Abstract

We systematically study ultraviolet laser-induced ultrafast photovoltaic effect in miscut LaSrAlO4 single crystal wafers with different thicknesses at ambient temperature without any applied bias. An open- circuit photovoltage (PV) is obtained when the wafer is irradiated by a 248nm laser pulse of 20ns duration. With the decrease of crystal thickness, the peak PV increased to a maximum of 2.66mV at 340μm and then decreased to 1.3mV at 155μm. Meanwhile, the 10%–90% rise time of photovoltaic responses declines gradually. The inner mechanism of the present thickness-dependent photovoltaic response is discussed.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Junquera and P. Ghosez, “Critical thickness for ferroelectricity in perovskite ultrathin films,” Nature 422, 506–510 (2003).
    [CrossRef]
  2. A. Ohtomo and H. Y. Hwang, “A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface,” Nature 427, 423–426 (2004).
    [CrossRef]
  3. A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463–466 (1998).
    [CrossRef]
  4. I. Inbar and R. E. Cohen, “Comparison of the electronic structures and energetics of ferroelectric LiNbO3 and LiTaO3,” Phys. Rev. B 53, 1193–1204 (1996).
    [CrossRef]
  5. R. Cauro, A. Gilabert, J. P. Contour, R. Lyonnet, M. G. Medici, J. C. Grenet, C. Leighton, and I. K. Schuller, “Persistent and transient photoconductivity in oxygen-deficient La2/3Sr1/3MnO3−δ thin films,” Phys. Rev. B 63, 174423 (2001).
    [CrossRef]
  6. A. Lee, C. Platt, J. Burch, and R. Simon, “Epitaxially grown sputtered LaAlO3 films,” Appl. Phys. Lett. 57, 2019–2021 (1990).
    [CrossRef]
  7. T. Ellenbogen, I. Dolev, and A. Arie, “Mode conversion in quadratic nonlinear crystals,” Opt. Lett. 33, 1207–1209 (2008).
    [CrossRef]
  8. E. Lima, M. E. Villafuerte-Castrejón, J. M. Saniger, A. Ibarra-Palos, J. E. Sánchez-Sánchez, and L. J. Álvarez, “Experimental XRD and NMR, and molecular dynamics study of Sr containing LaAlO3 perovskite,” Solid State Ionics 178, 1944–1949 (2008).
    [CrossRef]
  9. T. Y. Chen, R. Y. Pan, and K. Z. Fung, “Effect of divalent dopants on crystal structure and electrical properties of LaAlO3 perovskite,” J. Phys. Chem. Solids 69, 540–546 (2008).
    [CrossRef]
  10. I. Zvereva, L. Zueva, and J. Choisnet, “Metastability of the K2NiF4 type structure of the solid solution LaCa(CrxAl1−x)O4(0≤x≤0.10),” J. Mater. Sci. 30, 3598 (1995).
    [CrossRef]
  11. A. Pajaczkowska and A. Gloubokov, “Synthesis, growth and characterization of tetragonal ABCO4 crystals,” Prog. Cryst. Growth Charact. Mater. 36, 123–162 (1998).
    [CrossRef]
  12. Y. Matsushima, N. Ishizawa, and N. Kodama, “Synchrotron x-ray and molecular dynamics studies of CaYAlO4: the role of heterovalent solutes in K2NiF4-type solid solutions,” Physica C (Amsterdam) 338, 166–169 (2000).
    [CrossRef]
  13. S. Zeuner, W. Prettl, and H. Lengfellner, “Fast thermoelectric response of normal state YBa2Cu3O7−δ films,” Appl. Phys. Lett. 66, 1833–1835 (1995).
    [CrossRef]
  14. H. Lengfellner, G. Kremb, A. Schnellbögl, J. Betz, K. F. Renk, and W. Prettl, “Giant voltages upon surface heating in normal YBa2Cu3O7−δ films suggesting an atomic layer thermopile,” Appl. Phys. Lett. 60, 501–503 (1992).
    [CrossRef]
  15. T. Lukasiewicz, M. A. Swirkowicz, J. Dec, W. Hofman, and W. Szyrski, “Strontium-barium niobate single crystals, growth and ferroelectric properties,” J. Cryst. Growth 310, 1464–1469 (2008).
    [CrossRef]

