Abstract

The inscription of light-induced self-written waveguides (LISW) with multimode optical fibers cannot be achieved by using coherent light because of the filamentation phenomena coming from the interferences among the different propagating modes. To suppress this filamentation, we have used two distinct strategies, an incoherent light writing technique and an “on the flow” writing process, to demonstrate the buildup of 1.5mm long multimode LISWs.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. M. Monro, C. M. De Sterke, and L. Poladian, “Self-writing a waveguide in glass using photosensitivity,” Opt. Commun. 119, 523-526 (1995).
    [CrossRef]
  2. S. Kewitsch and A. Yariv, “Self-focusing and self-trapping of optical beams upon photopolymerisation,” Opt. Lett. 21, 24-26 (1996).
    [CrossRef] [PubMed]
  3. S. Kewitsch and A. Yariv, “Nonlinear optical properties of photoresists for projection lithography,” Appl. Phys. Lett. 68, 455-457 (1996).
    [CrossRef]
  4. M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett. 79, 1079-1081 (2001).
    [CrossRef]
  5. K. Dorkenoo, O. Crégut, L. Mager, F. Gillot, C. Carre, and A. Fort, “Quasi-solitonic behavior of self-written waveguides created by photopolymerization,” Opt. Lett. 27, 1782-1784 (2002).
    [CrossRef]
  6. K. Yamashita, H. Okada, M. Ito, E. Fukuzawa, K. Oe, “Device parameter analyses of solid-state organic laser made by self-written active waveguide technique,” J. Lightwave Technol. 27, 4570-4574 (2009).
    [CrossRef]
  7. O. Sugihar, S. Yasuda, B. Cai, K. Komatsu, and K. Kyoji, “Serially grafted polymer optical waveguides fabricated by light-induced self-written waveguide technique,” Opt. Lett. 33, 294-296 (2008).
    [CrossRef]
  8. J.-P. Bombenger, L. Mager, D. Gindre, J.-P. Vola, K. D. Dorkenoo, A. Fort, and C. Carré, “High resolution patterning of quadratic non linear optical properties in doped photopolymer thin films,” Opt. Commun. 280, 192-196 (2007).
    [CrossRef]
  9. J. C. An, Y. Cho, and Y. Matsuo, “Electrooptic-distributed Bragg-reflection modulators for integrated optics,” IEEE J. Quantum Electron. 13, 206-208 (1977).
    [CrossRef]
  10. K. D. Dorkenoo, F. Gillot, O. Crégut, Y. Sonnefraud, A. Fort, and H. Leblond, “Control of the refractive index in photopolymerizable materials for (2+1)D solitary wave guide formation,” Phys. Rev. Lett. 93, 143905 (2004).
    [CrossRef] [PubMed]
  11. S. Jradi, O. Soppera, and D. J. Lougnot, “Fabrication of polymer waveguides between two optical fibers using spatially controlled light-induced polymerization,” Appl. Opt. 47, 3987-3993 (2008).
    [CrossRef] [PubMed]
  12. T. Yoshimura, J. Roman, Y. Takahashi, W. C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing waveguide coupling method “SOLNET” and its application to film optical circuit substrates,” in Electronic Components and Technology Conference, 2000 Proceedings (IEEE, 2000), pp. 962-969.

2009

2008

2007

J.-P. Bombenger, L. Mager, D. Gindre, J.-P. Vola, K. D. Dorkenoo, A. Fort, and C. Carré, “High resolution patterning of quadratic non linear optical properties in doped photopolymer thin films,” Opt. Commun. 280, 192-196 (2007).
[CrossRef]

2004

K. D. Dorkenoo, F. Gillot, O. Crégut, Y. Sonnefraud, A. Fort, and H. Leblond, “Control of the refractive index in photopolymerizable materials for (2+1)D solitary wave guide formation,” Phys. Rev. Lett. 93, 143905 (2004).
[CrossRef] [PubMed]

2002

2001

M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett. 79, 1079-1081 (2001).
[CrossRef]

1996

S. Kewitsch and A. Yariv, “Nonlinear optical properties of photoresists for projection lithography,” Appl. Phys. Lett. 68, 455-457 (1996).
[CrossRef]

S. Kewitsch and A. Yariv, “Self-focusing and self-trapping of optical beams upon photopolymerisation,” Opt. Lett. 21, 24-26 (1996).
[CrossRef] [PubMed]

1995

T. M. Monro, C. M. De Sterke, and L. Poladian, “Self-writing a waveguide in glass using photosensitivity,” Opt. Commun. 119, 523-526 (1995).
[CrossRef]

1977

J. C. An, Y. Cho, and Y. Matsuo, “Electrooptic-distributed Bragg-reflection modulators for integrated optics,” IEEE J. Quantum Electron. 13, 206-208 (1977).
[CrossRef]

An, J. C.

