Abstract

We propose a layout of a high extinction ratio polarizer in the terahertz (THz) domain. This polarizer is composed of two dense metal wire gratings separated in parallel, of which the grating constant is much smaller than the incident wavelength. Numerical analysis shows that, in the range of 0.3THz3THz, the transmission of TM wave through this polarizer is higher than 97% and the extinction ratio achieved is about 180dB—much higher than the conventional wire-grid polarizer.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photon. 1, 97-105 (2007).
    [CrossRef]
  2. T. Loffler, K. J. Siebert, N. Hasegawa, T. Hahn, and H. G. Roskos, “All-optoelectronic terahertz imaging systems and examples of their application,” Proc. IEEE 95, 1576-1582 (2007).
    [CrossRef]
  3. M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32, 1-41 (2008).
    [CrossRef]
  4. A. E. Costley, K. H. Hursey, G. F. Neill, and J. M. Ward, “Free-standing fine-wire grids: their manufacture, performance, and use at millimeter and submillimeter wavelengths,” J. Opt. Soc. Am. 67, 979-981 (1977).
    [CrossRef]
  5. S. Awasthi, A. Srivastava, U. Mlaviya, and S. P. Ojha, “Wide-angle, broadband plate polarizer in terahertz frequency region,” Solid State Commun. 146, 506-509 (2008).
    [CrossRef]
  6. C.-F. Hsieh, Y.-C. Lai, P.-P. Panand, and C.-L. Pan, “Polarizing terahertz waves with nematic liquid crystals,” Opt. Lett. 33, 1174-1176 (2008).
    [CrossRef] [PubMed]
  7. I. Yamada, K. Takano, M. Hangyo, M. Saito, and W. Watanabe, “Terahertz wire-grid polarizers with micrometer-pitch Al gratings,” Opt. Lett. 34, 274-276 (2009).
    [CrossRef] [PubMed]
  8. V. Yurchenko, J. Murphy, J. Barton, J. Verheggen, and K. Rodgers, “Dual-layer frequency-selective grid polarizers on thin-film substrates for THz applications,” in Proceedings of the 38th European Microwave Conference, 2008, EuMC 2008 (IEEE, 2008), pp. 1014-1017.
    [CrossRef]
  9. J. L. Adams and L. C. Botten, “Double gratings and their applications as Fabry-Perot interferometers,” J. Opt. 10, 109-117 (1979).
    [CrossRef]
  10. E. A. M. Baker and B. Walker, “Fabry-Perot interferometers for use at submillimetre wavelengths,” J. Phys. E: Sci. Instrum. 15, 25-32 (1982).
    [CrossRef]
  11. Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Appl. Phys. Lett. 77, 927-929 (2000).
    [CrossRef]
  12. Y. Ekinci, H. H. Solak, C. David, and H. Sigg, “Bilayer Al wire-grids as broadband and high-performance polarizers,” Opt. Express 14, 2323-2334 (2006).
    [CrossRef] [PubMed]
  13. S. H. Ahn, J.-S. Kim, and L. J. Guo, “Bilayer metal wire-grid polarizer fabricated by roll-to-roll nanoimprint lithography on flexible plastic substrate,” J. Vac. Sci. Technol. B 25, 2388-2391 (2007).
    [CrossRef]
  14. Z. Y. Yang, M. Zhao, N. L. Dai, G. Yang, H. Long, Y. H. Li, and P. X. Lu, “Broadband polarizers using dual-layer metallic nanowire grids,” IEEE Photon. Technol. Lett. 20, 697-699 (2008).
    [CrossRef]
  15. F. Flory, L. Escoubas, and B. Lazarides, “Artificial anisotropy and polarizing filters,” Appl. Opt. 41, 3332-3335 (2002).
    [CrossRef] [PubMed]
  16. P. Lalanne and D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43, 2063-2085 (1996).
    [CrossRef]
  17. F. Träger, Handbook of Lasers and Optics (Springer, 2007).
    [CrossRef]
  18. H. Xiao-Yong and C. Jun-Cheng, “Investigation on transmission properties of terahertz wave through semiconductor aperture,” Commun. Theor. Phys. 49, 485-488 (2008).
    [CrossRef]
  19. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356-3358 (2005).
    [CrossRef]
  20. C. Imhof and R. Zengerle, “Strong birefringence in left-handed metallic metamaterials,” Opt. Commun. 280, 213-217 (2007).
    [CrossRef]
  21. H. B. Chan, Z. Marcet, Kwangje Woo, and D. B. Tanner, “Optical transmission through double-layer metallic subwavelength slit arrays,” Opt. Lett. 31, 516-518 (2006).
    [CrossRef] [PubMed]
  22. R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and Alejandro Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. Lett. 79, 075425 (2009).
    [CrossRef]