2008 (4)

T. Ellenbogen, I. Dolev, and A. Arie, “Mode conversion in quadratic nonlinear crystals,” Opt. Lett. 33, 1207–1209 (2008).
[CrossRef]

E. Lima, M. E. Villafuerte-Castrejón, J. M. Saniger, A. Ibarra-Palos, J. E. Sánchez-Sánchez, and L. J. Álvarez, “Experimental XRD and NMR, and molecular dynamics study of Sr containing LaAlO3 perovskite,” Solid State Ionics 178, 1944–1949 (2008).
[CrossRef]

T. Y. Chen, R. Y. Pan, and K. Z. Fung, “Effect of divalent dopants on crystal structure and electrical properties of LaAlO3 perovskite,” J. Phys. Chem. Solids 69, 540–546 (2008).
[CrossRef]

T. Lukasiewicz, M. A. Swirkowicz, J. Dec, W. Hofman, and W. Szyrski, “Strontium-barium niobate single crystals, growth and ferroelectric properties,” J. Cryst. Growth 310, 1464–1469 (2008).
[CrossRef]

2004 (1)

A. Ohtomo and H. Y. Hwang, “A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface,” Nature 427, 423–426 (2004).
[CrossRef]

2003 (1)

J. Junquera and P. Ghosez, “Critical thickness for ferroelectricity in perovskite ultrathin films,” Nature 422, 506–510 (2003).
[CrossRef]

2001 (1)

R. Cauro, A. Gilabert, J. P. Contour, R. Lyonnet, M. G. Medici, J. C. Grenet, C. Leighton, and I. K. Schuller, “Persistent and transient photoconductivity in oxygen-deficient La2/3Sr1/3MnO3−δ thin films,” Phys. Rev. B 63, 174423 (2001).
[CrossRef]

2000 (1)

Y. Matsushima, N. Ishizawa, and N. Kodama, “Synchrotron x-ray and molecular dynamics studies of CaYAlO4: the role of heterovalent solutes in K2NiF4-type solid solutions,” Physica C (Amsterdam) 338, 166–169 (2000).
[CrossRef]

1998 (2)

A. Pajaczkowska and A. Gloubokov, “Synthesis, growth and characterization of tetragonal ABCO4 crystals,” Prog. Cryst. Growth Charact. Mater. 36, 123–162 (1998).
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463–466 (1998).
[CrossRef]

1996 (1)

I. Inbar and R. E. Cohen, “Comparison of the electronic structures and energetics of ferroelectric LiNbO3 and LiTaO3,” Phys. Rev. B 53, 1193–1204 (1996).
[CrossRef]

1995 (2)

I. Zvereva, L. Zueva, and J. Choisnet, “Metastability of the K2NiF4 type structure of the solid solution LaCa(CrxAl1−x)O4(0≤x≤0.10),” J. Mater. Sci. 30, 3598 (1995).
[CrossRef]

S. Zeuner, W. Prettl, and H. Lengfellner, “Fast thermoelectric response of normal state YBa2Cu3O7−δ films,” Appl. Phys. Lett. 66, 1833–1835 (1995).
[CrossRef]

1992 (1)

H. Lengfellner, G. Kremb, A. Schnellbögl, J. Betz, K. F. Renk, and W. Prettl, “Giant voltages upon surface heating in normal YBa2Cu3O7−δ films suggesting an atomic layer thermopile,” Appl. Phys. Lett. 60, 501–503 (1992).
[CrossRef]

1990 (1)

A. Lee, C. Platt, J. Burch, and R. Simon, “Epitaxially grown sputtered LaAlO3 films,” Appl. Phys. Lett. 57, 2019–2021 (1990).
[CrossRef]

Álvarez, L. J.

