Abstract

A cryptosystem for plaintext messages was developed with gratings and their spectral and directional optical properties. Although there were many applicable grating types and optical responses, this manuscript took an example of a binary metallic surface relief and its specular reflectance at three wavelengths to demonstrate the working principles and the capabilities of the cryptosystem. For one, a series of numbers and the grating characteristics served as the ciphertext containing plaintext messages and the information of the sender’s signature. Confidential, high-density, and authentic messages could be, therefore, delivered with tiny or even virtual gratings. Second, four unique encryption/decryption keys here significantly reduced the risk of the ciphertext being easily recovered by eavesdroppers. Further manipulation of keys not only offered several strategies of enhancing the system’s safety, but also allowed the coexistence of many two-party, or even multiple-entity, communications. The reflectance spectra shown here were mainly attributed to the Wood’s anomaly and were numerically obtained from programs based on rigorous coupled-wave analysis.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. A. P. Petitcolas, R. J. Anderson, and M. G. Kuhn, “Information hiding--a survey,” Proc. IEEE 87, 1062-1078 (1999).
    [CrossRef]
  2. A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of Applied Cryptography (CRC Press, 1997).
  3. R. L. Rivest, A. Shamir, and L. Adleman, “Method for obtaining digital signatures and public-key cryptosystems,” Commun. ACM 21, 120-126 (1978).
    [CrossRef]
  4. R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way functions,” Science 297, 2026-2030 (2002).
    [CrossRef]
  5. C. T. Clelland, V. Risca, and C. Bancroft, “Hiding messages in DNA microdots,” Nature 399, 533-534 (1999).
    [CrossRef]
  6. C. H. Bennett and P. W. Shor, “Quantum cryptography--privacy in a quantum world,” Science 284, 747-748 (1999).
    [CrossRef]
  7. B. Javidi, “Securing information with optical technologies,” Phys. Today 50, 27-32 (1997).
    [CrossRef]
  8. T. C. Poon, T. Kim, and K. Doh, “Optical scanning cryptography for secure wireless transmission,” Appl. Opt. 42, 6496-6503 (2003).
    [CrossRef]
  9. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811-818 (1981).
    [CrossRef]
  10. J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. P. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61-64 (2002).
    [CrossRef]
  11. P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ pipe radiant modes of periodic micromachined silicon surfaces,” Nature 324, 549-551 (1986).
    [CrossRef]
  12. Y.-B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269, 411-417 (2007).
    [CrossRef]
  13. Y.-B. Chen, J.-S. Chen, and P.-F. Hsu, “Impacts of geometric modifications on infrared optical responses of metallic slit arrays,” Opt. Express 17, 9789-9803 (2009).
    [CrossRef]
  14. K. Park, B. J. Lee, C. Fu, and Z. M. Zhang, “Study of the surface and bulk polaritons with a negative index metamaterial,” J. Opt. Soc. Am. B 22, 1016-1023 (2005).
    [CrossRef]
  15. Y.-B. Chen, Z. M. Zhang, and P. J. Timans, “Radiative properties of patterned wafers with nanoscale linewidth,” J. Heat Transfer 129, 79-90 (2007).
    [CrossRef]
  16. B. J. Lee, Y.-B. Chen, and Z. M. Zhang, “Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-infrared,” J. Comput. Theor. Nanosci. 5, 201-213 (2008).
    [CrossRef]
  17. Y. J. Shen, Q. Z. Zhu, and Z. M. Zhang, “A scatterometer for measuring the bidirectional reflectance and transmittance of semiconductor wafers with rough surfaces,” Rev. Sci. Instrum. 74, 4885-4892 (2003).
    [CrossRef]
  18. M. Laroche, F. Marquier, R. Carminati, and J. J. Greffet, “Tailoring silicon radiative properties,” Opt. Commun. 250, 316-320 (2005).
    [CrossRef]
  19. R. Katayama and Y. Komatsu, “Blue/DVD/CD compatible optical head,” Appl. Opt. 47, 4045-4054 (2008).
    [CrossRef]
  20. F. Marquier, J. J. Greffet, S. Collin, F. Pardo, and J. L. Pelouard, “Resonant transmission through a metallic film due to coupled modes,” Opt. Express 13, 70-76 (2005).
    [CrossRef]
  21. Y.-B. Chen, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of submicron metallic slits,” J. Heat Transfer 130, 082404 (2008).
    [CrossRef]
  22. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  23. A. Hessel and A. A. Oliner, “A new theory of Wood's anomalies on optical gratings,” Appl. Opt. 4, 1275-1297 (1965).
    [CrossRef]
  24. D. Crouse and P. Keshavareddy, “Polarization independent enhanced optical transmission in one-dimensional gratings and device applications,” Opt. Express 15, 1415-1427(2007).
    [CrossRef]

