Abstract

We present preliminary results that show good correlation between elemental compositions of three bioaerosol samples, as measured in the laboratory by combustion analysis and with proton-induced x-ray emission and spark-induced breakdown spectroscopy signals integrated over the entire emission time profiles. Atomic (Ca, Al, Fe, and Si) and molecular features (CN, N2+, and OH) were observed compared to the laboratory data.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Gibb-Snyder, B. Gullett, S. Ryan, L. Oudejans, and A. Touati, “Development of size-selective sampling of Bacillus anthracis surrogate spores from simulated building air intake mixtures for analysis via laser-induced breakdown spectroscopy,” Appl. Spectrosc. 60, 860-870 (2006).
    [CrossRef] [PubMed]
  2. K. W. Kim, “Physico-chemical characteristics of visibility impairment by airborne pollen in urban area,” Atmos. Environ. 41, 3565-3576 (2007).
    [CrossRef]
  3. M. Y. Menetrez, K. K. Foarde, T. R. Dean, D. A. Betancourt, and S. A. Moore, “An evaluation of the protein mass of particulate matter,” Atmos. Environ. 41, 8264-8274 (2007).
    [CrossRef]
  4. S. Matthias-Maser and R. Jaenicke, “The size distribution of primary biological aerosol particles with radii >0.2 μm in an urban/rural influenced region,” Atmos. Res. 39, 279-286(1995).
    [CrossRef]
  5. A. R. Boyain-Goitia, D. C. S. Beddows, B. C. Griffiths, and H. H. Telle, “Single-pollen analysis by laser-induced breakdown spectroscopy and Raman microscopy,” Appl. Opt. 42, 6119-6132 (2003).
    [CrossRef] [PubMed]
  6. A. C. Samuels, F. C. DeLucia, K. L. McNesby, and A. W. Miziolek, “Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens and protein: initial studies of discrimination potential,” Appl. Opt. 42, 6205-6209 (2003).
    [CrossRef] [PubMed]
  7. S. Morel, N. Leone, P. Adam, and J. Amoureaux, “Detection of bacteria by time-resolved laser-induced breakdown spectroscopy,” Appl. Opt. 42, 6184-6191 (2003).
    [CrossRef] [PubMed]
  8. J. D. Hybl, G. A. Lithgow, and S. G. Buckley, “Laser-induced breakdown spectroscopy detection and classification of biological aerosols,” Appl. Spectrosc. 57, 1207-1215(2003).
    [CrossRef] [PubMed]
  9. C. A. Munson, F. C. De Lucia Jr., T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta Part B 60, 1217-1224(2005).
    [CrossRef]
  10. A. C. Samuels, F. C. DeLucia Jr, K. L. McNesby, and A. W. Miziolek, “Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential,” Appl. Opt. 42, 6205-6209 (2003).
    [CrossRef] [PubMed]
  11. A. J. R. Hunter, S. J. Davis, L. G. Piper, K. W. Holtzclaw, and M. E. Fraser, “Spark-induced breakdown spectroscopy: a new technique for monitoring heavy metals,” Appl. Spectrosc. 54, 575-582 (2000).
    [CrossRef]
  12. J. Luque and D. R. Crosley, “LIFBASE: database and spectral simulation (version 1.5),” SRI International Report MP 99-009 (SRI, 1999).
  13. National Institutes of Standards Technology, “Atomic lines and levels,” http://physics.nist.gov/PhysRefData/ASD/index.html.
  14. M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901 (2006).
    [CrossRef]
  15. M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
    [CrossRef]

2007

K. W. Kim, “Physico-chemical characteristics of visibility impairment by airborne pollen in urban area,” Atmos. Environ. 41, 3565-3576 (2007).
[CrossRef]

M. Y. Menetrez, K. K. Foarde, T. R. Dean, D. A. Betancourt, and S. A. Moore, “An evaluation of the protein mass of particulate matter,” Atmos. Environ. 41, 8264-8274 (2007).
[CrossRef]

2006

E. Gibb-Snyder, B. Gullett, S. Ryan, L. Oudejans, and A. Touati, “Development of size-selective sampling of Bacillus anthracis surrogate spores from simulated building air intake mixtures for analysis via laser-induced breakdown spectroscopy,” Appl. Spectrosc. 60, 860-870 (2006).
[CrossRef] [PubMed]

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
[CrossRef]

2005

C. A. Munson, F. C. De Lucia Jr., T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta Part B 60, 1217-1224(2005).
[CrossRef]

2003

2000

1995

S. Matthias-Maser and R. Jaenicke, “The size distribution of primary biological aerosol particles with radii >0.2 μm in an urban/rural influenced region,” Atmos. Res. 39, 279-286(1995).
[CrossRef]

Adam, P.