E. Lima, M. E. Villafuerte-Castrejón, J. M. Saniger, A. Ibarra-Palos, J. E. Sánchez-Sánchez, and L. J. Álvarez, “Experimental XRD and NMR, and molecular dynamics study of Sr containing LaAlO3 perovskite,” Solid State Ionics 178, 1944–1949 (2008).
[CrossRef]

Arie, A.

Berger, V.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463–466 (1998).
[CrossRef]

Betz, J.

H. Lengfellner, G. Kremb, A. Schnellbögl, J. Betz, K. F. Renk, and W. Prettl, “Giant voltages upon surface heating in normal YBa2Cu3O7−δ films suggesting an atomic layer thermopile,” Appl. Phys. Lett. 60, 501–503 (1992).
[CrossRef]

Bravetti, P.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463–466 (1998).
[CrossRef]

Burch, J.

A. Lee, C. Platt, J. Burch, and R. Simon, “Epitaxially grown sputtered LaAlO3 films,” Appl. Phys. Lett. 57, 2019–2021 (1990).
[CrossRef]

Cauro, R.

R. Cauro, A. Gilabert, J. P. Contour, R. Lyonnet, M. G. Medici, J. C. Grenet, C. Leighton, and I. K. Schuller, “Persistent and transient photoconductivity in oxygen-deficient La2/3Sr1/3MnO3−δ thin films,” Phys. Rev. B 63, 174423 (2001).
[CrossRef]

Chen, T. Y.

T. Y. Chen, R. Y. Pan, and K. Z. Fung, “Effect of divalent dopants on crystal structure and electrical properties of LaAlO3 perovskite,” J. Phys. Chem. Solids 69, 540–546 (2008).
[CrossRef]

Choisnet, J.

I. Zvereva, L. Zueva, and J. Choisnet, “Metastability of the K2NiF4 type structure of the solid solution LaCa(CrxAl1−x)O4(0≤x≤0.10),” J. Mater. Sci. 30, 3598 (1995).
[CrossRef]

Cohen, R. E.

I. Inbar and R. E. Cohen, “Comparison of the electronic structures and energetics of ferroelectric LiNbO3 and LiTaO3,” Phys. Rev. B 53, 1193–1204 (1996).
[CrossRef]

Contour, J. P.

R. Cauro, A. Gilabert, J. P. Contour, R. Lyonnet, M. G. Medici, J. C. Grenet, C. Leighton, and I. K. Schuller, “Persistent and transient photoconductivity in oxygen-deficient La2/3Sr1/3MnO3−δ thin films,” Phys. Rev. B 63, 174423 (2001).
[CrossRef]

Dec, J.

T. Lukasiewicz, M. A. Swirkowicz, J. Dec, W. Hofman, and W. Szyrski, “Strontium-barium niobate single crystals, growth and ferroelectric properties,” J. Cryst. Growth 310, 1464–1469 (2008).
[CrossRef]

Dolev, I.

Ellenbogen, T.

Fiore, A.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463–466 (1998).
[CrossRef]

Fung, K. Z.

T. Y. Chen, R. Y. Pan, and K. Z. Fung, “Effect of divalent dopants on crystal structure and electrical properties of LaAlO3 perovskite,” J. Phys. Chem. Solids 69, 540–546 (2008).
[CrossRef]

Ghosez, P.

J. Junquera and P. Ghosez, “Critical thickness for ferroelectricity in perovskite ultrathin films,” Nature 422, 506–510 (2003).
[CrossRef]

Gilabert, A.

R. Cauro, A. Gilabert, J. P. Contour, R. Lyonnet, M. G. Medici, J. C. Grenet, C. Leighton, and I. K. Schuller, “Persistent and transient photoconductivity in oxygen-deficient La2/3Sr1/3MnO3−δ thin films,” Phys. Rev. B 63, 174423 (2001).
[CrossRef]

Gloubokov, A.

A. Pajaczkowska and A. Gloubokov, “Synthesis, growth and characterization of tetragonal ABCO4 crystals,” Prog. Cryst. Growth Charact. Mater. 36, 123–162 (1998).
[CrossRef]

Grenet, J. C.