2009

2008

R. Katayama and Y. Komatsu, “Blue/DVD/CD compatible optical head,” Appl. Opt. 47, 4045-4054 (2008).
[CrossRef]

B. J. Lee, Y.-B. Chen, and Z. M. Zhang, “Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-infrared,” J. Comput. Theor. Nanosci. 5, 201-213 (2008).
[CrossRef]

Y.-B. Chen, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of submicron metallic slits,” J. Heat Transfer 130, 082404 (2008).
[CrossRef]

2007

Y.-B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269, 411-417 (2007).
[CrossRef]

Y.-B. Chen, Z. M. Zhang, and P. J. Timans, “Radiative properties of patterned wafers with nanoscale linewidth,” J. Heat Transfer 129, 79-90 (2007).
[CrossRef]

D. Crouse and P. Keshavareddy, “Polarization independent enhanced optical transmission in one-dimensional gratings and device applications,” Opt. Express 15, 1415-1427(2007).
[CrossRef]

2005

2003

Y. J. Shen, Q. Z. Zhu, and Z. M. Zhang, “A scatterometer for measuring the bidirectional reflectance and transmittance of semiconductor wafers with rough surfaces,” Rev. Sci. Instrum. 74, 4885-4892 (2003).
[CrossRef]

T. C. Poon, T. Kim, and K. Doh, “Optical scanning cryptography for secure wireless transmission,” Appl. Opt. 42, 6496-6503 (2003).
[CrossRef]

2002

R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way functions,” Science 297, 2026-2030 (2002).
[CrossRef]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. P. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61-64 (2002).
[CrossRef]

1999

F. A. P. Petitcolas, R. J. Anderson, and M. G. Kuhn, “Information hiding--a survey,” Proc. IEEE 87, 1062-1078 (1999).
[CrossRef]

C. T. Clelland, V. Risca, and C. Bancroft, “Hiding messages in DNA microdots,” Nature 399, 533-534 (1999).
[CrossRef]

C. H. Bennett and P. W. Shor, “Quantum cryptography--privacy in a quantum world,” Science 284, 747-748 (1999).
[CrossRef]

1997

B. Javidi, “Securing information with optical technologies,” Phys. Today 50, 27-32 (1997).
[CrossRef]

1986

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ pipe radiant modes of periodic micromachined silicon surfaces,” Nature 324, 549-551 (1986).
[CrossRef]

1981

1978

R. L. Rivest, A. Shamir, and L. Adleman, “Method for obtaining digital signatures and public-key cryptosystems,” Commun. ACM 21, 120-126 (1978).
[CrossRef]

1965

Adleman, L.

R. L. Rivest, A. Shamir, and L. Adleman, “Method for obtaining digital signatures and public-key cryptosystems,” Commun. ACM 21, 120-126 (1978).
[CrossRef]

Anderson, R. J.

F. A. P. Petitcolas, R. J. Anderson, and M. G. Kuhn, “Information hiding--a survey,” Proc. IEEE 87, 1062-1078 (1999).
[CrossRef]

Bancroft, C.

C. T. Clelland, V. Risca, and C. Bancroft, “Hiding messages in DNA microdots,” Nature 399, 533-534 (1999).
[CrossRef]

Bennett, C. H.

C. H. Bennett and P. W. Shor, “Quantum cryptography--privacy in a quantum world,” Science 284, 747-748 (1999).
[CrossRef]

Carminati, R.

