Abstract

Photomultiplier collection efficiency, F, is a fundamental, but difficult, parameter to measure with certainty. A method for its determination, based on the gain of the first dynode, has been devised and applied to two different types of photomultiplier. The measurements are substantially free from the sources of error, which have compromised previously reported results by other authors. F may be determined by the proposed method with an accuracy of better than ±3% for any photomultiplier tube with sufficient gain to uncover its single electron response.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. G. Wright, “Absolute calibration of photomultiplier based detectors--difficulties and uncertainties,” Nucl. Instrum. Meth. A 433, 507-512 (1999).
    [CrossRef]
  2. R. Foord, R. Jones, C. J. Oliver, and E. R. Pike, “Use of photomultiplier tubes for photon counting,” Appl. Opt. 8, 1975-1989(1969).
    [CrossRef] [PubMed]
  3. R. S. Lakes and S. K. Poultney, “Direct measurement of the quantum counting efficiency of RCA C31000E/F photomultipliers at 6328 Å,” Appl. Opt. 10, 797-800 (1971).
    [CrossRef] [PubMed]
  4. P. B. Coates, “Photomultiplier collection efficiencies and nonpoissonian pulse height distributions,” J. Phys. D 6, 153-163 (1973).
    [CrossRef]
  5. N. P. Fox, “Trap detectors and their properties,” Metrologia 28, 197-202 (1991).
    [CrossRef]
  6. A. A. Malygin, A. N. Penin, and A. V. Sergienko, “Absolute calibration of the sensitivity of photodectors using a biphotonic field,” JETP Lett. 33, 477-480 (1981).
  7. A. L. Migdall, R. U. Datla, A. Sergienko, J. S. Orszak, and Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia 32, 479-483 (1995).
    [CrossRef]
  8. A. T. Young and R. E. Schild, “Phototelectron collection efficiency in photomultipliers,” Appl. Opt. 10, 1668-1672 (1971).
    [CrossRef] [PubMed]
  9. A. G. Wright, “Determination of the multiplier gain of a photomultiplier,” J. Phys. E 14, 851-855 (1981).
    [CrossRef]

1999 (1)

A. G. Wright, “Absolute calibration of photomultiplier based detectors--difficulties and uncertainties,” Nucl. Instrum. Meth. A 433, 507-512 (1999).
[CrossRef]

1995 (1)

A. L. Migdall, R. U. Datla, A. Sergienko, J. S. Orszak, and Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia 32, 479-483 (1995).
[CrossRef]

1991 (1)

N. P. Fox, “Trap detectors and their properties,” Metrologia 28, 197-202 (1991).
[CrossRef]

1981 (2)

A. A. Malygin, A. N. Penin, and A. V. Sergienko, “Absolute calibration of the sensitivity of photodectors using a biphotonic field,” JETP Lett. 33, 477-480 (1981).

A. G. Wright, “Determination of the multiplier gain of a photomultiplier,” J. Phys. E 14, 851-855 (1981).
[CrossRef]

1973 (1)

P. B. Coates, “Photomultiplier collection efficiencies and nonpoissonian pulse height distributions,” J. Phys. D 6, 153-163 (1973).
[CrossRef]

1971 (2)

1969 (1)

Coates, P. B.

P. B. Coates, “Photomultiplier collection efficiencies and nonpoissonian pulse height distributions,” J. Phys. D 6, 153-163 (1973).
[CrossRef]

Datla, R. U.

A. L. Migdall, R. U. Datla, A. Sergienko, J. S. Orszak, and Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia 32, 479-483 (1995).
[CrossRef]

Foord, R.

Fox, N. P.

N. P. Fox, “Trap detectors and their properties,” Metrologia 28, 197-202 (1991).
[CrossRef]

Jones, R.

Lakes, R. S.

Malygin, A. A.

A. A. Malygin, A. N. Penin, and A. V. Sergienko, “Absolute calibration of the sensitivity of photodectors using a biphotonic field,” JETP Lett. 33, 477-480 (1981).

Migdall, A. L.

A. L. Migdall, R. U. Datla, A. Sergienko, J. S. Orszak, and Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia 32, 479-483 (1995).
[CrossRef]

Oliver, C. J.

Orszak, J. S.

A. L. Migdall, R. U. Datla, A. Sergienko, J. S. Orszak, and Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia 32, 479-483 (1995).
[CrossRef]

Penin, A. N.

A. A. Malygin, A. N. Penin, and A. V. Sergienko, “Absolute calibration of the sensitivity of photodectors using a biphotonic field,” JETP Lett. 33, 477-480 (1981).

Pike, E. R.

Poultney, S. K.

Schild, R. E.

Sergienko, A.

A. L. Migdall, R. U. Datla, A. Sergienko, J. S. Orszak, and Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia 32, 479-483 (1995).
[CrossRef]

Sergienko, A. V.

A. A. Malygin, A. N. Penin, and A. V. Sergienko, “Absolute calibration of the sensitivity of photodectors using a biphotonic field,” JETP Lett. 33, 477-480 (1981).

Shih, Y. H.

A. L. Migdall, R. U. Datla, A. Sergienko, J. S. Orszak, and Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia 32, 479-483 (1995).
[CrossRef]

Wright, A. G.

