Abstract

We propose a system that can be used to generate a dark soliton pulse array by using multidark soliton sources in the microring resonators and an optical multiplexer, where the different dark soliton center wavelengths can be generated. To verify the simulation results, the experimental setup was employed by using the Brillouin enhanced fiber laser in the fiber ring resonator (loop) system, where two different systems, called forward and backward schemes, were used to generate the dark soliton arrays. Three different center wavelengths of dark solitons were generated and seen to be in good agreement with the theoretical results.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ballav and A. R. Chowdhury, “On a study of diffraction and dispersion managed soliton in a cylindrical media,” Prog. Electromagn. Res. pier-63, 33–50 (2006).
    [CrossRef]
  2. S. Konar and A. Biswas, “Soliton-soliton interaction with power law nonlinearity,” Prog. Electromagn. Res. pier-54, 95–108 (2005).
    [CrossRef]
  3. R. Gangwar, S. P. Singh, and N. Singh, “Soliton based optical communication,” Prog. Electromagn. Res. pier-74, 157–166 (2007).
    [CrossRef]
  4. F. G. Gharakhili, M. Shahabadi, and M. Hakkak, “Bright and dark soliton generation in a left-handed nonlinear transmission line with series nonlinear capacitors,” Prog. Electromagn. Res. pier-96, 237–249 (2009).
    [CrossRef]
  5. G. P. Agarwal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  6. Y. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298, 81–197 (1998).
    [CrossRef]
  7. W. Zhao and E. Bourkoff, “Propagation properties of dark solitons,” Opt. Lett. 14, 703–705 (1989).
    [CrossRef] [PubMed]
  8. I. V. Barashenkov, “Stability criterion for dark soliton,” Phys. Rev. Lett. 77, 1193–1195 (1996).
    [CrossRef] [PubMed]
  9. D. N. Christodoulides, T. H. Coskun, M. Mitchell, Z. Chen, and M. Segev, “Theory of incoherent dark solitons,” Phys. Rev. Lett. 80, 5113–5115 (1998).
    [CrossRef]
  10. A. D. Kim, W. L. Kath, and C. G. Goedde, “Stabilizing dark solitons by periodic phase-sensitive amplification,” Opt. Lett. 21, 465–467 (1996).
    [CrossRef] [PubMed]
  11. K. Sarapat, N. Sangwara, K. Srinuanjan, P. P. Yupapin, and N. Pornsuwancharoen, “Novel dark-bright optical soliton conversion system and power amplification,” Opt. Eng. 48, 045004 (2009).
    [CrossRef]
  12. B. A. Malomed, A. Mostofi, and P. L. Chu, “Transformation of a dark soliton into a bright pulse,” J. Opt. Soc. Am. B 17, 507–513 (2000).
    [CrossRef]
  13. P. P. Yupapin, N. Pornsuwanchroen, and S. Chaiyasoonthorn, “Attosecond pulse generation using nonlinear microring resonators,” Microwave Opt. Technol. Lett. 50, 3108–3110 (2008).
    [CrossRef]
  14. P. P. Yupapin and N. Pornsuwanchroen, “Proposed nonlinear microring resonator arrangement for stopping and storing light,” IEEE Photonics Technol. Lett. 21, 404–406 (2009).
    [CrossRef]
  15. S. Mithata, N. Pornsuwancharoen, and P. P. Yupapin, “A simultaneous short wave and millimeter wave generation using a soliton pulse within a nano-waveguide,” IEEE Photonics Technol. Lett. 21, 932–934 (2009).
    [CrossRef]
  16. S. Mitatha, “Dark soliton behaviors within the nonlinear micro and nanoring resonators and applications,” Prog. Electromagn. Res. pier-99, 383–404 (2009).
    [CrossRef]
  17. S. F. Hanim, J. Ali, and P. P. Yupapin, “Dark soliton generation using dual Brillouin fiber laser in a fiber optic ring resonator,” Microwave Opt. Technol. Lett. 52, 881–883 (2010).
    [CrossRef]
  18. A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thursten, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, “Experimental observation of the fundamental dark soliton in optical fibers,” Phys. Rev. Lett. 61, 2445–2448 (1988).
    [CrossRef] [PubMed]
  19. C. Finot, J. M. Dudley, and G. Millot, “Generation of dark solitons by interaction between similaritons in Raman fiber amplifiers,” Opt. Fiber Technol. 12, 217–226 (2006).
    [CrossRef]
  20. Y. Kokubun, Y. Hatakeyama, M. Ogata, S. Suzuki, and N. Zaizen, “Fabrication technologies for vertically coupled microring resonator with multilevel crossing busline and ultracompact-ring radius,” IEEE J. Sel. Top. Quantum Electron. 11, 4–10 (2005).
    [CrossRef]
  21. P. P. Yupapin and W. Suwancharoen, “Chaotic signal generation and cancellation using a micro ring resonator incorporating an optical add/drop multiplexer,” Opt. Commun. 280, 343–350 (2007).
    [CrossRef]
  22. P. P. Yupapin, P. Saeung, and C. Li, “Characteristics of complementary ring-resonator add/drop filters modeling by using graphical approach,” Opt. Commun. 272, 81–86 (2007).
    [CrossRef]
  23. T. Threepak, X. Luangvilay, S. Mitatha, and P. P. Yupapin, “Novel quantum-molecular transporter and networking via a wavelength router,” Microwave Opt. Technol. Lett. 52, 1353–1357 (2010).
    [CrossRef]
  24. K. Kulsirirat, W. Techithdeera, and P. P. Yupapin, “Dynamic potential well generation and control using double resonators incorporating in an add/drop filter,” Mod. Phys. Lett. B (in press).