M. Laroche, F. Marquier, R. Carminati, and J. J. Greffet, “Tailoring silicon radiative properties,” Opt. Commun. 250, 316-320 (2005).
[CrossRef]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. P. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61-64 (2002).
[CrossRef]

Chen, J.-S.

Chen, Y.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. P. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61-64 (2002).
[CrossRef]

Chen, Y.-B.

Y.-B. Chen, J.-S. Chen, and P.-F. Hsu, “Impacts of geometric modifications on infrared optical responses of metallic slit arrays,” Opt. Express 17, 9789-9803 (2009).
[CrossRef]

B. J. Lee, Y.-B. Chen, and Z. M. Zhang, “Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-infrared,” J. Comput. Theor. Nanosci. 5, 201-213 (2008).
[CrossRef]

Y.-B. Chen, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of submicron metallic slits,” J. Heat Transfer 130, 082404 (2008).
[CrossRef]

Y.-B. Chen, Z. M. Zhang, and P. J. Timans, “Radiative properties of patterned wafers with nanoscale linewidth,” J. Heat Transfer 129, 79-90 (2007).
[CrossRef]

Y.-B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269, 411-417 (2007).
[CrossRef]

Clelland, C. T.

C. T. Clelland, V. Risca, and C. Bancroft, “Hiding messages in DNA microdots,” Nature 399, 533-534 (1999).
[CrossRef]

Collin, S.

Crouse, D.

Doh, K.

Fu, C.

Gaylord, T. K.

Gebhart, B.

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ pipe radiant modes of periodic micromachined silicon surfaces,” Nature 324, 549-551 (1986).
[CrossRef]

Gershenfeld, N.

R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way functions,” Science 297, 2026-2030 (2002).
[CrossRef]

Greffet, J. J.

M. Laroche, F. Marquier, R. Carminati, and J. J. Greffet, “Tailoring silicon radiative properties,” Opt. Commun. 250, 316-320 (2005).
[CrossRef]

F. Marquier, J. J. Greffet, S. Collin, F. Pardo, and J. L. Pelouard, “Resonant transmission through a metallic film due to coupled modes,” Opt. Express 13, 70-76 (2005).
[CrossRef]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. P. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61-64 (2002).
[CrossRef]

Hesketh, P. J.

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ pipe radiant modes of periodic micromachined silicon surfaces,” Nature 324, 549-551 (1986).
[CrossRef]

Hessel, A.

Hsu, P.-F.

Javidi, B.

B. Javidi, “Securing information with optical technologies,” Phys. Today 50, 27-32 (1997).
[CrossRef]

Joulain, K.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. P. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61-64 (2002).
[CrossRef]

Katayama, R.

Keshavareddy, P.

Kim, T.

Komatsu, Y.

Kuhn, M. G.

F. A. P. Petitcolas, R. J. Anderson, and M. G. Kuhn, “Information hiding--a survey,” Proc. IEEE 87, 1062-1078 (1999).
[CrossRef]

Laroche, M.

M. Laroche, F. Marquier, R. Carminati, and J. J. Greffet, “Tailoring silicon radiative properties,” Opt. Commun. 250, 316-320 (2005).
[CrossRef]

Lee, B. J.

B. J. Lee, Y.-B. Chen, and Z. M. Zhang, “Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-infrared,” J. Comput. Theor. Nanosci. 5, 201-213 (2008).
[CrossRef]

Y.-B. Chen, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of submicron metallic slits,” J. Heat Transfer 130, 082404 (2008).
[CrossRef]

K. Park, B. J. Lee, C. Fu, and Z. M. Zhang, “Study of the surface and bulk polaritons with a negative index metamaterial,” J. Opt. Soc. Am. B 22, 1016-1023 (2005).
[CrossRef]

Mainguy, S. P.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. P. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61-64 (2002).
[CrossRef]

Marquier, F.

