Abstract

Single-shot femtosecond laser induced breakdown spectroscopy (LIBS) has been shown to be an effective means of detecting heavy metal dopants in porous thin films. Traditional LIBS analysis of trace dopants in modern painted surfaces or TiO2 films is difficult due to the broad noisy spectra of the titanium constituent and interference due to the substrate material. Femtosecond laser pulses provide excellent ablation of the target material with little damage to the underlying substrate. In this study a Ti:sapphire femtosecond laser pulse operated at 800 and 266nm wavelengths and an Nd:YAG nanosecond laser operated at 266nm were used to ablate 0.1515μm films of TiO2 doped with varying amounts of MgO. This application shows excellent detection of Mg down to 60ppm with little interference by the substrate material.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Singh and S. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier, 2007).
  2. A. Miziolek, V. Palleschi, and I. Schechter, Laser-Induced Breakdown Spectroscopy (LIBS) Fundamentals and Applications (Cambridge U. Press, 2006).
    [CrossRef]
  3. S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695-1709 (2004).
    [CrossRef]
  4. X. Zeng, X. Mao, R. Greif, and R. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys. A 80, 237-241 (2005).
    [CrossRef]
  5. B. K. A. Ngoi, K. Venkatakrishnan, E. N. L. Lim, B. Tan, and L. H. K. Koh, “Effect of energy above laser-induced damage thresholds in the micromachining of silicon by femtosecond pulse laser,” Opt. Laser Eng. 35, 361-369 (2001).
    [CrossRef]
  6. T. Asahi, H. Y. Yoshikawa, M. Yashiro, and H. Masuhara, “Femtosecond laser ablation transfer and phase transition of phthalocyanine solids,” Appl. Surf. Sci. 197-198, 777-781(2002).
    [CrossRef]
  7. S. Baudach, J. Bonse, J. Krüger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate,” Appl. Surf. Sci. 154-155, 555-560 (2000).
    [CrossRef]
  8. X. C. Wang, G. C. Lim, H. Y. Zheng, F. L. Ng, W. Liu, and S. J. Chua, “Femtosecond pulse laser ablation of sapphire in ambient air,” Appl. Surf. Sci. 228, 221-226 (2004).
    [CrossRef]
  9. C. P. Grigoropoulos, Transport in Laser Microfabrication (Cambridge U. Press, 2009).
    [CrossRef]
  10. Y. Nakata, T. Okada, and M. Maeda, “Micromachining of a thin film by laser ablation using femtosecond laser with masks,” Opt. Laser Eng. 42, 389-393 (2004).
    [CrossRef]
  11. K. Venkatakrishnan, B. Tan, and B. K. A. Ngoi, “Femtosecond pulsed laser ablation of thin gold film,” Opt. Laser Technol. 34, 199-202 (2002).
    [CrossRef]
  12. J. Bonse, P. Rudolph, J. Krüger, S. Baudach, and W. Kautek, “Femtosecond pulse laser processing of TiN on silicon,” Appl. Surf. Sci. 154-155, 659-663 (2000).
    [CrossRef]
  13. J. Kim and S. Na, “Metal thin film ablation with femtosecond pulsed laser,” Opt. Laser Technol. 39, 1443-1448 (2007).
    [CrossRef]
  14. G. P. Smestad and M. Gratzel, “Demonstrating electron transfer and nanotechnology: a natural dye-sensitized nanocrystalline energy converter,” J. Chem. Ed. 75, 752-756 (1998).
    [CrossRef]

2007 (1)

J. Kim and S. Na, “Metal thin film ablation with femtosecond pulsed laser,” Opt. Laser Technol. 39, 1443-1448 (2007).
[CrossRef]

2005 (1)

X. Zeng, X. Mao, R. Greif, and R. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys. A 80, 237-241 (2005).
[CrossRef]

2004 (3)

X. C. Wang, G. C. Lim, H. Y. Zheng, F. L. Ng, W. Liu, and S. J. Chua, “Femtosecond pulse laser ablation of sapphire in ambient air,” Appl. Surf. Sci. 228, 221-226 (2004).
[CrossRef]

