Abstract

Optical characterization of composite films consisting of a ceramic matrix with embedded layered metal nanoparticles have recently received increasing interest. In particular, two methods have been mainly proposed in order to obtain optical performances of dielectric matrices containing layered nanoclusters (NCs): the first method is based on the simulation of the layered system as composed of alternated films of dielectric material and effective-medium material. Therefore, the optical response of the multilayer stack is calculated, assigning to the effective-medium layers the dielectric constant εfYama, obtained by the Yamaguchi theory, and calculating the interference between the beams reflected and refracted at each interface inside the stack. The second method considers the multilayer stack as a single-layer effective-medium film whose dielectric constant is calculated by the Maxwell Garnett (MG) theory. In particular, this second method is recognized to be valid in the case of nanoparticles uniformly distributed inside a dielectric matrix. The present study shows that the interference method, as it has been applied up to now, does not allow reproducing reflectance and transmittance spectra calculated by the MG theory in the case of a uniform distribution of NCs.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Toudert, S. Camelio, D. Babonneau, M. F. Denanot, T. Girardeau, J. P. Espinos, F. Yubero, and A. R. Gonzalez-Elipe, “Morphology and surface-plasmon resonance of silver nanoparticles sandwiched between Si3N4 and BN layers,” J. Appl. Phys. 98, 114316 (2005).
    [CrossRef]
  2. S. Camelio, J. Toudert, D. Bobonneau, and T. Girardeau, “Tailoring of the optical properties of Ag:Si3N4 nanocermets by changes of the cluster morphology,” Appl. Phys. B 80, 89–96 (2005).
    [CrossRef]
  3. S. K. Mandal, R. K. Roy, and A. K. Pal, “Effect of particle shape distribution on the surface plasmon resonance of Ag-SiO2 nanocomposite thin films,” J. Phys. D: Appl. Phys. 36, 261–265(2003).
    [CrossRef]
  4. J. Gonzalo, R. Serna, J. Solís, D. Babonneau, and C. N. Afonso, “Morphological and interaction effects on the surface plasmon resonance of metal nanoparticles,” J. Phys. Condens. Matter 15, S3001–S3010 (2003).
    [CrossRef]
  5. J. P. Barnes, A. K. Petford-Long, R. C. Doole, R. Serna, J. Gonzalo, A. Suarez-Garcia, C. N. Afonso, and D. Hole, “Structural studies of Ag nanocrystals embedded in amorphous Al2O3 grown by pulsed laser deposition,” Nanotech. 13, 465–470 (2002).
    [CrossRef]
  6. U. Schurmann, H. Takele, V. Zaporojtchenko, and F. Faupel, “Optical and electrical properties of polymer metal nanocomposites prepared by magnetron co-sputtering,” Thin Solid Films 515, 801–804 (2006).
    [CrossRef]
  7. V. S. K. Chakravadhanula, M. Elbahri, U. Schurmann, H. Takele, H. Greve, V. Zaporojtchenko, and F. Faupel, “Equal intensity double plasmon resonance of bimetallic quasi-nanocomposites based on sandwich geometry,” Nanotech. 19, 225302 (2008).
    [CrossRef]
  8. S. Kachan, O. Stenzel, and A. Ponyavina, “High-absorbing gradient multilayer coatings with silver nanoparticles,” Appl. Phys. B 84, 281–287 (2006).
    [CrossRef]
  9. M. L. Protopapa, “Surface plasmon resonance of metal nanoparticles sandwiched between dielectric layers: theoretical modelling,” Appl. Opt. 48, 778–785 (2009).
    [CrossRef] [PubMed]
  10. T. Yamaguchi, S. Yoshida, and A. Kimbara, “Optical effect of the substrate on the anomalous absorption of aggregated silver films,” Thin Solid Films 21, 173–187 (1974).
    [CrossRef]
  11. V. A. Fedotov, V. I. Emel’yanov, K. F. MacDonald, and N. I. Zheludev, “Optical properties of closely packed nanoparticle films: spheroids and nanoshells,” J. Opt. A: Pure Appl. Opt. 6, 155–160 (2004).
    [CrossRef]
  12. J. Toudert, D. Bobonneau, L. Simonot, S. Camelio, and T. Girardeau, “Quantitative modelling of the surface plasmon resonances of metal NCs sandwiched between dielectric layers: the influence of NC size, shape and organization,” Nanotech. 19, 125709 (2008).
    [CrossRef]
  13. T. G. Mackay and A. Lakhtakia, “A limitation of the Bruggeman formalism for homogenization,” Opt. Commun. 234, 35–42(2004).
    [CrossRef]
  14. J. Toudert, L. Simonot, S. Camelio, and D. Bobonneau, “Comment on: surface plasmon resonance of metal nanoparticles sandwiched between dielectric layers: theoretical modeling,” Appl. Opt. (to be published).
  15. M. A. García, J. Llopis, and S. E. Paje, “A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol-gel films,” Chem. Phys. Lett. 315, 313–320 (1999).
    [CrossRef]
  16. J. C. Pivin, M. A. García, H. Hofmeister, A. Martucci, M. Sendova Massileva, M. Nikolaeva, O. Kaitasov, and J. Llopis, “Optical properties of silver clusters formed by ion irradiation,” Eur. Phys. J. D 20, 251–260(2002).
    [CrossRef]
  17. Z. Q. Sun, D. M. Sun, and T. N. Ruan, “Microstructural and optical absorption properties of Cu-MgF2 nanoparticle cermet film,” Chin. Phys. Lett. 19, 1365–1368 (2002).
    [CrossRef]
  18. H. Hovel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B. 48, 18178–18188 (1993).
    [CrossRef]
  19. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  20. E.D.Palik, ed., Handbook of Optical Constants (Academic, 1985).