2009 (2)

I. Yamada, K. Takano, M. Hangyo, M. Saito, and W. Watanabe, “Terahertz wire-grid polarizers with micrometer-pitch Al gratings,” Opt. Lett. 34, 274-276 (2009).
[CrossRef] [PubMed]

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and Alejandro Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. Lett. 79, 075425 (2009).
[CrossRef]

2008 (5)

S. Awasthi, A. Srivastava, U. Mlaviya, and S. P. Ojha, “Wide-angle, broadband plate polarizer in terahertz frequency region,” Solid State Commun. 146, 506-509 (2008).
[CrossRef]

C.-F. Hsieh, Y.-C. Lai, P.-P. Panand, and C.-L. Pan, “Polarizing terahertz waves with nematic liquid crystals,” Opt. Lett. 33, 1174-1176 (2008).
[CrossRef] [PubMed]

M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32, 1-41 (2008).
[CrossRef]

Z. Y. Yang, M. Zhao, N. L. Dai, G. Yang, H. Long, Y. H. Li, and P. X. Lu, “Broadband polarizers using dual-layer metallic nanowire grids,” IEEE Photon. Technol. Lett. 20, 697-699 (2008).
[CrossRef]

H. Xiao-Yong and C. Jun-Cheng, “Investigation on transmission properties of terahertz wave through semiconductor aperture,” Commun. Theor. Phys. 49, 485-488 (2008).
[CrossRef]

2007 (4)

S. H. Ahn, J.-S. Kim, and L. J. Guo, “Bilayer metal wire-grid polarizer fabricated by roll-to-roll nanoimprint lithography on flexible plastic substrate,” J. Vac. Sci. Technol. B 25, 2388-2391 (2007).
[CrossRef]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photon. 1, 97-105 (2007).
[CrossRef]

T. Loffler, K. J. Siebert, N. Hasegawa, T. Hahn, and H. G. Roskos, “All-optoelectronic terahertz imaging systems and examples of their application,” Proc. IEEE 95, 1576-1582 (2007).
[CrossRef]

C. Imhof and R. Zengerle, “Strong birefringence in left-handed metallic metamaterials,” Opt. Commun. 280, 213-217 (2007).
[CrossRef]

2006 (2)

2005 (1)

2002 (1)

2000 (1)

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Appl. Phys. Lett. 77, 927-929 (2000).
[CrossRef]

1996 (1)

P. Lalanne and D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43, 2063-2085 (1996).
[CrossRef]

1982 (1)

E. A. M. Baker and B. Walker, “Fabry-Perot interferometers for use at submillimetre wavelengths,” J. Phys. E: Sci. Instrum. 15, 25-32 (1982).
[CrossRef]

1979 (1)

J. L. Adams and L. C. Botten, “Double gratings and their applications as Fabry-Perot interferometers,” J. Opt. 10, 109-117 (1979).
[CrossRef]

1977 (1)

Adams, J. L.

J. L. Adams and L. C. Botten, “Double gratings and their applications as Fabry-Perot interferometers,” J. Opt. 10, 109-117 (1979).
[CrossRef]

Ahn, S. H.

S. H. Ahn, J.-S. Kim, and L. J. Guo, “Bilayer metal wire-grid polarizer fabricated by roll-to-roll nanoimprint lithography on flexible plastic substrate,” J. Vac. Sci. Technol. B 25, 2388-2391 (2007).
[CrossRef]

Awasthi, S.