2010 (2)

S. F. Hanim, J. Ali, and P. P. Yupapin, “Dark soliton generation using dual Brillouin fiber laser in a fiber optic ring resonator,” Microwave Opt. Technol. Lett. 52, 881–883 (2010).
[CrossRef]

T. Threepak, X. Luangvilay, S. Mitatha, and P. P. Yupapin, “Novel quantum-molecular transporter and networking via a wavelength router,” Microwave Opt. Technol. Lett. 52, 1353–1357 (2010).
[CrossRef]

2009 (5)

K. Sarapat, N. Sangwara, K. Srinuanjan, P. P. Yupapin, and N. Pornsuwancharoen, “Novel dark-bright optical soliton conversion system and power amplification,” Opt. Eng. 48, 045004 (2009).
[CrossRef]

P. P. Yupapin and N. Pornsuwanchroen, “Proposed nonlinear microring resonator arrangement for stopping and storing light,” IEEE Photonics Technol. Lett. 21, 404–406 (2009).
[CrossRef]

S. Mithata, N. Pornsuwancharoen, and P. P. Yupapin, “A simultaneous short wave and millimeter wave generation using a soliton pulse within a nano-waveguide,” IEEE Photonics Technol. Lett. 21, 932–934 (2009).
[CrossRef]

S. Mitatha, “Dark soliton behaviors within the nonlinear micro and nanoring resonators and applications,” Prog. Electromagn. Res. pier-99, 383–404 (2009).
[CrossRef]

F. G. Gharakhili, M. Shahabadi, and M. Hakkak, “Bright and dark soliton generation in a left-handed nonlinear transmission line with series nonlinear capacitors,” Prog. Electromagn. Res. pier-96, 237–249 (2009).
[CrossRef]

2008 (1)

P. P. Yupapin, N. Pornsuwanchroen, and S. Chaiyasoonthorn, “Attosecond pulse generation using nonlinear microring resonators,” Microwave Opt. Technol. Lett. 50, 3108–3110 (2008).
[CrossRef]

2007 (4)

G. P. Agarwal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

R. Gangwar, S. P. Singh, and N. Singh, “Soliton based optical communication,” Prog. Electromagn. Res. pier-74, 157–166 (2007).
[CrossRef]

P. P. Yupapin and W. Suwancharoen, “Chaotic signal generation and cancellation using a micro ring resonator incorporating an optical add/drop multiplexer,” Opt. Commun. 280, 343–350 (2007).
[CrossRef]

P. P. Yupapin, P. Saeung, and C. Li, “Characteristics of complementary ring-resonator add/drop filters modeling by using graphical approach,” Opt. Commun. 272, 81–86 (2007).
[CrossRef]

2006 (2)