2009 (1)

2008 (2)

V. S. K. Chakravadhanula, M. Elbahri, U. Schurmann, H. Takele, H. Greve, V. Zaporojtchenko, and F. Faupel, “Equal intensity double plasmon resonance of bimetallic quasi-nanocomposites based on sandwich geometry,” Nanotech. 19, 225302 (2008).
[CrossRef]

J. Toudert, D. Bobonneau, L. Simonot, S. Camelio, and T. Girardeau, “Quantitative modelling of the surface plasmon resonances of metal NCs sandwiched between dielectric layers: the influence of NC size, shape and organization,” Nanotech. 19, 125709 (2008).
[CrossRef]

2006 (2)

U. Schurmann, H. Takele, V. Zaporojtchenko, and F. Faupel, “Optical and electrical properties of polymer metal nanocomposites prepared by magnetron co-sputtering,” Thin Solid Films 515, 801–804 (2006).
[CrossRef]

S. Kachan, O. Stenzel, and A. Ponyavina, “High-absorbing gradient multilayer coatings with silver nanoparticles,” Appl. Phys. B 84, 281–287 (2006).
[CrossRef]

2005 (2)

J. Toudert, S. Camelio, D. Babonneau, M. F. Denanot, T. Girardeau, J. P. Espinos, F. Yubero, and A. R. Gonzalez-Elipe, “Morphology and surface-plasmon resonance of silver nanoparticles sandwiched between Si3N4 and BN layers,” J. Appl. Phys. 98, 114316 (2005).
[CrossRef]

S. Camelio, J. Toudert, D. Bobonneau, and T. Girardeau, “Tailoring of the optical properties of Ag:Si3N4 nanocermets by changes of the cluster morphology,” Appl. Phys. B 80, 89–96 (2005).
[CrossRef]

2004 (2)

V. A. Fedotov, V. I. Emel’yanov, K. F. MacDonald, and N. I. Zheludev, “Optical properties of closely packed nanoparticle films: spheroids and nanoshells,” J. Opt. A: Pure Appl. Opt. 6, 155–160 (2004).
[CrossRef]

T. G. Mackay and A. Lakhtakia, “A limitation of the Bruggeman formalism for homogenization,” Opt. Commun. 234, 35–42(2004).
[CrossRef]

2003 (2)

S. K. Mandal, R. K. Roy, and A. K. Pal, “Effect of particle shape distribution on the surface plasmon resonance of Ag-SiO2 nanocomposite thin films,” J. Phys. D: Appl. Phys. 36, 261–265(2003).
[CrossRef]

J. Gonzalo, R. Serna, J. Solís, D. Babonneau, and C. N. Afonso, “Morphological and interaction effects on the surface plasmon resonance of metal nanoparticles,” J. Phys. Condens. Matter 15, S3001–S3010 (2003).
[CrossRef]

2002 (3)

J. P. Barnes, A. K. Petford-Long, R. C. Doole, R. Serna, J. Gonzalo, A. Suarez-Garcia, C. N. Afonso, and D. Hole, “Structural studies of Ag nanocrystals embedded in amorphous Al2O3 grown by pulsed laser deposition,” Nanotech. 13, 465–470 (2002).
[CrossRef]

J. C. Pivin, M. A. García, H. Hofmeister, A. Martucci, M. Sendova Massileva, M. Nikolaeva, O. Kaitasov, and J. Llopis, “Optical properties of silver clusters formed by ion irradiation,” Eur. Phys. J. D 20, 251–260(2002).
[CrossRef]

Z. Q. Sun, D. M. Sun, and T. N. Ruan, “Microstructural and optical absorption properties of Cu-MgF2 nanoparticle cermet film,” Chin. Phys. Lett. 19, 1365–1368 (2002).
[CrossRef]

1999 (1)

M. A. García, J. Llopis, and S. E. Paje, “A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol-gel films,” Chem. Phys. Lett. 315, 313–320 (1999).
[CrossRef]

1993 (1)

H. Hovel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B. 48, 18178–18188 (1993).
[CrossRef]

1974 (1)

T. Yamaguchi, S. Yoshida, and A. Kimbara, “Optical effect of the substrate on the anomalous absorption of aggregated silver films,” Thin Solid Films 21, 173–187 (1974).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Afonso, C. N.

J. Gonzalo, R. Serna, J. Solís, D. Babonneau, and C. N. Afonso, “Morphological and interaction effects on the surface plasmon resonance of metal nanoparticles,” J. Phys. Condens. Matter 15, S3001–S3010 (2003).
[CrossRef]

J. P. Barnes, A. K. Petford-Long, R. C. Doole, R. Serna, J. Gonzalo, A. Suarez-Garcia, C. N. Afonso, and D. Hole, “Structural studies of Ag nanocrystals embedded in amorphous Al2O3 grown by pulsed laser deposition,” Nanotech. 13, 465–470 (2002).
[CrossRef]

Babonneau, D.