S. Awasthi, A. Srivastava, U. Mlaviya, and S. P. Ojha, “Wide-angle, broadband plate polarizer in terahertz frequency region,” Solid State Commun. 146, 506-509 (2008).
[CrossRef]

Baker, E. A. M.

E. A. M. Baker and B. Walker, “Fabry-Perot interferometers for use at submillimetre wavelengths,” J. Phys. E: Sci. Instrum. 15, 25-32 (1982).
[CrossRef]

Barton, J.

V. Yurchenko, J. Murphy, J. Barton, J. Verheggen, and K. Rodgers, “Dual-layer frequency-selective grid polarizers on thin-film substrates for THz applications,” in Proceedings of the 38th European Microwave Conference, 2008, EuMC 2008 (IEEE, 2008), pp. 1014-1017.
[CrossRef]

Botten, L. C.

J. L. Adams and L. C. Botten, “Double gratings and their applications as Fabry-Perot interferometers,” J. Opt. 10, 109-117 (1979).
[CrossRef]

Cai, W.

Chan, H. B.

Chettiar, U. K.

Chou, S. Y.

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Appl. Phys. Lett. 77, 927-929 (2000).
[CrossRef]

Costley, A. E.

Dai, N. L.

Z. Y. Yang, M. Zhao, N. L. Dai, G. Yang, H. Long, Y. H. Li, and P. X. Lu, “Broadband polarizers using dual-layer metallic nanowire grids,” IEEE Photon. Technol. Lett. 20, 697-699 (2008).
[CrossRef]

David, C.

Deshpande, P.

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Appl. Phys. Lett. 77, 927-929 (2000).
[CrossRef]

Drachev, V. P.

Dragoman, D.

M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32, 1-41 (2008).
[CrossRef]

Dragoman, M.

M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32, 1-41 (2008).
[CrossRef]

Ekinci, Y.

Escoubas, L.

Flory, F.

García-Meca, C.

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and Alejandro Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. Lett. 79, 075425 (2009).
[CrossRef]

Guo, L. J.

S. H. Ahn, J.-S. Kim, and L. J. Guo, “Bilayer metal wire-grid polarizer fabricated by roll-to-roll nanoimprint lithography on flexible plastic substrate,” J. Vac. Sci. Technol. B 25, 2388-2391 (2007).
[CrossRef]

Hahn, T.

T. Loffler, K. J. Siebert, N. Hasegawa, T. Hahn, and H. G. Roskos, “All-optoelectronic terahertz imaging systems and examples of their application,” Proc. IEEE 95, 1576-1582 (2007).
[CrossRef]

Hangyo, M.

Hasegawa, N.

T. Loffler, K. J. Siebert, N. Hasegawa, T. Hahn, and H. G. Roskos, “All-optoelectronic terahertz imaging systems and examples of their application,” Proc. IEEE 95, 1576-1582 (2007).
[CrossRef]

Hsieh, C.-F.

Hursey, K. H.

Imhof, C.

C. Imhof and R. Zengerle, “Strong birefringence in left-handed metallic metamaterials,” Opt. Commun. 280, 213-217 (2007).
[CrossRef]

Jun-Cheng, C.

H. Xiao-Yong and C. Jun-Cheng, “Investigation on transmission properties of terahertz wave through semiconductor aperture,” Commun. Theor. Phys. 49, 485-488 (2008).
[CrossRef]

Kildishev, A. V.

Kim, J.-S.

S. H. Ahn, J.-S. Kim, and L. J. Guo, “Bilayer metal wire-grid polarizer fabricated by roll-to-roll nanoimprint lithography on flexible plastic substrate,” J. Vac. Sci. Technol. B 25, 2388-2391 (2007).
[CrossRef]

Lai, Y.-C.

Lalanne, P.

P. Lalanne and D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43, 2063-2085 (1996).
[CrossRef]

Lazarides, B.

Lemercier-Lalanne, D.