M. Ballav and A. R. Chowdhury, “On a study of diffraction and dispersion managed soliton in a cylindrical media,” Prog. Electromagn. Res. pier-63, 33–50 (2006).
[CrossRef]

C. Finot, J. M. Dudley, and G. Millot, “Generation of dark solitons by interaction between similaritons in Raman fiber amplifiers,” Opt. Fiber Technol. 12, 217–226 (2006).
[CrossRef]

2005 (2)

Y. Kokubun, Y. Hatakeyama, M. Ogata, S. Suzuki, and N. Zaizen, “Fabrication technologies for vertically coupled microring resonator with multilevel crossing busline and ultracompact-ring radius,” IEEE J. Sel. Top. Quantum Electron. 11, 4–10 (2005).
[CrossRef]

S. Konar and A. Biswas, “Soliton-soliton interaction with power law nonlinearity,” Prog. Electromagn. Res. pier-54, 95–108 (2005).
[CrossRef]

2000 (1)

1998 (2)

D. N. Christodoulides, T. H. Coskun, M. Mitchell, Z. Chen, and M. Segev, “Theory of incoherent dark solitons,” Phys. Rev. Lett. 80, 5113–5115 (1998).
[CrossRef]

Y. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298, 81–197 (1998).
[CrossRef]

1996 (2)

1989 (1)

1988 (1)

A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thursten, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, “Experimental observation of the fundamental dark soliton in optical fibers,” Phys. Rev. Lett. 61, 2445–2448 (1988).
[CrossRef] [PubMed]

Agarwal, G. P.

G. P. Agarwal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Ali, J.

S. F. Hanim, J. Ali, and P. P. Yupapin, “Dark soliton generation using dual Brillouin fiber laser in a fiber optic ring resonator,” Microwave Opt. Technol. Lett. 52, 881–883 (2010).
[CrossRef]

Ballav, M.

M. Ballav and A. R. Chowdhury, “On a study of diffraction and dispersion managed soliton in a cylindrical media,” Prog. Electromagn. Res. pier-63, 33–50 (2006).
[CrossRef]

Barashenkov, I. V.

I. V. Barashenkov, “Stability criterion for dark soliton,” Phys. Rev. Lett. 77, 1193–1195 (1996).
[CrossRef] [PubMed]

Biswas, A.

S. Konar and A. Biswas, “Soliton-soliton interaction with power law nonlinearity,” Prog. Electromagn. Res. pier-54, 95–108 (2005).
[CrossRef]

Bourkoff, E.

Chaiyasoonthorn, S.

P. P. Yupapin, N. Pornsuwanchroen, and S. Chaiyasoonthorn, “Attosecond pulse generation using nonlinear microring resonators,” Microwave Opt. Technol. Lett. 50, 3108–3110 (2008).
[CrossRef]

Chen, Z.

D. N. Christodoulides, T. H. Coskun, M. Mitchell, Z. Chen, and M. Segev, “Theory of incoherent dark solitons,” Phys. Rev. Lett. 80, 5113–5115 (1998).
[CrossRef]

Chowdhury, A. R.

M. Ballav and A. R. Chowdhury, “On a study of diffraction and dispersion managed soliton in a cylindrical media,” Prog. Electromagn. Res. pier-63, 33–50 (2006).
[CrossRef]

Christodoulides, D. N.

D. N. Christodoulides, T. H. Coskun, M. Mitchell, Z. Chen, and M. Segev, “Theory of incoherent dark solitons,” Phys. Rev. Lett. 80, 5113–5115 (1998).
[CrossRef]

Chu, P. L.

Coskun, T. H.

D. N. Christodoulides, T. H. Coskun, M. Mitchell, Z. Chen, and M. Segev, “Theory of incoherent dark solitons,” Phys. Rev. Lett. 80, 5113–5115 (1998).
[CrossRef]

Dudley, J. M.

C. Finot, J. M. Dudley, and G. Millot, “Generation of dark solitons by interaction between similaritons in Raman fiber amplifiers,” Opt. Fiber Technol. 12, 217–226 (2006).
[CrossRef]

Finot, C.

C. Finot, J. M. Dudley, and G. Millot, “Generation of dark solitons by interaction between similaritons in Raman fiber amplifiers,” Opt. Fiber Technol. 12, 217–226 (2006).
[CrossRef]

Gangwar, R.