J. Toudert, S. Camelio, D. Babonneau, M. F. Denanot, T. Girardeau, J. P. Espinos, F. Yubero, and A. R. Gonzalez-Elipe, “Morphology and surface-plasmon resonance of silver nanoparticles sandwiched between Si3N4 and BN layers,” J. Appl. Phys. 98, 114316 (2005).
[CrossRef]

J. Gonzalo, R. Serna, J. Solís, D. Babonneau, and C. N. Afonso, “Morphological and interaction effects on the surface plasmon resonance of metal nanoparticles,” J. Phys. Condens. Matter 15, S3001–S3010 (2003).
[CrossRef]

Barnes, J. P.

J. P. Barnes, A. K. Petford-Long, R. C. Doole, R. Serna, J. Gonzalo, A. Suarez-Garcia, C. N. Afonso, and D. Hole, “Structural studies of Ag nanocrystals embedded in amorphous Al2O3 grown by pulsed laser deposition,” Nanotech. 13, 465–470 (2002).
[CrossRef]

Bobonneau, D.

J. Toudert, D. Bobonneau, L. Simonot, S. Camelio, and T. Girardeau, “Quantitative modelling of the surface plasmon resonances of metal NCs sandwiched between dielectric layers: the influence of NC size, shape and organization,” Nanotech. 19, 125709 (2008).
[CrossRef]

S. Camelio, J. Toudert, D. Bobonneau, and T. Girardeau, “Tailoring of the optical properties of Ag:Si3N4 nanocermets by changes of the cluster morphology,” Appl. Phys. B 80, 89–96 (2005).
[CrossRef]

J. Toudert, L. Simonot, S. Camelio, and D. Bobonneau, “Comment on: surface plasmon resonance of metal nanoparticles sandwiched between dielectric layers: theoretical modeling,” Appl. Opt. (to be published).

Camelio, S.

J. Toudert, D. Bobonneau, L. Simonot, S. Camelio, and T. Girardeau, “Quantitative modelling of the surface plasmon resonances of metal NCs sandwiched between dielectric layers: the influence of NC size, shape and organization,” Nanotech. 19, 125709 (2008).
[CrossRef]

J. Toudert, S. Camelio, D. Babonneau, M. F. Denanot, T. Girardeau, J. P. Espinos, F. Yubero, and A. R. Gonzalez-Elipe, “Morphology and surface-plasmon resonance of silver nanoparticles sandwiched between Si3N4 and BN layers,” J. Appl. Phys. 98, 114316 (2005).
[CrossRef]

S. Camelio, J. Toudert, D. Bobonneau, and T. Girardeau, “Tailoring of the optical properties of Ag:Si3N4 nanocermets by changes of the cluster morphology,” Appl. Phys. B 80, 89–96 (2005).
[CrossRef]

J. Toudert, L. Simonot, S. Camelio, and D. Bobonneau, “Comment on: surface plasmon resonance of metal nanoparticles sandwiched between dielectric layers: theoretical modeling,” Appl. Opt. (to be published).

Chakravadhanula, V. S. K.

V. S. K. Chakravadhanula, M. Elbahri, U. Schurmann, H. Takele, H. Greve, V. Zaporojtchenko, and F. Faupel, “Equal intensity double plasmon resonance of bimetallic quasi-nanocomposites based on sandwich geometry,” Nanotech. 19, 225302 (2008).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Denanot, M. F.

J. Toudert, S. Camelio, D. Babonneau, M. F. Denanot, T. Girardeau, J. P. Espinos, F. Yubero, and A. R. Gonzalez-Elipe, “Morphology and surface-plasmon resonance of silver nanoparticles sandwiched between Si3N4 and BN layers,” J. Appl. Phys. 98, 114316 (2005).
[CrossRef]

Doole, R. C.

J. P. Barnes, A. K. Petford-Long, R. C. Doole, R. Serna, J. Gonzalo, A. Suarez-Garcia, C. N. Afonso, and D. Hole, “Structural studies of Ag nanocrystals embedded in amorphous Al2O3 grown by pulsed laser deposition,” Nanotech. 13, 465–470 (2002).
[CrossRef]

Elbahri, M.

V. S. K. Chakravadhanula, M. Elbahri, U. Schurmann, H. Takele, H. Greve, V. Zaporojtchenko, and F. Faupel, “Equal intensity double plasmon resonance of bimetallic quasi-nanocomposites based on sandwich geometry,” Nanotech. 19, 225302 (2008).
[CrossRef]

Emel’yanov, V. I.

V. A. Fedotov, V. I. Emel’yanov, K. F. MacDonald, and N. I. Zheludev, “Optical properties of closely packed nanoparticle films: spheroids and nanoshells,” J. Opt. A: Pure Appl. Opt. 6, 155–160 (2004).
[CrossRef]

Espinos, J. P.

J. Toudert, S. Camelio, D. Babonneau, M. F. Denanot, T. Girardeau, J. P. Espinos, F. Yubero, and A. R. Gonzalez-Elipe, “Morphology and surface-plasmon resonance of silver nanoparticles sandwiched between Si3N4 and BN layers,” J. Appl. Phys. 98, 114316 (2005).
[CrossRef]

Faupel, F.

V. S. K. Chakravadhanula, M. Elbahri, U. Schurmann, H. Takele, H. Greve, V. Zaporojtchenko, and F. Faupel, “Equal intensity double plasmon resonance of bimetallic quasi-nanocomposites based on sandwich geometry,” Nanotech. 19, 225302 (2008).
[CrossRef]

U. Schurmann, H. Takele, V. Zaporojtchenko, and F. Faupel, “Optical and electrical properties of polymer metal nanocomposites prepared by magnetron co-sputtering,” Thin Solid Films 515, 801–804 (2006).
[CrossRef]

Fedotov, V. A.

