. Liu, J. He, J. Lu, and W. N. Xiao, “Mechanical effects during pulsed laser and metals interaction in glycerol-water mixtures,” Proc. SPIE 6825, 682513 (2007).
[CrossRef]

Yoh, J. J.

J. J. Yoh, H. H. Lee, J. H. Choi, K. C. Lee, and K. H. Kim, “Ablation induced explosion of metal using a high-power Nd:YAG laser,” J. Appl. Phys. 103, 043511 (2008).
[CrossRef]

J. H. Choi, A. B. Gojani, H. H. Lee, and J. J. Yoh, “Development of bio-ballistic device for laser ablation induced drug delivery,” Int. J. Prec. Eng. Manufact. 9, 68–71 (2008).

Yuan, X.

Z. Zheng, J. Zhang, Z. Hao, X. Yuan, Z. Zhang, X. Lu, Z. Wang, and Z. Wei, “The characteristics of confined ablation in laser propulsion,” Chin. Phys. Soc. 15, 580–584 (2006).
[CrossRef]

Zhang, J.

Z. Zheng, J. Zhang, Z. Hao, X. Yuan, Z. Zhang, X. Lu, Z. Wang, and Z. Wei, “The characteristics of confined ablation in laser propulsion,” Chin. Phys. Soc. 15, 580–584 (2006).
[CrossRef]

Z. Y. Zheng, J. Zhang, Y. Zhang, F. Liu, M. Chen, X. Lu, and Y. T. Li, “Enhancement of coupling coefficient of laser plasma propulsion by water confinement,” Appl. Phys. A 85, 441–443(2006).
[CrossRef]

Zhang, Y.

Z. Y. Zheng, J. Zhang, Y. Zhang, F. Liu, M. Chen, X. Lu, and Y. T. Li, “Enhancement of coupling coefficient of laser plasma propulsion by water confinement,” Appl. Phys. A 85, 441–443(2006).
[CrossRef]

Zhang, Z.

Z. Zheng, J. Zhang, Z. Hao, X. Yuan, Z. Zhang, X. Lu, Z. Wang, and Z. Wei, “The characteristics of confined ablation in laser propulsion,” Chin. Phys. Soc. 15, 580–584 (2006).
[CrossRef]

Zheng, Z.

Z. Zheng, J. Zhang, Z. Hao, X. Yuan, Z. Zhang, X. Lu, Z. Wang, and Z. Wei, “The characteristics of confined ablation in laser propulsion,” Chin. Phys. Soc. 15, 580–584 (2006).
[CrossRef]

Zheng, Z. Y.

Z. Y. Zheng, J. Zhang, Y. Zhang, F. Liu, M. Chen, X. Lu, and Y. T. Li, “Enhancement of coupling coefficient of laser plasma propulsion by water confinement,” Appl. Phys. A 85, 441–443(2006).
[CrossRef]

Am. J. Cardiol.

U. Rosenschein, A. Frimerman, S. Laniado, and H. I. Miller, “Study of the mechanism of ultrasound angioplasty from human thrombi and bovine aorta,” Am. J. Cardiol. 74, 1263–1266 (1994).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. A

Z. Y. Zheng, J. Zhang, Y. Zhang, F. Liu, M. Chen, X. Lu, and Y. T. Li, “Enhancement of coupling coefficient of laser plasma propulsion by water confinement,” Appl. Phys. A 85, 441–443(2006).
[CrossRef]

Appl. Phys. Lett.

V. Menezes and K. Takayama, “Laser-ablation-assisted microparticle acceleration for drug delivery,” Appl. Phys. Lett. 87, 163504 (2005).
[CrossRef]

Appl. Spectrosc.

Chin. Phys. Soc.

Z. Zheng, J. Zhang, Z. Hao, X. Yuan, Z. Zhang, X. Lu, Z. Wang, and Z. Wei, “The characteristics of confined ablation in laser propulsion,” Chin. Phys. Soc. 15, 580–584 (2006).
[CrossRef]

Int. J. Prec. Eng. Manufact.

J. H. Choi, A. B. Gojani, H. H. Lee, and J. J. Yoh, “Development of bio-ballistic device for laser ablation induced drug delivery,” Int. J. Prec. Eng. Manufact. 9, 68–71 (2008).

J. Appl. Phys.

R. Fabbro, J. Fournier, P. Ballard, and D. Devaux, “Physical study of laser-produced plasma in confined geometry,” J. Appl. Phys. 68, 775–784 (1990).
[CrossRef]

B. P. Fairand and A. H. Clauer, “Laser generation of high-amplitude stress waves in materials,” J. Appl. Phys. 50, 1497–1502 (1979).
[CrossRef]

L. Berthe, R. Fabbro, P. Perye, and E. Bartnicki, “Wavelength dependent of laser shock-wave generation in the water-confinement regime,” J. Appl. Phys. 85, 7552–7555 (1999).
[CrossRef]

J. J. Yoh, H. H. Lee, J. H. Choi, K. C. Lee, and K. H. Kim, “Ablation induced explosion of metal using a high-power Nd:YAG laser,” J. Appl. Phys. 103, 043511 (2008).
[CrossRef]

Nature

T. M. Klein, E. D. Wolf, R. Wu, and J. C. Sanford, “High-velocity microprojectiles for delivering nucleic acids into living cells,” Nature 327, 70–73 (1987).
[CrossRef]

Proc. SPIE

X. M. Liu, J. He, J. Lu, and W. N. Xiao, “Mechanical effects during pulsed laser and metals interaction in glycerol-water mixtures,” Proc. SPIE 6825, 682513 (2007).
[CrossRef]

Shock Waves

N. J. Quinlan, M. Kendall, B. J. Bellhouse, and R. W. Ainsworth, “Investigations of gas and particle dynamics in first generation needle-free drug delivery devices,” Shock Waves 10, 395–404 (2001).
[CrossRef]

M. Kendall, “The delivery of particulate vaccines and drugs to human skin with a practical, hand-held shock tube-based system,” Shock Waves 12, 23 (2002).
[CrossRef]

Other

T. Kodama, “Study on the behavior of cavitation bubbles near flexible boundaries,” Ph.D. dissertation (Tohoku University, 1992).

A. E. Siegman, Lasers (University Science, 1986), pp. 664–669.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Principle of microparticle acceleration. A laser-ablation-induced shock wave quickly deforms a thin metal, causing instant ejection of microparticles at high speed ( 4900 m / s ).

Fig. 2
Fig. 2

Impulse (F) exerted on a metal foil with (a) a direct ablation and (b) a confined ablation.

Fig. 3
Fig. 3

Schematic of experimental setup for confined laser ablation. Various confinements on the thin metal foil through the holder system are tested.

Fig. 4
Fig. 4

Holder designed for (a) BK7-glass-confined ablation and for (b) liquid-confined (water or ultrasound gel) ablation test.

Fig. 5
Fig. 5

Particle cluster deposited on a surface of the aluminum foil.

Fig. 6
Fig. 6

Variation of focal areas and confining direction (arrows) with the confinement effects of (a) BK7 glass, (b) BK7 glass coated with water, and (c) water only as the confinement.

Fig. 7
Fig. 7

Evolution of plasma layer expansion.

Fig. 8
Fig. 8

Penetration depths and widths measurements for microparticle acceleration.

Tables (1)

Tables Icon

Table 1 Laser-Assisted Particle Injection via 1070 ± 10 mJ with Different Confinement Materials a

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T = 1 R = 1 ( z 2 z 1 z 2 + z 1 ) 2 ,

Metrics