R. Gangwar, S. P. Singh, and N. Singh, “Soliton based optical communication,” Prog. Electromagn. Res. pier-74, 157–166 (2007).
[CrossRef]

Gharakhili, F. G.

F. G. Gharakhili, M. Shahabadi, and M. Hakkak, “Bright and dark soliton generation in a left-handed nonlinear transmission line with series nonlinear capacitors,” Prog. Electromagn. Res. pier-96, 237–249 (2009).
[CrossRef]

Goedde, C. G.

Hakkak, M.

F. G. Gharakhili, M. Shahabadi, and M. Hakkak, “Bright and dark soliton generation in a left-handed nonlinear transmission line with series nonlinear capacitors,” Prog. Electromagn. Res. pier-96, 237–249 (2009).
[CrossRef]

Hanim, S. F.

S. F. Hanim, J. Ali, and P. P. Yupapin, “Dark soliton generation using dual Brillouin fiber laser in a fiber optic ring resonator,” Microwave Opt. Technol. Lett. 52, 881–883 (2010).
[CrossRef]

Hatakeyama, Y.

Y. Kokubun, Y. Hatakeyama, M. Ogata, S. Suzuki, and N. Zaizen, “Fabrication technologies for vertically coupled microring resonator with multilevel crossing busline and ultracompact-ring radius,” IEEE J. Sel. Top. Quantum Electron. 11, 4–10 (2005).
[CrossRef]

Hawkins, R. J.

A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thursten, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, “Experimental observation of the fundamental dark soliton in optical fibers,” Phys. Rev. Lett. 61, 2445–2448 (1988).
[CrossRef] [PubMed]

Heritage, J. P.

A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thursten, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, “Experimental observation of the fundamental dark soliton in optical fibers,” Phys. Rev. Lett. 61, 2445–2448 (1988).
[CrossRef] [PubMed]

Kath, W. L.

Kim, A. D.

Kirschner, E. M.

A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thursten, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, “Experimental observation of the fundamental dark soliton in optical fibers,” Phys. Rev. Lett. 61, 2445–2448 (1988).
[CrossRef] [PubMed]

Kivshar, Y. S.

Y. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298, 81–197 (1998).
[CrossRef]

Kokubun, Y.

Y. Kokubun, Y. Hatakeyama, M. Ogata, S. Suzuki, and N. Zaizen, “Fabrication technologies for vertically coupled microring resonator with multilevel crossing busline and ultracompact-ring radius,” IEEE J. Sel. Top. Quantum Electron. 11, 4–10 (2005).
[CrossRef]

Konar, S.

S. Konar and A. Biswas, “Soliton-soliton interaction with power law nonlinearity,” Prog. Electromagn. Res. pier-54, 95–108 (2005).
[CrossRef]

Kulsirirat, K.

K. Kulsirirat, W. Techithdeera, and P. P. Yupapin, “Dynamic potential well generation and control using double resonators incorporating in an add/drop filter,” Mod. Phys. Lett. B (in press).

Leaird, D. E.

A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thursten, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, “Experimental observation of the fundamental dark soliton in optical fibers,” Phys. Rev. Lett. 61, 2445–2448 (1988).
[CrossRef] [PubMed]

Li, C.

P. P. Yupapin, P. Saeung, and C. Li, “Characteristics of complementary ring-resonator add/drop filters modeling by using graphical approach,” Opt. Commun. 272, 81–86 (2007).
[CrossRef]

Luangvilay, X.

T. Threepak, X. Luangvilay, S. Mitatha, and P. P. Yupapin, “Novel quantum-molecular transporter and networking via a wavelength router,” Microwave Opt. Technol. Lett. 52, 1353–1357 (2010).
[CrossRef]

Luther-Davies, B.

Y. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298, 81–197 (1998).
[CrossRef]

Malomed, B. A.

Millot, G.

C. Finot, J. M. Dudley, and G. Millot, “Generation of dark solitons by interaction between similaritons in Raman fiber amplifiers,” Opt. Fiber Technol. 12, 217–226 (2006).
[CrossRef]

Mitatha, S.