V. A. Fedotov, V. I. Emel’yanov, K. F. MacDonald, and N. I. Zheludev, “Optical properties of closely packed nanoparticle films: spheroids and nanoshells,” J. Opt. A: Pure Appl. Opt. 6, 155–160 (2004).
[CrossRef]

Fritz, S.

H. Hovel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B. 48, 18178–18188 (1993).
[CrossRef]

García, M. A.

J. C. Pivin, M. A. García, H. Hofmeister, A. Martucci, M. Sendova Massileva, M. Nikolaeva, O. Kaitasov, and J. Llopis, “Optical properties of silver clusters formed by ion irradiation,” Eur. Phys. J. D 20, 251–260(2002).
[CrossRef]

M. A. García, J. Llopis, and S. E. Paje, “A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol-gel films,” Chem. Phys. Lett. 315, 313–320 (1999).
[CrossRef]

Girardeau, T.

J. Toudert, D. Bobonneau, L. Simonot, S. Camelio, and T. Girardeau, “Quantitative modelling of the surface plasmon resonances of metal NCs sandwiched between dielectric layers: the influence of NC size, shape and organization,” Nanotech. 19, 125709 (2008).
[CrossRef]

J. Toudert, S. Camelio, D. Babonneau, M. F. Denanot, T. Girardeau, J. P. Espinos, F. Yubero, and A. R. Gonzalez-Elipe, “Morphology and surface-plasmon resonance of silver nanoparticles sandwiched between Si3N4 and BN layers,” J. Appl. Phys. 98, 114316 (2005).
[CrossRef]

S. Camelio, J. Toudert, D. Bobonneau, and T. Girardeau, “Tailoring of the optical properties of Ag:Si3N4 nanocermets by changes of the cluster morphology,” Appl. Phys. B 80, 89–96 (2005).
[CrossRef]

Gonzalez-Elipe, A. R.

J. Toudert, S. Camelio, D. Babonneau, M. F. Denanot, T. Girardeau, J. P. Espinos, F. Yubero, and A. R. Gonzalez-Elipe, “Morphology and surface-plasmon resonance of silver nanoparticles sandwiched between Si3N4 and BN layers,” J. Appl. Phys. 98, 114316 (2005).
[CrossRef]

Gonzalo, J.

J. Gonzalo, R. Serna, J. Solís, D. Babonneau, and C. N. Afonso, “Morphological and interaction effects on the surface plasmon resonance of metal nanoparticles,” J. Phys. Condens. Matter 15, S3001–S3010 (2003).
[CrossRef]

J. P. Barnes, A. K. Petford-Long, R. C. Doole, R. Serna, J. Gonzalo, A. Suarez-Garcia, C. N. Afonso, and D. Hole, “Structural studies of Ag nanocrystals embedded in amorphous Al2O3 grown by pulsed laser deposition,” Nanotech. 13, 465–470 (2002).
[CrossRef]

Greve, H.

V. S. K. Chakravadhanula, M. Elbahri, U. Schurmann, H. Takele, H. Greve, V. Zaporojtchenko, and F. Faupel, “Equal intensity double plasmon resonance of bimetallic quasi-nanocomposites based on sandwich geometry,” Nanotech. 19, 225302 (2008).
[CrossRef]

Hilger, A.

H. Hovel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B. 48, 18178–18188 (1993).
[CrossRef]

Hofmeister, H.

J. C. Pivin, M. A. García, H. Hofmeister, A. Martucci, M. Sendova Massileva, M. Nikolaeva, O. Kaitasov, and J. Llopis, “Optical properties of silver clusters formed by ion irradiation,” Eur. Phys. J. D 20, 251–260(2002).
[CrossRef]

Hole, D.

J. P. Barnes, A. K. Petford-Long, R. C. Doole, R. Serna, J. Gonzalo, A. Suarez-Garcia, C. N. Afonso, and D. Hole, “Structural studies of Ag nanocrystals embedded in amorphous Al2O3 grown by pulsed laser deposition,” Nanotech. 13, 465–470 (2002).
[CrossRef]

Hovel, H.

H. Hovel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B. 48, 18178–18188 (1993).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Kachan, S.

S. Kachan, O. Stenzel, and A. Ponyavina, “High-absorbing gradient multilayer coatings with silver nanoparticles,” Appl. Phys. B 84, 281–287 (2006).
[CrossRef]

Kaitasov, O.

J. C. Pivin, M. A. García, H. Hofmeister, A. Martucci, M. Sendova Massileva, M. Nikolaeva, O. Kaitasov, and J. Llopis, “Optical properties of silver clusters formed by ion irradiation,” Eur. Phys. J. D 20, 251–260(2002).
[CrossRef]

Kimbara, A.

T. Yamaguchi, S. Yoshida, and A. Kimbara, “Optical effect of the substrate on the anomalous absorption of aggregated silver films,” Thin Solid Films 21, 173–187 (1974).
[CrossRef]

Kreibig, U.

H. Hovel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B. 48, 18178–18188 (1993).
[CrossRef]

Lakhtakia, A.

T. G. Mackay and A. Lakhtakia, “A limitation of the Bruggeman formalism for homogenization,” Opt. Commun. 234, 35–42(2004).
[CrossRef]

Llopis, J.