R. Cauro, A. Gilabert, J. P. Contour, R. Lyonnet, M. G. Medici, J. C. Grenet, C. Leighton, and I. K. Schuller, “Persistent and transient photoconductivity in oxygen-deficient La2/3Sr1/3MnO3−δ thin films,” Phys. Rev. B 63, 174423 (2001).
[CrossRef]

Hofman, W.

T. Lukasiewicz, M. A. Swirkowicz, J. Dec, W. Hofman, and W. Szyrski, “Strontium-barium niobate single crystals, growth and ferroelectric properties,” J. Cryst. Growth 310, 1464–1469 (2008).
[CrossRef]

Hwang, H. Y.

A. Ohtomo and H. Y. Hwang, “A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface,” Nature 427, 423–426 (2004).
[CrossRef]

Ibarra-Palos, A.

E. Lima, M. E. Villafuerte-Castrejón, J. M. Saniger, A. Ibarra-Palos, J. E. Sánchez-Sánchez, and L. J. Álvarez, “Experimental XRD and NMR, and molecular dynamics study of Sr containing LaAlO3 perovskite,” Solid State Ionics 178, 1944–1949 (2008).
[CrossRef]

Inbar, I.

I. Inbar and R. E. Cohen, “Comparison of the electronic structures and energetics of ferroelectric LiNbO3 and LiTaO3,” Phys. Rev. B 53, 1193–1204 (1996).
[CrossRef]

Ishizawa, N.

Y. Matsushima, N. Ishizawa, and N. Kodama, “Synchrotron x-ray and molecular dynamics studies of CaYAlO4: the role of heterovalent solutes in K2NiF4-type solid solutions,” Physica C (Amsterdam) 338, 166–169 (2000).
[CrossRef]

Junquera, J.

J. Junquera and P. Ghosez, “Critical thickness for ferroelectricity in perovskite ultrathin films,” Nature 422, 506–510 (2003).
[CrossRef]

Kodama, N.

Y. Matsushima, N. Ishizawa, and N. Kodama, “Synchrotron x-ray and molecular dynamics studies of CaYAlO4: the role of heterovalent solutes in K2NiF4-type solid solutions,” Physica C (Amsterdam) 338, 166–169 (2000).
[CrossRef]

Kremb, G.

H. Lengfellner, G. Kremb, A. Schnellbögl, J. Betz, K. F. Renk, and W. Prettl, “Giant voltages upon surface heating in normal YBa2Cu3O7−δ films suggesting an atomic layer thermopile,” Appl. Phys. Lett. 60, 501–503 (1992).
[CrossRef]

Lee, A.

A. Lee, C. Platt, J. Burch, and R. Simon, “Epitaxially grown sputtered LaAlO3 films,” Appl. Phys. Lett. 57, 2019–2021 (1990).
[CrossRef]

Leighton, C.

R. Cauro, A. Gilabert, J. P. Contour, R. Lyonnet, M. G. Medici, J. C. Grenet, C. Leighton, and I. K. Schuller, “Persistent and transient photoconductivity in oxygen-deficient La2/3Sr1/3MnO3−δ thin films,” Phys. Rev. B 63, 174423 (2001).
[CrossRef]

Lengfellner, H.

S. Zeuner, W. Prettl, and H. Lengfellner, “Fast thermoelectric response of normal state YBa2Cu3O7−δ films,” Appl. Phys. Lett. 66, 1833–1835 (1995).
[CrossRef]

H. Lengfellner, G. Kremb, A. Schnellbögl, J. Betz, K. F. Renk, and W. Prettl, “Giant voltages upon surface heating in normal YBa2Cu3O7−δ films suggesting an atomic layer thermopile,” Appl. Phys. Lett. 60, 501–503 (1992).
[CrossRef]

Lima, E.