P. Lalanne and D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43, 2063-2085 (1996).
[CrossRef]

Li, Y. H.

Z. Y. Yang, M. Zhao, N. L. Dai, G. Yang, H. Long, Y. H. Li, and P. X. Lu, “Broadband polarizers using dual-layer metallic nanowire grids,” IEEE Photon. Technol. Lett. 20, 697-699 (2008).
[CrossRef]

Loffler, T.

T. Loffler, K. J. Siebert, N. Hasegawa, T. Hahn, and H. G. Roskos, “All-optoelectronic terahertz imaging systems and examples of their application,” Proc. IEEE 95, 1576-1582 (2007).
[CrossRef]

Long, H.

Z. Y. Yang, M. Zhao, N. L. Dai, G. Yang, H. Long, Y. H. Li, and P. X. Lu, “Broadband polarizers using dual-layer metallic nanowire grids,” IEEE Photon. Technol. Lett. 20, 697-699 (2008).
[CrossRef]

Lu, P. X.

Z. Y. Yang, M. Zhao, N. L. Dai, G. Yang, H. Long, Y. H. Li, and P. X. Lu, “Broadband polarizers using dual-layer metallic nanowire grids,” IEEE Photon. Technol. Lett. 20, 697-699 (2008).
[CrossRef]

Marcet, Z.

Martí, J.

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and Alejandro Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. Lett. 79, 075425 (2009).
[CrossRef]

Martínez, Alejandro

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and Alejandro Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. Lett. 79, 075425 (2009).
[CrossRef]

Mlaviya, U.

S. Awasthi, A. Srivastava, U. Mlaviya, and S. P. Ojha, “Wide-angle, broadband plate polarizer in terahertz frequency region,” Solid State Commun. 146, 506-509 (2008).
[CrossRef]

Murphy, J.

V. Yurchenko, J. Murphy, J. Barton, J. Verheggen, and K. Rodgers, “Dual-layer frequency-selective grid polarizers on thin-film substrates for THz applications,” in Proceedings of the 38th European Microwave Conference, 2008, EuMC 2008 (IEEE, 2008), pp. 1014-1017.
[CrossRef]

Neill, G. F.

Ojha, S. P.

S. Awasthi, A. Srivastava, U. Mlaviya, and S. P. Ojha, “Wide-angle, broadband plate polarizer in terahertz frequency region,” Solid State Commun. 146, 506-509 (2008).
[CrossRef]

Ortuño, R.

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and Alejandro Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. Lett. 79, 075425 (2009).
[CrossRef]

Pan, C.-L.

Panand, P.-P.

Rodgers, K.

V. Yurchenko, J. Murphy, J. Barton, J. Verheggen, and K. Rodgers, “Dual-layer frequency-selective grid polarizers on thin-film substrates for THz applications,” in Proceedings of the 38th European Microwave Conference, 2008, EuMC 2008 (IEEE, 2008), pp. 1014-1017.
[CrossRef]

Rodríguez-Fortuño, F. J.

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and Alejandro Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. Lett. 79, 075425 (2009).
[CrossRef]

Roskos, H. G.

T. Loffler, K. J. Siebert, N. Hasegawa, T. Hahn, and H. G. Roskos, “All-optoelectronic terahertz imaging systems and examples of their application,” Proc. IEEE 95, 1576-1582 (2007).
[CrossRef]

Saito, M.

Sarychev, A. K.

Shalaev, V. M.

Siebert, K. J.

T. Loffler, K. J. Siebert, N. Hasegawa, T. Hahn, and H. G. Roskos, “All-optoelectronic terahertz imaging systems and examples of their application,” Proc. IEEE 95, 1576-1582 (2007).
[CrossRef]

Sigg, H.

Solak, H. H.

Srivastava, A.

S. Awasthi, A. Srivastava, U. Mlaviya, and S. P. Ojha, “Wide-angle, broadband plate polarizer in terahertz frequency region,” Solid State Commun. 146, 506-509 (2008).
[CrossRef]

Takano, K.

Tanner, D. B.