J. C. Pivin, M. A. García, H. Hofmeister, A. Martucci, M. Sendova Massileva, M. Nikolaeva, O. Kaitasov, and J. Llopis, “Optical properties of silver clusters formed by ion irradiation,” Eur. Phys. J. D 20, 251–260(2002).
[CrossRef]

M. A. García, J. Llopis, and S. E. Paje, “A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol-gel films,” Chem. Phys. Lett. 315, 313–320 (1999).
[CrossRef]

MacDonald, K. F.

V. A. Fedotov, V. I. Emel’yanov, K. F. MacDonald, and N. I. Zheludev, “Optical properties of closely packed nanoparticle films: spheroids and nanoshells,” J. Opt. A: Pure Appl. Opt. 6, 155–160 (2004).
[CrossRef]

Mackay, T. G.

T. G. Mackay and A. Lakhtakia, “A limitation of the Bruggeman formalism for homogenization,” Opt. Commun. 234, 35–42(2004).
[CrossRef]

Mandal, S. K.

S. K. Mandal, R. K. Roy, and A. K. Pal, “Effect of particle shape distribution on the surface plasmon resonance of Ag-SiO2 nanocomposite thin films,” J. Phys. D: Appl. Phys. 36, 261–265(2003).
[CrossRef]

Martucci, A.

J. C. Pivin, M. A. García, H. Hofmeister, A. Martucci, M. Sendova Massileva, M. Nikolaeva, O. Kaitasov, and J. Llopis, “Optical properties of silver clusters formed by ion irradiation,” Eur. Phys. J. D 20, 251–260(2002).
[CrossRef]

Massileva, M. Sendova

J. C. Pivin, M. A. García, H. Hofmeister, A. Martucci, M. Sendova Massileva, M. Nikolaeva, O. Kaitasov, and J. Llopis, “Optical properties of silver clusters formed by ion irradiation,” Eur. Phys. J. D 20, 251–260(2002).
[CrossRef]

Nikolaeva, M.

J. C. Pivin, M. A. García, H. Hofmeister, A. Martucci, M. Sendova Massileva, M. Nikolaeva, O. Kaitasov, and J. Llopis, “Optical properties of silver clusters formed by ion irradiation,” Eur. Phys. J. D 20, 251–260(2002).
[CrossRef]

Paje, S. E.

M. A. García, J. Llopis, and S. E. Paje, “A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol-gel films,” Chem. Phys. Lett. 315, 313–320 (1999).
[CrossRef]

Pal, A. K.

S. K. Mandal, R. K. Roy, and A. K. Pal, “Effect of particle shape distribution on the surface plasmon resonance of Ag-SiO2 nanocomposite thin films,” J. Phys. D: Appl. Phys. 36, 261–265(2003).
[CrossRef]

Petford-Long, A. K.

J. P. Barnes, A. K. Petford-Long, R. C. Doole, R. Serna, J. Gonzalo, A. Suarez-Garcia, C. N. Afonso, and D. Hole, “Structural studies of Ag nanocrystals embedded in amorphous Al2O3 grown by pulsed laser deposition,” Nanotech. 13, 465–470 (2002).
[CrossRef]

Pivin, J. C.

J. C. Pivin, M. A. García, H. Hofmeister, A. Martucci, M. Sendova Massileva, M. Nikolaeva, O. Kaitasov, and J. Llopis, “Optical properties of silver clusters formed by ion irradiation,” Eur. Phys. J. D 20, 251–260(2002).
[CrossRef]

Ponyavina, A.

S. Kachan, O. Stenzel, and A. Ponyavina, “High-absorbing gradient multilayer coatings with silver nanoparticles,” Appl. Phys. B 84, 281–287 (2006).
[CrossRef]

Protopapa, M. L.

Roy, R. K.

S. K. Mandal, R. K. Roy, and A. K. Pal, “Effect of particle shape distribution on the surface plasmon resonance of Ag-SiO2 nanocomposite thin films,” J. Phys. D: Appl. Phys. 36, 261–265(2003).
[CrossRef]

Ruan, T. N.

Z. Q. Sun, D. M. Sun, and T. N. Ruan, “Microstructural and optical absorption properties of Cu-MgF2 nanoparticle cermet film,” Chin. Phys. Lett. 19, 1365–1368 (2002).
[CrossRef]

Schurmann, U.

V. S. K. Chakravadhanula, M. Elbahri, U. Schurmann, H. Takele, H. Greve, V. Zaporojtchenko, and F. Faupel, “Equal intensity double plasmon resonance of bimetallic quasi-nanocomposites based on sandwich geometry,” Nanotech. 19, 225302 (2008).
[CrossRef]

U. Schurmann, H. Takele, V. Zaporojtchenko, and F. Faupel, “Optical and electrical properties of polymer metal nanocomposites prepared by magnetron co-sputtering,” Thin Solid Films 515, 801–804 (2006).
[CrossRef]

Serna, R.

J. Gonzalo, R. Serna, J. Solís, D. Babonneau, and C. N. Afonso, “Morphological and interaction effects on the surface plasmon resonance of metal nanoparticles,” J. Phys. Condens. Matter 15, S3001–S3010 (2003).
[CrossRef]

J. P. Barnes, A. K. Petford-Long, R. C. Doole, R. Serna, J. Gonzalo, A. Suarez-Garcia, C. N. Afonso, and D. Hole, “Structural studies of Ag nanocrystals embedded in amorphous Al2O3 grown by pulsed laser deposition,” Nanotech. 13, 465–470 (2002).
[CrossRef]

Simonot, L.