J. C. An, Y. Cho, and Y. Matsuo, “Electrooptic-distributed Bragg-reflection modulators for integrated optics,” IEEE J. Quantum Electron. 13, 206-208 (1977).
[CrossRef]

Aoki, S.

T. Yoshimura, J. Roman, Y. Takahashi, W. C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing waveguide coupling method “SOLNET” and its application to film optical circuit substrates,” in Electronic Components and Technology Conference, 2000 Proceedings (IEEE, 2000), pp. 962-969.

Bombenger, J.-P.

J.-P. Bombenger, L. Mager, D. Gindre, J.-P. Vola, K. D. Dorkenoo, A. Fort, and C. Carré, “High resolution patterning of quadratic non linear optical properties in doped photopolymer thin films,” Opt. Commun. 280, 192-196 (2007).
[CrossRef]

Cai, B.

Carre, C.

Carré, C.

J.-P. Bombenger, L. Mager, D. Gindre, J.-P. Vola, K. D. Dorkenoo, A. Fort, and C. Carré, “High resolution patterning of quadratic non linear optical properties in doped photopolymer thin films,” Opt. Commun. 280, 192-196 (2007).
[CrossRef]

Cho, Y.

J. C. An, Y. Cho, and Y. Matsuo, “Electrooptic-distributed Bragg-reflection modulators for integrated optics,” IEEE J. Quantum Electron. 13, 206-208 (1977).
[CrossRef]

Crégut, O.

K. D. Dorkenoo, F. Gillot, O. Crégut, Y. Sonnefraud, A. Fort, and H. Leblond, “Control of the refractive index in photopolymerizable materials for (2+1)D solitary wave guide formation,” Phys. Rev. Lett. 93, 143905 (2004).
[CrossRef] [PubMed]

K. Dorkenoo, O. Crégut, L. Mager, F. Gillot, C. Carre, and A. Fort, “Quasi-solitonic behavior of self-written waveguides created by photopolymerization,” Opt. Lett. 27, 1782-1784 (2002).
[CrossRef]

De Sterke, C. M.

T. M. Monro, C. M. De Sterke, and L. Poladian, “Self-writing a waveguide in glass using photosensitivity,” Opt. Commun. 119, 523-526 (1995).
[CrossRef]

Dorkenoo, K.

Dorkenoo, K. D.

J.-P. Bombenger, L. Mager, D. Gindre, J.-P. Vola, K. D. Dorkenoo, A. Fort, and C. Carré, “High resolution patterning of quadratic non linear optical properties in doped photopolymer thin films,” Opt. Commun. 280, 192-196 (2007).
[CrossRef]

K. D. Dorkenoo, F. Gillot, O. Crégut, Y. Sonnefraud, A. Fort, and H. Leblond, “Control of the refractive index in photopolymerizable materials for (2+1)D solitary wave guide formation,” Phys. Rev. Lett. 93, 143905 (2004).
[CrossRef] [PubMed]

Fort, A.

J.-P. Bombenger, L. Mager, D. Gindre, J.-P. Vola, K. D. Dorkenoo, A. Fort, and C. Carré, “High resolution patterning of quadratic non linear optical properties in doped photopolymer thin films,” Opt. Commun. 280, 192-196 (2007).
[CrossRef]

K. D. Dorkenoo, F. Gillot, O. Crégut, Y. Sonnefraud, A. Fort, and H. Leblond, “Control of the refractive index in photopolymerizable materials for (2+1)D solitary wave guide formation,” Phys. Rev. Lett. 93, 143905 (2004).
[CrossRef] [PubMed]

K. Dorkenoo, O. Crégut, L. Mager, F. Gillot, C. Carre, and A. Fort, “Quasi-solitonic behavior of self-written waveguides created by photopolymerization,” Opt. Lett. 27, 1782-1784 (2002).
[CrossRef]

Fukuzawa, E.

Gillot, F.

K. D. Dorkenoo, F. Gillot, O. Crégut, Y. Sonnefraud, A. Fort, and H. Leblond, “Control of the refractive index in photopolymerizable materials for (2+1)D solitary wave guide formation,” Phys. Rev. Lett. 93, 143905 (2004).
[CrossRef] [PubMed]

K. Dorkenoo, O. Crégut, L. Mager, F. Gillot, C. Carre, and A. Fort, “Quasi-solitonic behavior of self-written waveguides created by photopolymerization,” Opt. Lett. 27, 1782-1784 (2002).
[CrossRef]

Gindre, D.