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photon. 1, 97-105 (2007).
[CrossRef]

Träger, F.

F. Träger, Handbook of Lasers and Optics (Springer, 2007).
[CrossRef]

Verheggen, J.

V. Yurchenko, J. Murphy, J. Barton, J. Verheggen, and K. Rodgers, “Dual-layer frequency-selective grid polarizers on thin-film substrates for THz applications,” in Proceedings of the 38th European Microwave Conference, 2008, EuMC 2008 (IEEE, 2008), pp. 1014-1017.
[CrossRef]

Walker, B.

E. A. M. Baker and B. Walker, “Fabry-Perot interferometers for use at submillimetre wavelengths,” J. Phys. E: Sci. Instrum. 15, 25-32 (1982).
[CrossRef]

Wang, J.

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Appl. Phys. Lett. 77, 927-929 (2000).
[CrossRef]

Ward, J. M.

Watanabe, W.

Woo, Kwangje

Wu, W.

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Appl. Phys. Lett. 77, 927-929 (2000).
[CrossRef]

Xiao-Yong, H.

H. Xiao-Yong and C. Jun-Cheng, “Investigation on transmission properties of terahertz wave through semiconductor aperture,” Commun. Theor. Phys. 49, 485-488 (2008).
[CrossRef]

Yamada, I.

Yang, G.

Z. Y. Yang, M. Zhao, N. L. Dai, G. Yang, H. Long, Y. H. Li, and P. X. Lu, “Broadband polarizers using dual-layer metallic nanowire grids,” IEEE Photon. Technol. Lett. 20, 697-699 (2008).
[CrossRef]

Yang, Z. Y.

Z. Y. Yang, M. Zhao, N. L. Dai, G. Yang, H. Long, Y. H. Li, and P. X. Lu, “Broadband polarizers using dual-layer metallic nanowire grids,” IEEE Photon. Technol. Lett. 20, 697-699 (2008).
[CrossRef]

Yu, Z.

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Appl. Phys. Lett. 77, 927-929 (2000).
[CrossRef]

Yuan, H.-K.

Yurchenko, V.

V. Yurchenko, J. Murphy, J. Barton, J. Verheggen, and K. Rodgers, “Dual-layer frequency-selective grid polarizers on thin-film substrates for THz applications,” in Proceedings of the 38th European Microwave Conference, 2008, EuMC 2008 (IEEE, 2008), pp. 1014-1017.
[CrossRef]

Zengerle, R.

C. Imhof and R. Zengerle, “Strong birefringence in left-handed metallic metamaterials,” Opt. Commun. 280, 213-217 (2007).
[CrossRef]

Zhao, M.

Z. Y. Yang, M. Zhao, N. L. Dai, G. Yang, H. Long, Y. H. Li, and P. X. Lu, “Broadband polarizers using dual-layer metallic nanowire grids,” IEEE Photon. Technol. Lett. 20, 697-699 (2008).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Appl. Phys. Lett. 77, 927-929 (2000).
[CrossRef]

Commun. Theor. Phys. (1)

H. Xiao-Yong and C. Jun-Cheng, “Investigation on transmission properties of terahertz wave through semiconductor aperture,” Commun. Theor. Phys. 49, 485-488 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Z. Y. Yang, M. Zhao, N. L. Dai, G. Yang, H. Long, Y. H. Li, and P. X. Lu, “Broadband polarizers using dual-layer metallic nanowire grids,” IEEE Photon. Technol. Lett. 20, 697-699 (2008).
[CrossRef]

J. Mod. Opt. (1)

P. Lalanne and D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43, 2063-2085 (1996).
[CrossRef]

J. Opt. (1)

J. L. Adams and L. C. Botten, “Double gratings and their applications as Fabry-Perot interferometers,” J. Opt. 10, 109-117 (1979).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. E: Sci. Instrum. (1)

E. A. M. Baker and B. Walker, “Fabry-Perot interferometers for use at submillimetre wavelengths,” J. Phys. E: Sci. Instrum. 15, 25-32 (1982).
[CrossRef]