E. Lima, M. E. Villafuerte-Castrejón, J. M. Saniger, A. Ibarra-Palos, J. E. Sánchez-Sánchez, and L. J. Álvarez, “Experimental XRD and NMR, and molecular dynamics study of Sr containing LaAlO3 perovskite,” Solid State Ionics 178, 1944–1949 (2008).
[CrossRef]

Lukasiewicz, T.

T. Lukasiewicz, M. A. Swirkowicz, J. Dec, W. Hofman, and W. Szyrski, “Strontium-barium niobate single crystals, growth and ferroelectric properties,” J. Cryst. Growth 310, 1464–1469 (2008).
[CrossRef]

Lyonnet, R.

R. Cauro, A. Gilabert, J. P. Contour, R. Lyonnet, M. G. Medici, J. C. Grenet, C. Leighton, and I. K. Schuller, “Persistent and transient photoconductivity in oxygen-deficient La2/3Sr1/3MnO3−δ thin films,” Phys. Rev. B 63, 174423 (2001).
[CrossRef]

Matsushima, Y.

Y. Matsushima, N. Ishizawa, and N. Kodama, “Synchrotron x-ray and molecular dynamics studies of CaYAlO4: the role of heterovalent solutes in K2NiF4-type solid solutions,” Physica C (Amsterdam) 338, 166–169 (2000).
[CrossRef]

Medici, M. G.

R. Cauro, A. Gilabert, J. P. Contour, R. Lyonnet, M. G. Medici, J. C. Grenet, C. Leighton, and I. K. Schuller, “Persistent and transient photoconductivity in oxygen-deficient La2/3Sr1/3MnO3−δ thin films,” Phys. Rev. B 63, 174423 (2001).
[CrossRef]

Nagle, J.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463–466 (1998).
[CrossRef]

Ohtomo, A.

A. Ohtomo and H. Y. Hwang, “A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface,” Nature 427, 423–426 (2004).
[CrossRef]

Pajaczkowska, A.

A. Pajaczkowska and A. Gloubokov, “Synthesis, growth and characterization of tetragonal ABCO4 crystals,” Prog. Cryst. Growth Charact. Mater. 36, 123–162 (1998).
[CrossRef]

Pan, R. Y.

T. Y. Chen, R. Y. Pan, and K. Z. Fung, “Effect of divalent dopants on crystal structure and electrical properties of LaAlO3 perovskite,” J. Phys. Chem. Solids 69, 540–546 (2008).
[CrossRef]

Platt, C.

A. Lee, C. Platt, J. Burch, and R. Simon, “Epitaxially grown sputtered LaAlO3 films,” Appl. Phys. Lett. 57, 2019–2021 (1990).
[CrossRef]

Prettl, W.

S. Zeuner, W. Prettl, and H. Lengfellner, “Fast thermoelectric response of normal state YBa2Cu3O7−δ films,” Appl. Phys. Lett. 66, 1833–1835 (1995).
[CrossRef]

H. Lengfellner, G. Kremb, A. Schnellbögl, J. Betz, K. F. Renk, and W. Prettl, “Giant voltages upon surface heating in normal YBa2Cu3O7−δ films suggesting an atomic layer thermopile,” Appl. Phys. Lett. 60, 501–503 (1992).
[CrossRef]

Renk, K. F.

H. Lengfellner, G. Kremb, A. Schnellbögl, J. Betz, K. F. Renk, and W. Prettl, “Giant voltages upon surface heating in normal YBa2Cu3O7−δ films suggesting an atomic layer thermopile,” Appl. Phys. Lett. 60, 501–503 (1992).
[CrossRef]

Rosencher, E.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463–466 (1998).
[CrossRef]

Sánchez-Sánchez, J. E.

E. Lima, M. E. Villafuerte-Castrejón, J. M. Saniger, A. Ibarra-Palos, J. E. Sánchez-Sánchez, and L. J. Álvarez, “Experimental XRD and NMR, and molecular dynamics study of Sr containing LaAlO3 perovskite,” Solid State Ionics 178, 1944–1949 (2008).
[CrossRef]

Saniger, J. M.