Y. Nakata, T. Okada, and M. Maeda, “Micromachining of a thin film by laser ablation using femtosecond laser with masks,” Opt. Laser Eng. 42, 389-393 (2004).
[CrossRef]

S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695-1709 (2004).
[CrossRef]

2002 (2)

K. Venkatakrishnan, B. Tan, and B. K. A. Ngoi, “Femtosecond pulsed laser ablation of thin gold film,” Opt. Laser Technol. 34, 199-202 (2002).
[CrossRef]

T. Asahi, H. Y. Yoshikawa, M. Yashiro, and H. Masuhara, “Femtosecond laser ablation transfer and phase transition of phthalocyanine solids,” Appl. Surf. Sci. 197-198, 777-781(2002).
[CrossRef]

2001 (1)

B. K. A. Ngoi, K. Venkatakrishnan, E. N. L. Lim, B. Tan, and L. H. K. Koh, “Effect of energy above laser-induced damage thresholds in the micromachining of silicon by femtosecond pulse laser,” Opt. Laser Eng. 35, 361-369 (2001).
[CrossRef]

2000 (2)

S. Baudach, J. Bonse, J. Krüger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate,” Appl. Surf. Sci. 154-155, 555-560 (2000).
[CrossRef]

J. Bonse, P. Rudolph, J. Krüger, S. Baudach, and W. Kautek, “Femtosecond pulse laser processing of TiN on silicon,” Appl. Surf. Sci. 154-155, 659-663 (2000).
[CrossRef]

1998 (1)

G. P. Smestad and M. Gratzel, “Demonstrating electron transfer and nanotechnology: a natural dye-sensitized nanocrystalline energy converter,” J. Chem. Ed. 75, 752-756 (1998).
[CrossRef]

Asahi, T.

T. Asahi, H. Y. Yoshikawa, M. Yashiro, and H. Masuhara, “Femtosecond laser ablation transfer and phase transition of phthalocyanine solids,” Appl. Surf. Sci. 197-198, 777-781(2002).
[CrossRef]

Baudach, S.

J. Bonse, P. Rudolph, J. Krüger, S. Baudach, and W. Kautek, “Femtosecond pulse laser processing of TiN on silicon,” Appl. Surf. Sci. 154-155, 659-663 (2000).
[CrossRef]

S. Baudach, J. Bonse, J. Krüger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate,” Appl. Surf. Sci. 154-155, 555-560 (2000).
[CrossRef]

Bonse, J.

S. Baudach, J. Bonse, J. Krüger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate,” Appl. Surf. Sci. 154-155, 555-560 (2000).
[CrossRef]

J. Bonse, P. Rudolph, J. Krüger, S. Baudach, and W. Kautek, “Femtosecond pulse laser processing of TiN on silicon,” Appl. Surf. Sci. 154-155, 659-663 (2000).
[CrossRef]

Chua, S. J.

X. C. Wang, G. C. Lim, H. Y. Zheng, F. L. Ng, W. Liu, and S. J. Chua, “Femtosecond pulse laser ablation of sapphire in ambient air,” Appl. Surf. Sci. 228, 221-226 (2004).
[CrossRef]

Gratzel,

G. P. Smestad and M. Gratzel, “Demonstrating electron transfer and nanotechnology: a natural dye-sensitized nanocrystalline energy converter,” J. Chem. Ed. 75, 752-756 (1998).
[CrossRef]

Greif, R.

X. Zeng, X. Mao, R. Greif, and R. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys. A 80, 237-241 (2005).
[CrossRef]

Grigoropoulos, C. P.

C. P. Grigoropoulos, Transport in Laser Microfabrication (Cambridge U. Press, 2009).
[CrossRef]

Guizard, S.

S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695-1709 (2004).
[CrossRef]

Kautek, W.