T. Threepak, X. Luangvilay, S. Mitatha, and P. P. Yupapin, “Novel quantum-molecular transporter and networking via a wavelength router,” Microwave Opt. Technol. Lett. 52, 1353–1357 (2010).
[CrossRef]

S. Mitatha, “Dark soliton behaviors within the nonlinear micro and nanoring resonators and applications,” Prog. Electromagn. Res. pier-99, 383–404 (2009).
[CrossRef]

Mitchell, M.

D. N. Christodoulides, T. H. Coskun, M. Mitchell, Z. Chen, and M. Segev, “Theory of incoherent dark solitons,” Phys. Rev. Lett. 80, 5113–5115 (1998).
[CrossRef]

Mithata, S.

S. Mithata, N. Pornsuwancharoen, and P. P. Yupapin, “A simultaneous short wave and millimeter wave generation using a soliton pulse within a nano-waveguide,” IEEE Photonics Technol. Lett. 21, 932–934 (2009).
[CrossRef]

Mostofi, A.

Ogata, M.

Y. Kokubun, Y. Hatakeyama, M. Ogata, S. Suzuki, and N. Zaizen, “Fabrication technologies for vertically coupled microring resonator with multilevel crossing busline and ultracompact-ring radius,” IEEE J. Sel. Top. Quantum Electron. 11, 4–10 (2005).
[CrossRef]

Pornsuwancharoen, N.

S. Mithata, N. Pornsuwancharoen, and P. P. Yupapin, “A simultaneous short wave and millimeter wave generation using a soliton pulse within a nano-waveguide,” IEEE Photonics Technol. Lett. 21, 932–934 (2009).
[CrossRef]

K. Sarapat, N. Sangwara, K. Srinuanjan, P. P. Yupapin, and N. Pornsuwancharoen, “Novel dark-bright optical soliton conversion system and power amplification,” Opt. Eng. 48, 045004 (2009).
[CrossRef]

Pornsuwanchroen, N.

P. P. Yupapin and N. Pornsuwanchroen, “Proposed nonlinear microring resonator arrangement for stopping and storing light,” IEEE Photonics Technol. Lett. 21, 404–406 (2009).
[CrossRef]

P. P. Yupapin, N. Pornsuwanchroen, and S. Chaiyasoonthorn, “Attosecond pulse generation using nonlinear microring resonators,” Microwave Opt. Technol. Lett. 50, 3108–3110 (2008).
[CrossRef]

Saeung, P.

P. P. Yupapin, P. Saeung, and C. Li, “Characteristics of complementary ring-resonator add/drop filters modeling by using graphical approach,” Opt. Commun. 272, 81–86 (2007).
[CrossRef]

Sangwara, N.

K. Sarapat, N. Sangwara, K. Srinuanjan, P. P. Yupapin, and N. Pornsuwancharoen, “Novel dark-bright optical soliton conversion system and power amplification,” Opt. Eng. 48, 045004 (2009).
[CrossRef]

Sarapat, K.

K. Sarapat, N. Sangwara, K. Srinuanjan, P. P. Yupapin, and N. Pornsuwancharoen, “Novel dark-bright optical soliton conversion system and power amplification,” Opt. Eng. 48, 045004 (2009).
[CrossRef]

Segev, M.

D. N. Christodoulides, T. H. Coskun, M. Mitchell, Z. Chen, and M. Segev, “Theory of incoherent dark solitons,” Phys. Rev. Lett. 80, 5113–5115 (1998).
[CrossRef]

Shahabadi, M.

F. G. Gharakhili, M. Shahabadi, and M. Hakkak, “Bright and dark soliton generation in a left-handed nonlinear transmission line with series nonlinear capacitors,” Prog. Electromagn. Res. pier-96, 237–249 (2009).
[CrossRef]

Singh, N.

R. Gangwar, S. P. Singh, and N. Singh, “Soliton based optical communication,” Prog. Electromagn. Res. pier-74, 157–166 (2007).
[CrossRef]

Singh, S. P.

R. Gangwar, S. P. Singh, and N. Singh, “Soliton based optical communication,” Prog. Electromagn. Res. pier-74, 157–166 (2007).
[CrossRef]

Srinuanjan, K.