E. Lima, M. E. Villafuerte-Castrejón, J. M. Saniger, A. Ibarra-Palos, J. E. Sánchez-Sánchez, and L. J. Álvarez, “Experimental XRD and NMR, and molecular dynamics study of Sr containing LaAlO3 perovskite,” Solid State Ionics 178, 1944–1949 (2008).
[CrossRef]

Schnellbögl, A.

H. Lengfellner, G. Kremb, A. Schnellbögl, J. Betz, K. F. Renk, and W. Prettl, “Giant voltages upon surface heating in normal YBa2Cu3O7−δ films suggesting an atomic layer thermopile,” Appl. Phys. Lett. 60, 501–503 (1992).
[CrossRef]

Schuller, I. K.

R. Cauro, A. Gilabert, J. P. Contour, R. Lyonnet, M. G. Medici, J. C. Grenet, C. Leighton, and I. K. Schuller, “Persistent and transient photoconductivity in oxygen-deficient La2/3Sr1/3MnO3−δ thin films,” Phys. Rev. B 63, 174423 (2001).
[CrossRef]

Simon, R.

A. Lee, C. Platt, J. Burch, and R. Simon, “Epitaxially grown sputtered LaAlO3 films,” Appl. Phys. Lett. 57, 2019–2021 (1990).
[CrossRef]

Swirkowicz, M. A.

T. Lukasiewicz, M. A. Swirkowicz, J. Dec, W. Hofman, and W. Szyrski, “Strontium-barium niobate single crystals, growth and ferroelectric properties,” J. Cryst. Growth 310, 1464–1469 (2008).
[CrossRef]

Szyrski, W.

T. Lukasiewicz, M. A. Swirkowicz, J. Dec, W. Hofman, and W. Szyrski, “Strontium-barium niobate single crystals, growth and ferroelectric properties,” J. Cryst. Growth 310, 1464–1469 (2008).
[CrossRef]

Villafuerte-Castrejón, M. E.

E. Lima, M. E. Villafuerte-Castrejón, J. M. Saniger, A. Ibarra-Palos, J. E. Sánchez-Sánchez, and L. J. Álvarez, “Experimental XRD and NMR, and molecular dynamics study of Sr containing LaAlO3 perovskite,” Solid State Ionics 178, 1944–1949 (2008).
[CrossRef]

Zeuner, S.

S. Zeuner, W. Prettl, and H. Lengfellner, “Fast thermoelectric response of normal state YBa2Cu3O7−δ films,” Appl. Phys. Lett. 66, 1833–1835 (1995).
[CrossRef]

Zueva, L.

I. Zvereva, L. Zueva, and J. Choisnet, “Metastability of the K2NiF4 type structure of the solid solution LaCa(CrxAl1−x)O4(0≤x≤0.10),” J. Mater. Sci. 30, 3598 (1995).
[CrossRef]

Zvereva, I.

I. Zvereva, L. Zueva, and J. Choisnet, “Metastability of the K2NiF4 type structure of the solid solution LaCa(CrxAl1−x)O4(0≤x≤0.10),” J. Mater. Sci. 30, 3598 (1995).
[CrossRef]

Appl. Phys. Lett. (3)

A. Lee, C. Platt, J. Burch, and R. Simon, “Epitaxially grown sputtered LaAlO3 films,” Appl. Phys. Lett. 57, 2019–2021 (1990).
[CrossRef]

S. Zeuner, W. Prettl, and H. Lengfellner, “Fast thermoelectric response of normal state YBa2Cu3O7−δ films,” Appl. Phys. Lett. 66, 1833–1835 (1995).
[CrossRef]

H. Lengfellner, G. Kremb, A. Schnellbögl, J. Betz, K. F. Renk, and W. Prettl, “Giant voltages upon surface heating in normal YBa2Cu3O7−δ films suggesting an atomic layer thermopile,” Appl. Phys. Lett. 60, 501–503 (1992).
[CrossRef]