J. Toudert, D. Bobonneau, L. Simonot, S. Camelio, and T. Girardeau, “Quantitative modelling of the surface plasmon resonances of metal NCs sandwiched between dielectric layers: the influence of NC size, shape and organization,” Nanotech. 19, 125709 (2008).
[CrossRef]

J. Toudert, L. Simonot, S. Camelio, and D. Bobonneau, “Comment on: surface plasmon resonance of metal nanoparticles sandwiched between dielectric layers: theoretical modeling,” Appl. Opt. (to be published).

Solís, J.

J. Gonzalo, R. Serna, J. Solís, D. Babonneau, and C. N. Afonso, “Morphological and interaction effects on the surface plasmon resonance of metal nanoparticles,” J. Phys. Condens. Matter 15, S3001–S3010 (2003).
[CrossRef]

Stenzel, O.

S. Kachan, O. Stenzel, and A. Ponyavina, “High-absorbing gradient multilayer coatings with silver nanoparticles,” Appl. Phys. B 84, 281–287 (2006).
[CrossRef]

Suarez-Garcia, A.

J. P. Barnes, A. K. Petford-Long, R. C. Doole, R. Serna, J. Gonzalo, A. Suarez-Garcia, C. N. Afonso, and D. Hole, “Structural studies of Ag nanocrystals embedded in amorphous Al2O3 grown by pulsed laser deposition,” Nanotech. 13, 465–470 (2002).
[CrossRef]

Sun, D. M.

Z. Q. Sun, D. M. Sun, and T. N. Ruan, “Microstructural and optical absorption properties of Cu-MgF2 nanoparticle cermet film,” Chin. Phys. Lett. 19, 1365–1368 (2002).
[CrossRef]

Sun, Z. Q.

Z. Q. Sun, D. M. Sun, and T. N. Ruan, “Microstructural and optical absorption properties of Cu-MgF2 nanoparticle cermet film,” Chin. Phys. Lett. 19, 1365–1368 (2002).
[CrossRef]

Takele, H.

V. S. K. Chakravadhanula, M. Elbahri, U. Schurmann, H. Takele, H. Greve, V. Zaporojtchenko, and F. Faupel, “Equal intensity double plasmon resonance of bimetallic quasi-nanocomposites based on sandwich geometry,” Nanotech. 19, 225302 (2008).
[CrossRef]

U. Schurmann, H. Takele, V. Zaporojtchenko, and F. Faupel, “Optical and electrical properties of polymer metal nanocomposites prepared by magnetron co-sputtering,” Thin Solid Films 515, 801–804 (2006).
[CrossRef]

Toudert, J.

J. Toudert, D. Bobonneau, L. Simonot, S. Camelio, and T. Girardeau, “Quantitative modelling of the surface plasmon resonances of metal NCs sandwiched between dielectric layers: the influence of NC size, shape and organization,” Nanotech. 19, 125709 (2008).
[CrossRef]

J. Toudert, S. Camelio, D. Babonneau, M. F. Denanot, T. Girardeau, J. P. Espinos, F. Yubero, and A. R. Gonzalez-Elipe, “Morphology and surface-plasmon resonance of silver nanoparticles sandwiched between Si3N4 and BN layers,” J. Appl. Phys. 98, 114316 (2005).
[CrossRef]

S. Camelio, J. Toudert, D. Bobonneau, and T. Girardeau, “Tailoring of the optical properties of Ag:Si3N4 nanocermets by changes of the cluster morphology,” Appl. Phys. B 80, 89–96 (2005).
[CrossRef]

J. Toudert, L. Simonot, S. Camelio, and D. Bobonneau, “Comment on: surface plasmon resonance of metal nanoparticles sandwiched between dielectric layers: theoretical modeling,” Appl. Opt. (to be published).

Vollmer, M.

H. Hovel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B. 48, 18178–18188 (1993).
[CrossRef]

Yamaguchi, T.

T. Yamaguchi, S. Yoshida, and A. Kimbara, “Optical effect of the substrate on the anomalous absorption of aggregated silver films,” Thin Solid Films 21, 173–187 (1974).
[CrossRef]

Yoshida, S.

T. Yamaguchi, S. Yoshida, and A. Kimbara, “Optical effect of the substrate on the anomalous absorption of aggregated silver films,” Thin Solid Films 21, 173–187 (1974).
[CrossRef]

Yubero, F.

J. Toudert, S. Camelio, D. Babonneau, M. F. Denanot, T. Girardeau, J. P. Espinos, F. Yubero, and A. R. Gonzalez-Elipe, “Morphology and surface-plasmon resonance of silver nanoparticles sandwiched between Si3N4 and BN layers,” J. Appl. Phys. 98, 114316 (2005).
[CrossRef]

Zaporojtchenko, V.

V. S. K. Chakravadhanula, M. Elbahri, U. Schurmann, H. Takele, H. Greve, V. Zaporojtchenko, and F. Faupel, “Equal intensity double plasmon resonance of bimetallic quasi-nanocomposites based on sandwich geometry,” Nanotech. 19, 225302 (2008).
[CrossRef]

U. Schurmann, H. Takele, V. Zaporojtchenko, and F. Faupel, “Optical and electrical properties of polymer metal nanocomposites prepared by magnetron co-sputtering,” Thin Solid Films 515, 801–804 (2006).
[CrossRef]

Zheludev, N. I.