Amodeo, T.

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901 (2006).
[CrossRef]

Amoureaux, J.

Baudelet, M.

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901 (2006).
[CrossRef]

Beddows, D. C. S.

Betancourt, D. A.

M. Y. Menetrez, K. K. Foarde, T. R. Dean, D. A. Betancourt, and S. A. Moore, “An evaluation of the protein mass of particulate matter,” Atmos. Environ. 41, 8264-8274 (2007).
[CrossRef]

Boyain-Goitia, A. R.

Buckley, S. G.

Crosley, D. R.

J. Luque and D. R. Crosley, “LIFBASE: database and spectral simulation (version 1.5),” SRI International Report MP 99-009 (SRI, 1999).

Davis, S. J.

De Lucia, F. C.

C. A. Munson, F. C. De Lucia Jr., T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta Part B 60, 1217-1224(2005).
[CrossRef]

Dean, T. R.

M. Y. Menetrez, K. K. Foarde, T. R. Dean, D. A. Betancourt, and S. A. Moore, “An evaluation of the protein mass of particulate matter,” Atmos. Environ. 41, 8264-8274 (2007).
[CrossRef]

DeLucia, F. C.

Foarde, K. K.

M. Y. Menetrez, K. K. Foarde, T. R. Dean, D. A. Betancourt, and S. A. Moore, “An evaluation of the protein mass of particulate matter,” Atmos. Environ. 41, 8264-8274 (2007).
[CrossRef]

Fraser, M. E.

Fréjafon, E.

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901 (2006).
[CrossRef]

Gibb-Snyder, E.

Griffiths, B. C.

Gullett, B.

Guyon, L.

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
[CrossRef]

Holtzclaw, K. W.

Hunter, A. J. R.

Hybl, J. D.

Jaenicke, R.

S. Matthias-Maser and R. Jaenicke, “The size distribution of primary biological aerosol particles with radii >0.2 μm in an urban/rural influenced region,” Atmos. Res. 39, 279-286(1995).
[CrossRef]

Kim, K. W.

K. W. Kim, “Physico-chemical characteristics of visibility impairment by airborne pollen in urban area,” Atmos. Environ. 41, 3565-3576 (2007).
[CrossRef]

Laloi, P.

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
[CrossRef]

Leone, N.

Lithgow, G. A.

Luque, J.

J. Luque and D. R. Crosley, “LIFBASE: database and spectral simulation (version 1.5),” SRI International Report MP 99-009 (SRI, 1999).

Matthias-Maser, S.

S. Matthias-Maser and R. Jaenicke, “The size distribution of primary biological aerosol particles with radii >0.2 μm in an urban/rural influenced region,” Atmos. Res. 39, 279-286(1995).
[CrossRef]

McNesby, K. L.

Menetrez, M. Y.

M. Y. Menetrez, K. K. Foarde, T. R. Dean, D. A. Betancourt, and S. A. Moore, “An evaluation of the protein mass of particulate matter,” Atmos. Environ. 41, 8264-8274 (2007).
[CrossRef]

Miziolek, A. W.

Moore, S. A.

M. Y. Menetrez, K. K. Foarde, T. R. Dean, D. A. Betancourt, and S. A. Moore, “An evaluation of the protein mass of particulate matter,” Atmos. Environ. 41, 8264-8274 (2007).
[CrossRef]

Morel, S.

Munson, C. A.

C. A. Munson, F. C. De Lucia Jr., T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta Part B 60, 1217-1224(2005).
[CrossRef]

Oudejans, L.

Piehler, T.

C. A. Munson, F. C. De Lucia Jr., T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta Part B 60, 1217-1224(2005).
[CrossRef]

Piper, L. G.