K. Sarapat, N. Sangwara, K. Srinuanjan, P. P. Yupapin, and N. Pornsuwancharoen, “Novel dark-bright optical soliton conversion system and power amplification,” Opt. Eng. 48, 045004 (2009).
[CrossRef]

Suwancharoen, W.

P. P. Yupapin and W. Suwancharoen, “Chaotic signal generation and cancellation using a micro ring resonator incorporating an optical add/drop multiplexer,” Opt. Commun. 280, 343–350 (2007).
[CrossRef]

Suzuki, S.

Y. Kokubun, Y. Hatakeyama, M. Ogata, S. Suzuki, and N. Zaizen, “Fabrication technologies for vertically coupled microring resonator with multilevel crossing busline and ultracompact-ring radius,” IEEE J. Sel. Top. Quantum Electron. 11, 4–10 (2005).
[CrossRef]

Techithdeera, W.

K. Kulsirirat, W. Techithdeera, and P. P. Yupapin, “Dynamic potential well generation and control using double resonators incorporating in an add/drop filter,” Mod. Phys. Lett. B (in press).

Threepak, T.

T. Threepak, X. Luangvilay, S. Mitatha, and P. P. Yupapin, “Novel quantum-molecular transporter and networking via a wavelength router,” Microwave Opt. Technol. Lett. 52, 1353–1357 (2010).
[CrossRef]

Thursten, R. N.

A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thursten, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, “Experimental observation of the fundamental dark soliton in optical fibers,” Phys. Rev. Lett. 61, 2445–2448 (1988).
[CrossRef] [PubMed]

Tomlinson, W. J.

A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thursten, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, “Experimental observation of the fundamental dark soliton in optical fibers,” Phys. Rev. Lett. 61, 2445–2448 (1988).
[CrossRef] [PubMed]

Weiner, A. M.

A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thursten, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, “Experimental observation of the fundamental dark soliton in optical fibers,” Phys. Rev. Lett. 61, 2445–2448 (1988).
[CrossRef] [PubMed]

Yupapin, P. P.

S. F. Hanim, J. Ali, and P. P. Yupapin, “Dark soliton generation using dual Brillouin fiber laser in a fiber optic ring resonator,” Microwave Opt. Technol. Lett. 52, 881–883 (2010).
[CrossRef]

T. Threepak, X. Luangvilay, S. Mitatha, and P. P. Yupapin, “Novel quantum-molecular transporter and networking via a wavelength router,” Microwave Opt. Technol. Lett. 52, 1353–1357 (2010).
[CrossRef]

S. Mithata, N. Pornsuwancharoen, and P. P. Yupapin, “A simultaneous short wave and millimeter wave generation using a soliton pulse within a nano-waveguide,” IEEE Photonics Technol. Lett. 21, 932–934 (2009).
[CrossRef]

K. Sarapat, N. Sangwara, K. Srinuanjan, P. P. Yupapin, and N. Pornsuwancharoen, “Novel dark-bright optical soliton conversion system and power amplification,” Opt. Eng. 48, 045004 (2009).
[CrossRef]

P. P. Yupapin and N. Pornsuwanchroen, “Proposed nonlinear microring resonator arrangement for stopping and storing light,” IEEE Photonics Technol. Lett. 21, 404–406 (2009).
[CrossRef]

P. P. Yupapin, N. Pornsuwanchroen, and S. Chaiyasoonthorn, “Attosecond pulse generation using nonlinear microring resonators,” Microwave Opt. Technol. Lett. 50, 3108–3110 (2008).
[CrossRef]

P. P. Yupapin and W. Suwancharoen, “Chaotic signal generation and cancellation using a micro ring resonator incorporating an optical add/drop multiplexer,” Opt. Commun. 280, 343–350 (2007).
[CrossRef]

P. P. Yupapin, P. Saeung, and C. Li, “Characteristics of complementary ring-resonator add/drop filters modeling by using graphical approach,” Opt. Commun. 272, 81–86 (2007).
[CrossRef]

K. Kulsirirat, W. Techithdeera, and P. P. Yupapin, “Dynamic potential well generation and control using double resonators incorporating in an add/drop filter,” Mod. Phys. Lett. B (in press).

Zaizen, N.