S. Baudach, J. Bonse, J. Krüger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate,” Appl. Surf. Sci. 154-155, 555-560 (2000).
[CrossRef]

J. Bonse, P. Rudolph, J. Krüger, S. Baudach, and W. Kautek, “Femtosecond pulse laser processing of TiN on silicon,” Appl. Surf. Sci. 154-155, 659-663 (2000).
[CrossRef]

Kim, J.

J. Kim and S. Na, “Metal thin film ablation with femtosecond pulsed laser,” Opt. Laser Technol. 39, 1443-1448 (2007).
[CrossRef]

Koh, L. H. K.

B. K. A. Ngoi, K. Venkatakrishnan, E. N. L. Lim, B. Tan, and L. H. K. Koh, “Effect of energy above laser-induced damage thresholds in the micromachining of silicon by femtosecond pulse laser,” Opt. Laser Eng. 35, 361-369 (2001).
[CrossRef]

Krüger, J.

J. Bonse, P. Rudolph, J. Krüger, S. Baudach, and W. Kautek, “Femtosecond pulse laser processing of TiN on silicon,” Appl. Surf. Sci. 154-155, 659-663 (2000).
[CrossRef]

S. Baudach, J. Bonse, J. Krüger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate,” Appl. Surf. Sci. 154-155, 555-560 (2000).
[CrossRef]

Lim, E. N. L.

B. K. A. Ngoi, K. Venkatakrishnan, E. N. L. Lim, B. Tan, and L. H. K. Koh, “Effect of energy above laser-induced damage thresholds in the micromachining of silicon by femtosecond pulse laser,” Opt. Laser Eng. 35, 361-369 (2001).
[CrossRef]

Lim, G. C.

X. C. Wang, G. C. Lim, H. Y. Zheng, F. L. Ng, W. Liu, and S. J. Chua, “Femtosecond pulse laser ablation of sapphire in ambient air,” Appl. Surf. Sci. 228, 221-226 (2004).
[CrossRef]

Liu, W.

X. C. Wang, G. C. Lim, H. Y. Zheng, F. L. Ng, W. Liu, and S. J. Chua, “Femtosecond pulse laser ablation of sapphire in ambient air,” Appl. Surf. Sci. 228, 221-226 (2004).
[CrossRef]

Maeda, M.

Y. Nakata, T. Okada, and M. Maeda, “Micromachining of a thin film by laser ablation using femtosecond laser with masks,” Opt. Laser Eng. 42, 389-393 (2004).
[CrossRef]

Mao, S.

S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695-1709 (2004).
[CrossRef]

Mao, X.

X. Zeng, X. Mao, R. Greif, and R. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys. A 80, 237-241 (2005).
[CrossRef]

S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695-1709 (2004).
[CrossRef]

Martin, P.

S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695-1709 (2004).
[CrossRef]

Masuhara, H.

T. Asahi, H. Y. Yoshikawa, M. Yashiro, and H. Masuhara, “Femtosecond laser ablation transfer and phase transition of phthalocyanine solids,” Appl. Surf. Sci. 197-198, 777-781(2002).
[CrossRef]

Miziolek, A.

A. Miziolek, V. Palleschi, and I. Schechter, Laser-Induced Breakdown Spectroscopy (LIBS) Fundamentals and Applications (Cambridge U. Press, 2006).
[CrossRef]

Na, S.

J. Kim and S. Na, “Metal thin film ablation with femtosecond pulsed laser,” Opt. Laser Technol. 39, 1443-1448 (2007).
[CrossRef]

Nakata, Y.

Y. Nakata, T. Okada, and M. Maeda, “Micromachining of a thin film by laser ablation using femtosecond laser with masks,” Opt. Laser Eng. 42, 389-393 (2004).
[CrossRef]

Ng, F. L.

X. C. Wang, G. C. Lim, H. Y. Zheng, F. L. Ng, W. Liu, and S. J. Chua, “Femtosecond pulse laser ablation of sapphire in ambient air,” Appl. Surf. Sci. 228, 221-226 (2004).
[CrossRef]

Ngoi, B. K. A.