J. Cryst. Growth (1)

T. Lukasiewicz, M. A. Swirkowicz, J. Dec, W. Hofman, and W. Szyrski, “Strontium-barium niobate single crystals, growth and ferroelectric properties,” J. Cryst. Growth 310, 1464–1469 (2008).
[CrossRef]

J. Mater. Sci. (1)

I. Zvereva, L. Zueva, and J. Choisnet, “Metastability of the K2NiF4 type structure of the solid solution LaCa(CrxAl1−x)O4(0≤x≤0.10),” J. Mater. Sci. 30, 3598 (1995).
[CrossRef]

J. Phys. Chem. Solids (1)

T. Y. Chen, R. Y. Pan, and K. Z. Fung, “Effect of divalent dopants on crystal structure and electrical properties of LaAlO3 perovskite,” J. Phys. Chem. Solids 69, 540–546 (2008).
[CrossRef]

Nature (3)

J. Junquera and P. Ghosez, “Critical thickness for ferroelectricity in perovskite ultrathin films,” Nature 422, 506–510 (2003).
[CrossRef]

A. Ohtomo and H. Y. Hwang, “A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface,” Nature 427, 423–426 (2004).
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463–466 (1998).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (2)

I. Inbar and R. E. Cohen, “Comparison of the electronic structures and energetics of ferroelectric LiNbO3 and LiTaO3,” Phys. Rev. B 53, 1193–1204 (1996).
[CrossRef]

R. Cauro, A. Gilabert, J. P. Contour, R. Lyonnet, M. G. Medici, J. C. Grenet, C. Leighton, and I. K. Schuller, “Persistent and transient photoconductivity in oxygen-deficient La2/3Sr1/3MnO3−δ thin films,” Phys. Rev. B 63, 174423 (2001).
[CrossRef]

Physica C (Amsterdam) (1)

Y. Matsushima, N. Ishizawa, and N. Kodama, “Synchrotron x-ray and molecular dynamics studies of CaYAlO4: the role of heterovalent solutes in K2NiF4-type solid solutions,” Physica C (Amsterdam) 338, 166–169 (2000).
[CrossRef]

Prog. Cryst. Growth Charact. Mater. (1)

A. Pajaczkowska and A. Gloubokov, “Synthesis, growth and characterization of tetragonal ABCO4 crystals,” Prog. Cryst. Growth Charact. Mater. 36, 123–162 (1998).
[CrossRef]

Solid State Ionics (1)

E. Lima, M. E. Villafuerte-Castrejón, J. M. Saniger, A. Ibarra-Palos, J. E. Sánchez-Sánchez, and L. J. Álvarez, “Experimental XRD and NMR, and molecular dynamics study of Sr containing LaAlO3 perovskite,” Solid State Ionics 178, 1944–1949 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of tilted LSAO single crystal and the electrode structure. The LSAO ( 001 ) plane is tilted to the surface of the single crystal with an angle of 10 ° .

Fig. 2
Fig. 2

(a) XRD pattern of the LSAO single crystal. (b) Zoom out diffraction peaks at ( 006 ) . (c) Absorption spectra of LSAO single crystal with a thickness of 500 μm as a function of the wavelength.

Fig. 3
Fig. 3

The open-circuit photovoltaic pulses for 196 μm thick LSAO wafers under the excitation of a 248 nm laser pulse of different on-sample laser pulse energy densities and measured by an oscilloscope with (a)  1 M Ω and (b)  50 Ω import impedances. The solid line is a visual guide.

Fig. 4
Fig. 4

Thickness dependence of (a) RT and (b) peak value R VE of photovoltaic responses by using 50 Ω impedance at the oscilloscope. The inset shows the on-sample laser pulse energy density dependence of the R VE . The solid line is a visual guide.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

J = J p + J n = e D p ( d p / d z ) + e D n ( d n / d z ) = e D * ( d n i / d z )
J a b = e D a b * sin α ( d n i / d z ) , J c = e D c * cos α ( d n i / d z ) ,
J = J a b cos α J c sin α = e ( D a b * D c * ) sin ( 2 α ) ( d n i / d z ) / 2 ,

Metrics