J.-P. Bombenger, L. Mager, D. Gindre, J.-P. Vola, K. D. Dorkenoo, A. Fort, and C. Carré, “High resolution patterning of quadratic non linear optical properties in doped photopolymer thin films,” Opt. Commun. 280, 192-196 (2007).
[CrossRef]

Inao, M.

T. Yoshimura, J. Roman, Y. Takahashi, W. C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing waveguide coupling method “SOLNET” and its application to film optical circuit substrates,” in Electronic Components and Technology Conference, 2000 Proceedings (IEEE, 2000), pp. 962-969.

Ishitsuka, T.

T. Yoshimura, J. Roman, Y. Takahashi, W. C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing waveguide coupling method “SOLNET” and its application to film optical circuit substrates,” in Electronic Components and Technology Conference, 2000 Proceedings (IEEE, 2000), pp. 962-969.

Ito, H.

M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett. 79, 1079-1081 (2001).
[CrossRef]

Ito, M.

Jradi, S.

Kagami, M.

M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett. 79, 1079-1081 (2001).
[CrossRef]

Kewitsch, S.

S. Kewitsch and A. Yariv, “Nonlinear optical properties of photoresists for projection lithography,” Appl. Phys. Lett. 68, 455-457 (1996).
[CrossRef]

S. Kewitsch and A. Yariv, “Self-focusing and self-trapping of optical beams upon photopolymerisation,” Opt. Lett. 21, 24-26 (1996).
[CrossRef] [PubMed]

Komatsu, K.

Kyoji, K.

Leblond, H.

K. D. Dorkenoo, F. Gillot, O. Crégut, Y. Sonnefraud, A. Fort, and H. Leblond, “Control of the refractive index in photopolymerizable materials for (2+1)D solitary wave guide formation,” Phys. Rev. Lett. 93, 143905 (2004).
[CrossRef] [PubMed]

Lougnot, D. J.

Mager, L.

J.-P. Bombenger, L. Mager, D. Gindre, J.-P. Vola, K. D. Dorkenoo, A. Fort, and C. Carré, “High resolution patterning of quadratic non linear optical properties in doped photopolymer thin films,” Opt. Commun. 280, 192-196 (2007).
[CrossRef]

K. Dorkenoo, O. Crégut, L. Mager, F. Gillot, C. Carre, and A. Fort, “Quasi-solitonic behavior of self-written waveguides created by photopolymerization,” Opt. Lett. 27, 1782-1784 (2002).
[CrossRef]

Matsuo, Y.

J. C. An, Y. Cho, and Y. Matsuo, “Electrooptic-distributed Bragg-reflection modulators for integrated optics,” IEEE J. Quantum Electron. 13, 206-208 (1977).
[CrossRef]

Monro, T. M.

T. M. Monro, C. M. De Sterke, and L. Poladian, “Self-writing a waveguide in glass using photosensitivity,” Opt. Commun. 119, 523-526 (1995).
[CrossRef]

Motoyoshi, K.

T. Yoshimura, J. Roman, Y. Takahashi, W. C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing waveguide coupling method “SOLNET” and its application to film optical circuit substrates,” in Electronic Components and Technology Conference, 2000 Proceedings (IEEE, 2000), pp. 962-969.

Oe, K.

Okada, H.

Poladian, L.

T. M. Monro, C. M. De Sterke, and L. Poladian, “Self-writing a waveguide in glass using photosensitivity,” Opt. Commun. 119, 523-526 (1995).
[CrossRef]

Roman, J.

T. Yoshimura, J. Roman, Y. Takahashi, W. C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing waveguide coupling method “SOLNET” and its application to film optical circuit substrates,” in Electronic Components and Technology Conference, 2000 Proceedings (IEEE, 2000), pp. 962-969.

Sonnefraud, Y.

K. D. Dorkenoo, F. Gillot, O. Crégut, Y. Sonnefraud, A. Fort, and H. Leblond, “Control of the refractive index in photopolymerizable materials for (2+1)D solitary wave guide formation,” Phys. Rev. Lett. 93, 143905 (2004).
[CrossRef] [PubMed]

Soppera, O.

Sotoyama, W.

T. Yoshimura, J. Roman, Y. Takahashi, W. C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing waveguide coupling method “SOLNET” and its application to film optical circuit substrates,” in Electronic Components and Technology Conference, 2000 Proceedings (IEEE, 2000), pp. 962-969.

Sugihar, O.

Takahashi, Y.