K. Venkatakrishnan, B. Tan, and B. K. A. Ngoi, “Femtosecond pulsed laser ablation of thin gold film,” Opt. Laser Technol. 34, 199-202 (2002).
[CrossRef]

B. K. A. Ngoi, K. Venkatakrishnan, E. N. L. Lim, B. Tan, and L. H. K. Koh, “Effect of energy above laser-induced damage thresholds in the micromachining of silicon by femtosecond pulse laser,” Opt. Laser Eng. 35, 361-369 (2001).
[CrossRef]

Okada, T.

Y. Nakata, T. Okada, and M. Maeda, “Micromachining of a thin film by laser ablation using femtosecond laser with masks,” Opt. Laser Eng. 42, 389-393 (2004).
[CrossRef]

Palleschi, V.

A. Miziolek, V. Palleschi, and I. Schechter, Laser-Induced Breakdown Spectroscopy (LIBS) Fundamentals and Applications (Cambridge U. Press, 2006).
[CrossRef]

Petite, G.

S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695-1709 (2004).
[CrossRef]

Quere, F.

S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695-1709 (2004).
[CrossRef]

Rudolph, P.

J. Bonse, P. Rudolph, J. Krüger, S. Baudach, and W. Kautek, “Femtosecond pulse laser processing of TiN on silicon,” Appl. Surf. Sci. 154-155, 659-663 (2000).
[CrossRef]

Russo, R.

X. Zeng, X. Mao, R. Greif, and R. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys. A 80, 237-241 (2005).
[CrossRef]

S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695-1709 (2004).
[CrossRef]

Schechter, I.

A. Miziolek, V. Palleschi, and I. Schechter, Laser-Induced Breakdown Spectroscopy (LIBS) Fundamentals and Applications (Cambridge U. Press, 2006).
[CrossRef]

Singh, J.

J. Singh and S. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier, 2007).

Smestad, G. P.

G. P. Smestad and M. Gratzel, “Demonstrating electron transfer and nanotechnology: a natural dye-sensitized nanocrystalline energy converter,” J. Chem. Ed. 75, 752-756 (1998).
[CrossRef]

Tan, B.

K. Venkatakrishnan, B. Tan, and B. K. A. Ngoi, “Femtosecond pulsed laser ablation of thin gold film,” Opt. Laser Technol. 34, 199-202 (2002).
[CrossRef]

B. K. A. Ngoi, K. Venkatakrishnan, E. N. L. Lim, B. Tan, and L. H. K. Koh, “Effect of energy above laser-induced damage thresholds in the micromachining of silicon by femtosecond pulse laser,” Opt. Laser Eng. 35, 361-369 (2001).
[CrossRef]

Thakur, S.

J. Singh and S. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier, 2007).

Venkatakrishnan, K.

K. Venkatakrishnan, B. Tan, and B. K. A. Ngoi, “Femtosecond pulsed laser ablation of thin gold film,” Opt. Laser Technol. 34, 199-202 (2002).
[CrossRef]

B. K. A. Ngoi, K. Venkatakrishnan, E. N. L. Lim, B. Tan, and L. H. K. Koh, “Effect of energy above laser-induced damage thresholds in the micromachining of silicon by femtosecond pulse laser,” Opt. Laser Eng. 35, 361-369 (2001).
[CrossRef]

Wang, X. C.

X. C. Wang, G. C. Lim, H. Y. Zheng, F. L. Ng, W. Liu, and S. J. Chua, “Femtosecond pulse laser ablation of sapphire in ambient air,” Appl. Surf. Sci. 228, 221-226 (2004).
[CrossRef]

Yashiro, M.

T. Asahi, H. Y. Yoshikawa, M. Yashiro, and H. Masuhara, “Femtosecond laser ablation transfer and phase transition of phthalocyanine solids,” Appl. Surf. Sci. 197-198, 777-781(2002).
[CrossRef]

Yoshikawa, H. Y.

T. Asahi, H. Y. Yoshikawa, M. Yashiro, and H. Masuhara, “Femtosecond laser ablation transfer and phase transition of phthalocyanine solids,” Appl. Surf. Sci. 197-198, 777-781(2002).
[CrossRef]

Zeng, X.