Ryan, S.

Samuels, A. C.

Telle, H. H.

Touati, A.

Wolf, J.-P.

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
[CrossRef]

Yu, J.

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901 (2006).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901 (2006).
[CrossRef]

Appl. Spectrosc.

Atmos. Environ.

K. W. Kim, “Physico-chemical characteristics of visibility impairment by airborne pollen in urban area,” Atmos. Environ. 41, 3565-3576 (2007).
[CrossRef]

M. Y. Menetrez, K. K. Foarde, T. R. Dean, D. A. Betancourt, and S. A. Moore, “An evaluation of the protein mass of particulate matter,” Atmos. Environ. 41, 8264-8274 (2007).
[CrossRef]

Atmos. Res.

S. Matthias-Maser and R. Jaenicke, “The size distribution of primary biological aerosol particles with radii >0.2 μm in an urban/rural influenced region,” Atmos. Res. 39, 279-286(1995).
[CrossRef]

J. Appl. Phys.

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
[CrossRef]

Spectrochim. Acta Part B

C. A. Munson, F. C. De Lucia Jr., T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta Part B 60, 1217-1224(2005).
[CrossRef]

Other

J. Luque and D. R. Crosley, “LIFBASE: database and spectral simulation (version 1.5),” SRI International Report MP 99-009 (SRI, 1999).

National Institutes of Standards Technology, “Atomic lines and levels,” http://physics.nist.gov/PhysRefData/ASD/index.html.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Drawing of spark gap and lens tube section interfaced to an aerosol generator that produces the sample described in the text. Air is pumped through the porous cylinder that forms the generator and dries and delivers the particles produced by the nebulizer to the spark gap.

Fig. 2
Fig. 2

Elemental analysis of Bacillus thuringiensis (Bt), ragweed pollen, and Johnson grass smut. Major elements were measured with a Perkin-Elmer CHN analyzer by Elemental Analysis Inc., Lexington, Kentucky, USA.

Fig. 3
Fig. 3

Elemental analysis of Bacillus thuringiensis (Bt), ragweed pollen, and Johnson grass smut. Minor elements were measured with proton-induced x-ray emission (PIXE) by Elemental Analysis Inc., Lexington, Kentucky, USA.

Fig. 4
Fig. 4

SIBS spectra of Bacillus thuringiensis (Bt), ragweed pollen (RW), and Johnson grass smut (smut) from 350 to 390 nm . Principal emission features in this region are Ca (370.60 and 373.69 nm ), CN (B to X, 387.1 and 388.2 nm ), N 2 + (between 350 and 360 nm ) and Si ( 390.55 nm ).

Fig. 5
Fig. 5

SIBS spectra of Bacillus thuringiensis (Bt), ragweed pollen (RW), and Johnson grass smut (smut) from 285 to 320 nm . Principal emission features in this region are Ca (315.89, 317.93, and 318.13 nm ) and Si ( 299.5 nm ). The bright feature at 288.8 nm is an electrode line.

Fig. 6
Fig. 6

Background corrected CN temporal profile at 388.2 nm (0 to 0 vibrational band) for Bacillus thuringiensis (Bt), ragweed pollen (RW), Johnson grass smut (smut), and air with matched relative humidity as a background.

Fig. 7
Fig. 7

Modeled molecular spectra convolved with electrode lines. This synthetic spectrum models the same spectral region seen in Fig. 3. Molecular features (CN and N 2 + ) were modeled at 6000 K .

Fig. 8
Fig. 8

Background corrected Ca II temporal profiles ( 373.69 nm ) for Bacillus thuringiensis (Bt), ragweed pollen (RW), and Johnson grass smut (smut).

Fig. 9
Fig. 9

Plot of integrated background corrected peak height of CN 387.1 nm feature versus % N by weight as analyzed by combustion in the laboratory. R 2 of line drawn through these data is 0.934.

Fig. 10
Fig. 10

Plot of integrated background corrected peak height of Ca II ( 373.69 nm ) versus % Ca by weight as analyzed by PIXE. R 2 of a line though these data is 0.995.

Tables (1)

Tables Icon

Table 1 Principal Lines Observed in the SIBS Analysis of Bioaerosols

Metrics