A. G. Wright, “Absolute calibration of photomultiplier based detectors--difficulties and uncertainties,” Nucl. Instrum. Meth. A 433, 507-512 (1999).
[CrossRef]

A. G. Wright, “Determination of the multiplier gain of a photomultiplier,” J. Phys. E 14, 851-855 (1981).
[CrossRef]

Young, A. T.

Appl. Opt. (3)

J. Phys. D (1)

P. B. Coates, “Photomultiplier collection efficiencies and nonpoissonian pulse height distributions,” J. Phys. D 6, 153-163 (1973).
[CrossRef]

J. Phys. E (1)

A. G. Wright, “Determination of the multiplier gain of a photomultiplier,” J. Phys. E 14, 851-855 (1981).
[CrossRef]

JETP Lett. (1)

A. A. Malygin, A. N. Penin, and A. V. Sergienko, “Absolute calibration of the sensitivity of photodectors using a biphotonic field,” JETP Lett. 33, 477-480 (1981).

Metrologia (2)

A. L. Migdall, R. U. Datla, A. Sergienko, J. S. Orszak, and Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia 32, 479-483 (1995).
[CrossRef]

N. P. Fox, “Trap detectors and their properties,” Metrologia 28, 197-202 (1991).
[CrossRef]

Nucl. Instrum. Meth. A (1)

A. G. Wright, “Absolute calibration of photomultiplier based detectors--difficulties and uncertainties,” Nucl. Instrum. Meth. A 433, 507-512 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Front-end electron-optics of a 9214B photomultiplier. The curves, (1), (2), (4), and (5), show examples of photoelectron trajectories that fail to propagate. The following potentials, with respect to the cathode, were assumed for the simulation shown: k = 0 V ; f = d 1 = 300 V ; d 2 = 400 V and d 3 = 500 V .

Fig. 2
Fig. 2

Cathode current I k divides into various components, labeled (1)–(5), only one of which, c I k , leads to signal at the anode. The numbers in brackets correspond to the trajectories shown in Fig. 1. Note that arrows indicate the direction of electron flow, which is the essence of the physical processes within the PMT.

Fig. 3
Fig. 3

Divider configuration for the measurement of Δ 1 . The monitoring resistors in series with k and d 1 electrodes are decoupled to eliminate noise pickup. I k + I d 1 = Δ 1 I k , from which the apparent d 1 gain may be calculated. The impedance of the multimeter used is 10 M Ω but knowing its exact resistance is not critical since the same instrument is used to measure all signal voltages, and the gain depends only on their ratio.

Fig. 4
Fig. 4

d 1 gain, Δ 1 , measured under dc conditions, as a function of V ( k d 1 ) with the photocathode evenly illuminated. (•) Δ 1 measured with green light; (○) measured with blue light. Also shown, but discussed later, is the d 1 gain deduced from the SER (□), Eq. (4). Note the slight wavelength dependence in the Δ 1 data.

Fig. 5
Fig. 5

Schematic for the measurement of δ m . HV 1 and HV 2 are two, independent, negative, high voltage supplies. The circuit elements are as follows: (a) Canberra 2005 charge-sensitive amplifier; (b) Canberra 2022 main amplifier; (c) Canberra MP2-4U MCA; and (d) Wavetek 27XT multimeter, with R L = 1 M Ω .

Fig. 6
Fig. 6

(•) Pulse height distribution, n 2 ( a ) , for an Electron Tubes 9214B, #2232, operated at V ( k d 1 ) = 300 V , showing a subpeak, n 1 ( a ) , due to photoelectrons generated by the first dynode. (○) Distribution, n 1 ( a ) , measured with the cathode open-circuited. The most probable d 1 gain is the ratio of the peak channels, 2220 / 100 , but determining the mean gain, which is the relevant parameter, requires calculation.

Fig. 7
Fig. 7

Measured collection efficiencies for two different types of photomultiplier: the 9214B is an Electron Tubes, 12-stage, 52 mm type (ET-Enterprises Ltd); the R6095P and R6094 are Hamamatsu, 11-stage, 28 mm PMTs. All four PMTs have linear focused, high gain SbCs dynodes and bialkali photocathodes. The assignment of 3% error bars is discussed in the text—to avoid clutter, only one set of data includes error flags.

Fig. 8
Fig. 8

d 1 SER (○) and the SER (•) for a Hamamatsu R6095P, 28 mm diameter PMT measured with V ( k d 1 ) = 100 V . Note the abscissa of the SER have been scaled down by a factor of 3 for presentation purposes.

Fig. 9
Fig. 9

Normalized, integral pulse height distributions derived from the differential spectra of Fig. 8, using the same data point symbols. The linear extrapolations, shown by the dotted lines, lead to a 2% addition to N 2 and a 4% correction to N 1 .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I d 1 = δ 1 c I k c I k d I k e I k .
Δ 1 = 1 + I d 1 / I k .
δ m = a ¯ 2 / a ¯ 1 = n 2 ( a ) a d a n 2 ( a ) d a n 1 ( a ) d a n 1 ( a ) a d a ,
δ m = a ¯ 2 / a ¯ 1 = ( I 2 / N 2 ) / ( I 1 / N 1 ) .

Metrics