Y. Kokubun, Y. Hatakeyama, M. Ogata, S. Suzuki, and N. Zaizen, “Fabrication technologies for vertically coupled microring resonator with multilevel crossing busline and ultracompact-ring radius,” IEEE J. Sel. Top. Quantum Electron. 11, 4–10 (2005).
[CrossRef]

Zhao, W.

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Kokubun, Y. Hatakeyama, M. Ogata, S. Suzuki, and N. Zaizen, “Fabrication technologies for vertically coupled microring resonator with multilevel crossing busline and ultracompact-ring radius,” IEEE J. Sel. Top. Quantum Electron. 11, 4–10 (2005).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

P. P. Yupapin and N. Pornsuwanchroen, “Proposed nonlinear microring resonator arrangement for stopping and storing light,” IEEE Photonics Technol. Lett. 21, 404–406 (2009).
[CrossRef]

S. Mithata, N. Pornsuwancharoen, and P. P. Yupapin, “A simultaneous short wave and millimeter wave generation using a soliton pulse within a nano-waveguide,” IEEE Photonics Technol. Lett. 21, 932–934 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

Microwave Opt. Technol. Lett. (3)

S. F. Hanim, J. Ali, and P. P. Yupapin, “Dark soliton generation using dual Brillouin fiber laser in a fiber optic ring resonator,” Microwave Opt. Technol. Lett. 52, 881–883 (2010).
[CrossRef]

T. Threepak, X. Luangvilay, S. Mitatha, and P. P. Yupapin, “Novel quantum-molecular transporter and networking via a wavelength router,” Microwave Opt. Technol. Lett. 52, 1353–1357 (2010).
[CrossRef]

P. P. Yupapin, N. Pornsuwanchroen, and S. Chaiyasoonthorn, “Attosecond pulse generation using nonlinear microring resonators,” Microwave Opt. Technol. Lett. 50, 3108–3110 (2008).
[CrossRef]

Opt. Commun. (2)

P. P. Yupapin and W. Suwancharoen, “Chaotic signal generation and cancellation using a micro ring resonator incorporating an optical add/drop multiplexer,” Opt. Commun. 280, 343–350 (2007).
[CrossRef]

P. P. Yupapin, P. Saeung, and C. Li, “Characteristics of complementary ring-resonator add/drop filters modeling by using graphical approach,” Opt. Commun. 272, 81–86 (2007).
[CrossRef]

Opt. Eng. (1)

K. Sarapat, N. Sangwara, K. Srinuanjan, P. P. Yupapin, and N. Pornsuwancharoen, “Novel dark-bright optical soliton conversion system and power amplification,” Opt. Eng. 48, 045004 (2009).
[CrossRef]

Opt. Fiber Technol. (1)

C. Finot, J. M. Dudley, and G. Millot, “Generation of dark solitons by interaction between similaritons in Raman fiber amplifiers,” Opt. Fiber Technol. 12, 217–226 (2006).
[CrossRef]

Opt. Lett. (2)

Phys. Rep. (1)

Y. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298, 81–197 (1998).
[CrossRef]

Phys. Rev. Lett. (3)

I. V. Barashenkov, “Stability criterion for dark soliton,” Phys. Rev. Lett. 77, 1193–1195 (1996).
[CrossRef] [PubMed]

D. N. Christodoulides, T. H. Coskun, M. Mitchell, Z. Chen, and M. Segev, “Theory of incoherent dark solitons,” Phys. Rev. Lett. 80, 5113–5115 (1998).
[CrossRef]

A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thursten, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, “Experimental observation of the fundamental dark soliton in optical fibers,” Phys. Rev. Lett. 61, 2445–2448 (1988).
[CrossRef] [PubMed]

Prog. Electromagn. Res. (5)

S. Mitatha, “Dark soliton behaviors within the nonlinear micro and nanoring resonators and applications,” Prog. Electromagn. Res. pier-99, 383–404 (2009).
[CrossRef]

M. Ballav and A. R. Chowdhury, “On a study of diffraction and dispersion managed soliton in a cylindrical media,” Prog. Electromagn. Res. pier-63, 33–50 (2006).
[CrossRef]

S. Konar and A. Biswas, “Soliton-soliton interaction with power law nonlinearity,” Prog. Electromagn. Res. pier-54, 95–108 (2005).
[CrossRef]