V. A. Fedotov, V. I. Emel’yanov, K. F. MacDonald, and N. I. Zheludev, “Optical properties of closely packed nanoparticle films: spheroids and nanoshells,” J. Opt. A: Pure Appl. Opt. 6, 155–160 (2004).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (2)

S. Camelio, J. Toudert, D. Bobonneau, and T. Girardeau, “Tailoring of the optical properties of Ag:Si3N4 nanocermets by changes of the cluster morphology,” Appl. Phys. B 80, 89–96 (2005).
[CrossRef]

S. Kachan, O. Stenzel, and A. Ponyavina, “High-absorbing gradient multilayer coatings with silver nanoparticles,” Appl. Phys. B 84, 281–287 (2006).
[CrossRef]

Chem. Phys. Lett. (1)

M. A. García, J. Llopis, and S. E. Paje, “A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol-gel films,” Chem. Phys. Lett. 315, 313–320 (1999).
[CrossRef]

Chin. Phys. Lett. (1)

Z. Q. Sun, D. M. Sun, and T. N. Ruan, “Microstructural and optical absorption properties of Cu-MgF2 nanoparticle cermet film,” Chin. Phys. Lett. 19, 1365–1368 (2002).
[CrossRef]

Eur. Phys. J. D (1)

J. C. Pivin, M. A. García, H. Hofmeister, A. Martucci, M. Sendova Massileva, M. Nikolaeva, O. Kaitasov, and J. Llopis, “Optical properties of silver clusters formed by ion irradiation,” Eur. Phys. J. D 20, 251–260(2002).
[CrossRef]

J. Appl. Phys. (1)

J. Toudert, S. Camelio, D. Babonneau, M. F. Denanot, T. Girardeau, J. P. Espinos, F. Yubero, and A. R. Gonzalez-Elipe, “Morphology and surface-plasmon resonance of silver nanoparticles sandwiched between Si3N4 and BN layers,” J. Appl. Phys. 98, 114316 (2005).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

V. A. Fedotov, V. I. Emel’yanov, K. F. MacDonald, and N. I. Zheludev, “Optical properties of closely packed nanoparticle films: spheroids and nanoshells,” J. Opt. A: Pure Appl. Opt. 6, 155–160 (2004).
[CrossRef]

J. Phys. Condens. Matter (1)

J. Gonzalo, R. Serna, J. Solís, D. Babonneau, and C. N. Afonso, “Morphological and interaction effects on the surface plasmon resonance of metal nanoparticles,” J. Phys. Condens. Matter 15, S3001–S3010 (2003).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

S. K. Mandal, R. K. Roy, and A. K. Pal, “Effect of particle shape distribution on the surface plasmon resonance of Ag-SiO2 nanocomposite thin films,” J. Phys. D: Appl. Phys. 36, 261–265(2003).
[CrossRef]

Nanotech. (3)

J. P. Barnes, A. K. Petford-Long, R. C. Doole, R. Serna, J. Gonzalo, A. Suarez-Garcia, C. N. Afonso, and D. Hole, “Structural studies of Ag nanocrystals embedded in amorphous Al2O3 grown by pulsed laser deposition,” Nanotech. 13, 465–470 (2002).
[CrossRef]

V. S. K. Chakravadhanula, M. Elbahri, U. Schurmann, H. Takele, H. Greve, V. Zaporojtchenko, and F. Faupel, “Equal intensity double plasmon resonance of bimetallic quasi-nanocomposites based on sandwich geometry,” Nanotech. 19, 225302 (2008).
[CrossRef]

J. Toudert, D. Bobonneau, L. Simonot, S. Camelio, and T. Girardeau, “Quantitative modelling of the surface plasmon resonances of metal NCs sandwiched between dielectric layers: the influence of NC size, shape and organization,” Nanotech. 19, 125709 (2008).
[CrossRef]

Opt. Commun. (1)

T. G. Mackay and A. Lakhtakia, “A limitation of the Bruggeman formalism for homogenization,” Opt. Commun. 234, 35–42(2004).
[CrossRef]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Phys. Rev. B. (1)

H. Hovel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B. 48, 18178–18188 (1993).
[CrossRef]

Thin Solid Films (2)

T. Yamaguchi, S. Yoshida, and A. Kimbara, “Optical effect of the substrate on the anomalous absorption of aggregated silver films,” Thin Solid Films 21, 173–187 (1974).
[CrossRef]

U. Schurmann, H. Takele, V. Zaporojtchenko, and F. Faupel, “Optical and electrical properties of polymer metal nanocomposites prepared by magnetron co-sputtering,” Thin Solid Films 515, 801–804 (2006).
[CrossRef]

Other (2)

J. Toudert, L. Simonot, S. Camelio, and D. Bobonneau, “Comment on: surface plasmon resonance of metal nanoparticles sandwiched between dielectric layers: theoretical modeling,” Appl. Opt. (to be published).

E.D.Palik, ed., Handbook of Optical Constants (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Scheme of the spatial arrangement of the silver NCs (cross section). In particular, the NCs lie on planes perpendicular to the direction of propagation of the spectro photometer beam (z direction). The interparticle distance in the x - y plane is a, while the interlayer distance in the z direction is b. According to the Toudert et al. method, the shaded layers containing the NCs can be considered as effective-medium layers of thickness d equal to the diameter D of the NCs.