T. Yoshimura, J. Roman, Y. Takahashi, W. C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing waveguide coupling method “SOLNET” and its application to film optical circuit substrates,” in Electronic Components and Technology Conference, 2000 Proceedings (IEEE, 2000), pp. 962-969.

Tsukamoto, K.

T. Yoshimura, J. Roman, Y. Takahashi, W. C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing waveguide coupling method “SOLNET” and its application to film optical circuit substrates,” in Electronic Components and Technology Conference, 2000 Proceedings (IEEE, 2000), pp. 962-969.

Vola, J.-P.

J.-P. Bombenger, L. Mager, D. Gindre, J.-P. Vola, K. D. Dorkenoo, A. Fort, and C. Carré, “High resolution patterning of quadratic non linear optical properties in doped photopolymer thin films,” Opt. Commun. 280, 192-196 (2007).
[CrossRef]

Wang, W. C. V.

T. Yoshimura, J. Roman, Y. Takahashi, W. C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing waveguide coupling method “SOLNET” and its application to film optical circuit substrates,” in Electronic Components and Technology Conference, 2000 Proceedings (IEEE, 2000), pp. 962-969.

Yamashita, K.

Yamashita, T.

M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett. 79, 1079-1081 (2001).
[CrossRef]

Yariv, A.

S. Kewitsch and A. Yariv, “Nonlinear optical properties of photoresists for projection lithography,” Appl. Phys. Lett. 68, 455-457 (1996).
[CrossRef]

S. Kewitsch and A. Yariv, “Self-focusing and self-trapping of optical beams upon photopolymerisation,” Opt. Lett. 21, 24-26 (1996).
[CrossRef] [PubMed]

Yasuda, S.

Yoshimura, T.

T. Yoshimura, J. Roman, Y. Takahashi, W. C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing waveguide coupling method “SOLNET” and its application to film optical circuit substrates,” in Electronic Components and Technology Conference, 2000 Proceedings (IEEE, 2000), pp. 962-969.

Appl. Opt.

Appl. Phys. Lett.

S. Kewitsch and A. Yariv, “Nonlinear optical properties of photoresists for projection lithography,” Appl. Phys. Lett. 68, 455-457 (1996).
[CrossRef]

M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett. 79, 1079-1081 (2001).
[CrossRef]

IEEE J. Quantum Electron.

J. C. An, Y. Cho, and Y. Matsuo, “Electrooptic-distributed Bragg-reflection modulators for integrated optics,” IEEE J. Quantum Electron. 13, 206-208 (1977).
[CrossRef]

J. Lightwave Technol.

Opt. Commun.

J.-P. Bombenger, L. Mager, D. Gindre, J.-P. Vola, K. D. Dorkenoo, A. Fort, and C. Carré, “High resolution patterning of quadratic non linear optical properties in doped photopolymer thin films,” Opt. Commun. 280, 192-196 (2007).
[CrossRef]

T. M. Monro, C. M. De Sterke, and L. Poladian, “Self-writing a waveguide in glass using photosensitivity,” Opt. Commun. 119, 523-526 (1995).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

K. D. Dorkenoo, F. Gillot, O. Crégut, Y. Sonnefraud, A. Fort, and H. Leblond, “Control of the refractive index in photopolymerizable materials for (2+1)D solitary wave guide formation,” Phys. Rev. Lett. 93, 143905 (2004).
[CrossRef] [PubMed]

Other

T. Yoshimura, J. Roman, Y. Takahashi, W. C. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, and W. Sotoyama, “Self-organizing waveguide coupling method “SOLNET” and its application to film optical circuit substrates,” in Electronic Components and Technology Conference, 2000 Proceedings (IEEE, 2000), pp. 962-969.

Supplementary Material (1)

» Media 1: MOV (3084 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Filamentation at a multimode optical fiber exit.

Fig. 2
Fig. 2

1.5 mm long self-written waveguide obtained using white light from a 500 W halogen lamp.

Fig. 3
Fig. 3

Successive steps of the building of the LISW waveguide “on the flow” (Media 1).

Fig. 4
Fig. 4

500 μm LISW connection between two multimode fibers during the inscription. The alignment is eased by using a furrow.

Fig. 5
Fig. 5

OTDR loss measurement at 1550 nm for a 300 μm connection. (1) Reflection peak at the air–fiber interface (input), (2) losses at the LISW connection, and (3) reflection at the fiber–air interface (exit).

Fig. 6
Fig. 6

Transmission spectrum of the cured material (thickness 250 μm ) in the near infrared.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

V = 2 π λ a n core 2 n cladding 2 ,

Metrics