R. Gangwar, S. P. Singh, and N. Singh, “Soliton based optical communication,” Prog. Electromagn. Res. pier-74, 157–166 (2007).
[CrossRef]

F. G. Gharakhili, M. Shahabadi, and M. Hakkak, “Bright and dark soliton generation in a left-handed nonlinear transmission line with series nonlinear capacitors,” Prog. Electromagn. Res. pier-96, 237–249 (2009).
[CrossRef]

Other (2)

G. P. Agarwal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

K. Kulsirirat, W. Techithdeera, and P. P. Yupapin, “Dynamic potential well generation and control using double resonators incorporating in an add/drop filter,” Mod. Phys. Lett. B (in press).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic of dark soliton array generation. E in , soliton inputs; R, ring radii; κ, coupling coefficients; MUX, optical multiplexer; R d , add/drop radius; MRR, microring resonator.

Fig. 2
Fig. 2

Simulation result of the dark solitons within the series MRRs when the dark soliton input wavelength is 1501 nm : (a) dark soliton input, (b) and (c) dark solitons in rings R 1 and R 2 , and (d) the drop port signals.

Fig. 3
Fig. 3

Simulation result of the dark soliton array when the dark soliton input wavelengths are 1501, 1503, and 1505 nm : (a) dark soliton array; (b), (d), and (f) are the output signals R 2 ;, and (c), (e), and (g) are the drop port signals.

Fig. 4
Fig. 4

Simulation result of the dark soliton array when the dark soliton input wavelengths are 1507, 1509, and 1511 nm : (a) dark soliton array; (b), (d) and (f) are the output signals R 2 ; and (c), (e) and (g) are the drop port signals.

Fig. 5
Fig. 5

Experimental setup for (a) forward pumping and (b) backward pumping. OSA, optical spectrum analyzer; OCs, optical circulators; BP, Brillouin pumping; RP, Raman pumping; DCF, dispersion compensated fiber; LDs, laser diodes; DC-EDF, depressed cladding erbium-doped fiber.

Fig. 6
Fig. 6

Dark soliton train with Raman pumping.

Fig. 7
Fig. 7

Amplified spontaneous emission of the bi-directional pump in the depressed cladding fiber.

Fig. 8
Fig. 8

Dark soliton array at different wavelengths of Brillouin pumping.

Fig. 9
Fig. 9

Multisoliton lasing spectrum with BP wavelength set at 1500 nm .

Fig. 10
Fig. 10

Dark soliton array train at 1500 nm from 0 to 4.0 ns .

Fig. 11
Fig. 11

Multi-Brillouin lasing spectrum at different Raman pump power.

Fig. 12
Fig. 12

Dark soliton arrays obtained at different wavelength settings of Brillouin pumping.

Fig. 13
Fig. 13

Multisoliton lasing spectrum with BP wavelength set at 1504 nm .

Fig. 14
Fig. 14

Simulation result of the dark solitons within the series MRRs when the dark soliton input power is 0.5 W , with the wavelength center at 1501 nm : (a) dark soliton input, (b) and (c) dark solitons in rings R 1 and R 2 , and (d) the drop port signal.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E in ( t ) = A tanh [ T T 0 ] exp [ ( z 2 L D ) i ω 0 t ] ,
n = n 0 + n 2 I = n 0 + n 2 A eff P ,
| E out ( t ) E in ( t ) | 2 = ( 1 γ ) [ 1 ( 1 ( 1 γ ) x 2 ) κ ( 1 x 1 γ 1 κ ) 2 + 4 x 1 γ 1 κ sin 2 ( φ 2 ) ] .
| E t E in | 2 = ( 1 κ 1 ) 2 1 κ 1 1 κ 2 e α 2 L cos ( k n L ) + ( 1 κ 2 ) e α L 1 + ( 1 κ 1 ) ( 1 κ 2 ) e α L 2 1 κ 1 1 κ 2 e α 2 L cos ( k n L ) ,
| E d E in | 2 = κ 1 κ 2 e α 2 L 1 + ( 1 κ 1 ) ( 1 κ 2 ) e α L 2 1 κ 1 1 κ 2 e α 2 L cos ( k n L ) ,

Metrics