Fig. 2
Fig. 2

(a) Reflectance, (b) transmittance, and (c) optical absorption spectra of the system shown in Fig. 1 with a = b = 30 nm and NCs’ diameter equal to 10 nm . The optical spectra have been calculated by the MG effective-medium theory (solid curve), as well as by the Toudert et al. method using as the thickness of the effective-medium layers the diameter D of the NCs ( d = D = 10 nm ) (dashed curve) and a modified thickness d = 12.2 nm (dotted curve).

Fig. 3
Fig. 3

(a) Optical absorption spectrum, as well as reflectance and transmittance spectra, of a BaF 2 layer of thickness L embedding at the bottom a bidimensional distribution of Ag NCs of diameter D lying at the vertices of a square lattice of lattice constant a should be the same as a bilayer structure formed by an effective-medium layer of thickness d and an overlying BaF 2 layer of thickness L - d , whatever the d value ( D d L ) is. (b) The same should be valid for a bilayer structure formed by two effective-medium layers each of thickness L: the optical performances of the bilayer structure should be the same of a four-layer structure formed by alternated effective-medium layers of thickness d and BaF 2 layers of thickness L - d , whatever the d value ( D d L ) is.

Fig. 4
Fig. 4

(a) Reflectance R and (b) optical absorption A spectra (where A is calculated as A = 100 R T ) of the bilayer structure shown in Fig. 3a, calculated by the Toudert et al. method, using in Eq. (3) f = π D 3 6 a d 2 as the filling factor, for different values of d. In particular, the parameters D and a have been assumed equal to 10 nm and 40 nm , respectively.

Fig. 5
Fig. 5

(a) Reflectance R and (b) optical absorption A spectra of the four-layer structure shown in Fig. 3b ( D = 10 nm , a = 40 nm ), calculated by the Toudert et al. method, using in Eq. (3) f = π D 3 6 a d 2 as the filling factor, for different values of d.

Fig. 6
Fig. 6

(a) Reflectance R and (b) optical absorption A spectra of the structure shown in Fig. 1 ( D = 10 nm , a = b = 40 nm ) calculated by the Toudert et al. method, using in Eq. (3) f = π D 3 6 a d 2 as the filling factor, for different values of d. Short dashed curves refer to the spectra calculated by MG theory using f = π D 3 6 a 3 .

Fig. 7
Fig. 7

Optical absorption A-spectra of a single-layer BaF 2 film of thickness d, embedding at the bottom Ag NCs of diameter 10 nm and interparticle distance a = 40 nm , calculated using the Toudert et al. method, employing in Eq. (3) f = π D 3 6 a d 2 as the filling factor, for different values of d.

Fig. 8
Fig. 8

(a) Reflectance R and (b) optical absorption A spectra of the structure shown in Fig. 1, with a = b = 40 nm , D = 10 nm , effective-medium layers of thickness 10 nm , external BaF 2 layers of thickness 15 nm , and internal BaF 2 layers of thickness 30 nm . The spectra have been calculated by the Toudert et al. method (solid curves) using in Eq. (3) f = π D 3 6 a d 2 as the filling factor (with d = D = 10 nm ) and the MG theory using in Eq. (1) f = π D 3 6 a 3 as the filling factor.

Fig. 9
Fig. 9

Reflectance spectra of multilayer systems having the structure [ L ( H L ) N ] with a = b = 40 nm and NCs’ diameter equal to 10 nm , for different values of the number N of effective-medium layers [(a) N = 4 , (b) N = 6 , (c) N = 7 , (d) N = 8 ]. The thickness of the external L layers is 15 nm , while the thickness of the internal L layers is 30 nm . The reflectance spectra have been calculated by the MG effective-medium theory (dashed curve) using f = π D 3 6 a 3 as the filling factor, as well as by the Toudert et al. method using the diameter D of the NCs ( d = D = 10 nm ) as thickness of the effective-medium layers (H layers) and f = π D 3 6 a d 2 as the filling factor (solid line).

Fig. 10
Fig. 10

Optical absorbance spectra of multilayer systems having the structure [ L ( H L ) N ] with a = b = 40 nm and NCs’ diameter equal to 10 nm , for different values of the number N of effective-medium layers [(a) N = 4 , (b) N = 6 , (c) N = 7 , (d) N = 8 ]. The thickness of the external L layers is 15 nm , while the thickness of the internal L layers is 30 nm . The absorbance spectra have been calculated by the MG effective-medium theory (dashed curve) using f = π D 3 6 a 3 as the filling factor, as well as by the Toudert et al. method using the diameter D of the NCs ( d = D = 10 nm ) as thickness of the effective-medium layers (H layers) and f = π D 3 6 a d 2 as the filling factor (solid line).

Fig. 11
Fig. 11

Reflectance and absorbance spectra calculated by the Toudert et al. method as well as by the MG method using the two definitions of the filling factor ( f = π D 3 6 a 3 and f = 5 π D 3 6 a 2 L ). Moreover, the spectra obtained for the three-layer structure BaF 2 ( 15 nm )/MG effective-medium ( 200 nm ) / BaF 2 ( 15 nm ) have been reported in the same graphs for comparison.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε f = ε m [ 1 + f ( ε ε m ) ε m + S ( ε ε m ) ] ,
ε ( ω , R ) = ε bulk ( ω ) + ω p 2 ω 2 + i ω γ 0 ω p 2 ω 2 + i ω ( γ 0 + A v f / R ) ,
ε f Yama = ε m [ 1 + f ( ε ε m ) ε m + F ( ε ε m ) ] ,
α ( λ ) = 1 h [ ln ( I 0 R ) ln ( T ) ] ,

Metrics