J. Vac. Sci. Technol. B (1)

S. H. Ahn, J.-S. Kim, and L. J. Guo, “Bilayer metal wire-grid polarizer fabricated by roll-to-roll nanoimprint lithography on flexible plastic substrate,” J. Vac. Sci. Technol. B 25, 2388-2391 (2007).
[CrossRef]

Nat. Photon. (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photon. 1, 97-105 (2007).
[CrossRef]

Opt. Commun. (1)

C. Imhof and R. Zengerle, “Strong birefringence in left-handed metallic metamaterials,” Opt. Commun. 280, 213-217 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and Alejandro Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. Lett. 79, 075425 (2009).
[CrossRef]

Proc. IEEE (1)

T. Loffler, K. J. Siebert, N. Hasegawa, T. Hahn, and H. G. Roskos, “All-optoelectronic terahertz imaging systems and examples of their application,” Proc. IEEE 95, 1576-1582 (2007).
[CrossRef]

Prog. Quantum Electron. (1)

M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32, 1-41 (2008).
[CrossRef]

Solid State Commun. (1)

S. Awasthi, A. Srivastava, U. Mlaviya, and S. P. Ojha, “Wide-angle, broadband plate polarizer in terahertz frequency region,” Solid State Commun. 146, 506-509 (2008).
[CrossRef]

Other (2)

V. Yurchenko, J. Murphy, J. Barton, J. Verheggen, and K. Rodgers, “Dual-layer frequency-selective grid polarizers on thin-film substrates for THz applications,” in Proceedings of the 38th European Microwave Conference, 2008, EuMC 2008 (IEEE, 2008), pp. 1014-1017.
[CrossRef]

F. Träger, Handbook of Lasers and Optics (Springer, 2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

DGP: rectangles filled with gray color, metal wires; P, wire period; S, spacing between two layers of gratings; h, wire depth; and w, metal wire width.

Fig. 2
Fig. 2

(a) TM and (b) TE transmittance for DGP as a function of spacing. The wavelength is 200 μm , the fill factor is 0.8, and the wire depth is 1 μm . Solid curve, FEM result; dotted curve, EMT result.

Fig. 3
Fig. 3

TM transmittance spectra for 5 μm , 10 μm , 20 μm , 100 μm , and 200 μm periods. (a) Spectra of DGP. (b) Spectra of corresponding SGP.

Fig. 4
Fig. 4

(a) TM transmittance and (b) extinction ratio for DGP with various fill factors. The spacing is 25 μm , the period is 5 μm , and the wire depth is 1 μm .

Fig. 5
Fig. 5

(a) TM transmittance and (b) extinction ratio for DGP (solid curve) and SGP (dotted curve) with optimized geometric parameters (period of 3 μm , fill factor of 0.8, wire depth of 1 μm , and spacing of 24 μm ).

Fig. 6
Fig. 6

TM and TE transmittance through optimized DGP with various lateral shifts. Dashed-dotted curve is of zero lateral shift, dotted curve is of 0.75 μm lateral shift (a quarter of the period), and solid curve is of 1.5 μm lateral shift (half of the period).

Fig. 7
Fig. 7

Geometric depiction for corrugated DGP: θ, inclination angle; L, corrugation period; S, spacing of original parallel gratings.

Fig. 8
Fig. 8

(a) TM and (b) TE transmittance spectra for corrugated DGP with inclination angles of 0 ° , 5 ° , 10 ° , and 15 ° . The grating period is 3 μm , the fill factor is 0.8, parallel spacing is 24 μm , and wire depth is 1 μm .

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n TM = [ f / ε m + ( 1 f ) / ε 0 ] 1 / 2 n TE = [ f ε m + ( 1 f ) ε 0 ] 1 / 2 ,
τ = t 2 1 r 2 exp ( j φ ) ,
| τ | 2 = 1 1 + F sin 2 ξ ,
F = 4 | r | 2 ( 1 | r | 2 ) 2 ,
ξ = m π ,
σ = N q e 2 m ( γ i ω ) ,

Metrics