X. Zeng, X. Mao, R. Greif, and R. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys. A 80, 237-241 (2005).
[CrossRef]

Zheng, H. Y.

X. C. Wang, G. C. Lim, H. Y. Zheng, F. L. Ng, W. Liu, and S. J. Chua, “Femtosecond pulse laser ablation of sapphire in ambient air,” Appl. Surf. Sci. 228, 221-226 (2004).
[CrossRef]

Appl. Phys. A (2)

S. Mao, F. Quere, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695-1709 (2004).
[CrossRef]

X. Zeng, X. Mao, R. Greif, and R. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys. A 80, 237-241 (2005).
[CrossRef]

Appl. Surf. Sci. (4)

T. Asahi, H. Y. Yoshikawa, M. Yashiro, and H. Masuhara, “Femtosecond laser ablation transfer and phase transition of phthalocyanine solids,” Appl. Surf. Sci. 197-198, 777-781(2002).
[CrossRef]

S. Baudach, J. Bonse, J. Krüger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate,” Appl. Surf. Sci. 154-155, 555-560 (2000).
[CrossRef]

X. C. Wang, G. C. Lim, H. Y. Zheng, F. L. Ng, W. Liu, and S. J. Chua, “Femtosecond pulse laser ablation of sapphire in ambient air,” Appl. Surf. Sci. 228, 221-226 (2004).
[CrossRef]

J. Bonse, P. Rudolph, J. Krüger, S. Baudach, and W. Kautek, “Femtosecond pulse laser processing of TiN on silicon,” Appl. Surf. Sci. 154-155, 659-663 (2000).
[CrossRef]

J. Chem. Ed. (1)

G. P. Smestad and M. Gratzel, “Demonstrating electron transfer and nanotechnology: a natural dye-sensitized nanocrystalline energy converter,” J. Chem. Ed. 75, 752-756 (1998).
[CrossRef]

Opt. Laser Eng. (2)

Y. Nakata, T. Okada, and M. Maeda, “Micromachining of a thin film by laser ablation using femtosecond laser with masks,” Opt. Laser Eng. 42, 389-393 (2004).
[CrossRef]

B. K. A. Ngoi, K. Venkatakrishnan, E. N. L. Lim, B. Tan, and L. H. K. Koh, “Effect of energy above laser-induced damage thresholds in the micromachining of silicon by femtosecond pulse laser,” Opt. Laser Eng. 35, 361-369 (2001).
[CrossRef]

Opt. Laser Technol. (2)

K. Venkatakrishnan, B. Tan, and B. K. A. Ngoi, “Femtosecond pulsed laser ablation of thin gold film,” Opt. Laser Technol. 34, 199-202 (2002).
[CrossRef]

J. Kim and S. Na, “Metal thin film ablation with femtosecond pulsed laser,” Opt. Laser Technol. 39, 1443-1448 (2007).
[CrossRef]

Other (3)

J. Singh and S. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier, 2007).

A. Miziolek, V. Palleschi, and I. Schechter, Laser-Induced Breakdown Spectroscopy (LIBS) Fundamentals and Applications (Cambridge U. Press, 2006).
[CrossRef]

C. P. Grigoropoulos, Transport in Laser Microfabrication (Cambridge U. Press, 2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

LIBS experimental setup.

Fig. 2
Fig. 2

Cross section of ablation craters for 545, 265, and 155 nm thick films using a 266 nm wavelength ultrafast laser at 1.5 J/ cm 2 .

Fig. 3
Fig. 3

Plasma lifetime Mg-II 279.55 280.27 nm line of MgO doped Ti O 2 film using the 800 nm ultrafast laser.

Fig. 4
Fig. 4

Mg/Ti LIBS signal ratio for varying amounts of MgO dopant using a 100 fs pulse at 800 and 266 nm and a 4 ns pulse at 266 nm ( 221 μJ , 76 μJ , and 87 μJ per pulse, respectively).

Metrics