M. Laroche, F. Marquier, R. Carminati, and J. J. Greffet, “Tailoring silicon radiative properties,” Opt. Commun. 250, 316-320 (2005).
[CrossRef]

F. Marquier, J. J. Greffet, S. Collin, F. Pardo, and J. L. Pelouard, “Resonant transmission through a metallic film due to coupled modes,” Opt. Express 13, 70-76 (2005).
[CrossRef]

Menezes, A. J.

A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of Applied Cryptography (CRC Press, 1997).

Moharam, M. G.

Mulet, J. P.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. P. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61-64 (2002).
[CrossRef]

Oliner, A. A.

Pappu, R.

R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way functions,” Science 297, 2026-2030 (2002).
[CrossRef]

Pardo, F.

Park, K.

Pelouard, J. L.

Petitcolas, F. A. P.

F. A. P. Petitcolas, R. J. Anderson, and M. G. Kuhn, “Information hiding--a survey,” Proc. IEEE 87, 1062-1078 (1999).
[CrossRef]

Poon, T. C.

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Recht, B.

R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way functions,” Science 297, 2026-2030 (2002).
[CrossRef]

Risca, V.

C. T. Clelland, V. Risca, and C. Bancroft, “Hiding messages in DNA microdots,” Nature 399, 533-534 (1999).
[CrossRef]

Rivest, R. L.

R. L. Rivest, A. Shamir, and L. Adleman, “Method for obtaining digital signatures and public-key cryptosystems,” Commun. ACM 21, 120-126 (1978).
[CrossRef]

Shamir, A.

R. L. Rivest, A. Shamir, and L. Adleman, “Method for obtaining digital signatures and public-key cryptosystems,” Commun. ACM 21, 120-126 (1978).
[CrossRef]

Shen, Y. J.

Y. J. Shen, Q. Z. Zhu, and Z. M. Zhang, “A scatterometer for measuring the bidirectional reflectance and transmittance of semiconductor wafers with rough surfaces,” Rev. Sci. Instrum. 74, 4885-4892 (2003).
[CrossRef]

Shor, P. W.

C. H. Bennett and P. W. Shor, “Quantum cryptography--privacy in a quantum world,” Science 284, 747-748 (1999).
[CrossRef]

Taylor, J.

R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way functions,” Science 297, 2026-2030 (2002).
[CrossRef]

Timans, P. J.

Y.-B. Chen, Z. M. Zhang, and P. J. Timans, “Radiative properties of patterned wafers with nanoscale linewidth,” J. Heat Transfer 129, 79-90 (2007).
[CrossRef]

Van Oorschot, P. C.

A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of Applied Cryptography (CRC Press, 1997).

Vanstone, S. A.

A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of Applied Cryptography (CRC Press, 1997).

Zemel, J. N.

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ pipe radiant modes of periodic micromachined silicon surfaces,” Nature 324, 549-551 (1986).
[CrossRef]

Zhang, Z. M.

B. J. Lee, Y.-B. Chen, and Z. M. Zhang, “Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-infrared,” J. Comput. Theor. Nanosci. 5, 201-213 (2008).
[CrossRef]

Y.-B. Chen, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of submicron metallic slits,” J. Heat Transfer 130, 082404 (2008).
[CrossRef]

Y.-B. Chen, Z. M. Zhang, and P. J. Timans, “Radiative properties of patterned wafers with nanoscale linewidth,” J. Heat Transfer 129, 79-90 (2007).
[CrossRef]

Y.-B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269, 411-417 (2007).
[CrossRef]

K. Park, B. J. Lee, C. Fu, and Z. M. Zhang, “Study of the surface and bulk polaritons with a negative index metamaterial,” J. Opt. Soc. Am. B 22, 1016-1023 (2005).
[CrossRef]

Y. J. Shen, Q. Z. Zhu, and Z. M. Zhang, “A scatterometer for measuring the bidirectional reflectance and transmittance of semiconductor wafers with rough surfaces,” Rev. Sci. Instrum. 74, 4885-4892 (2003).
[CrossRef]

Zhu, Q. Z.

Y. J. Shen, Q. Z. Zhu, and Z. M. Zhang, “A scatterometer for measuring the bidirectional reflectance and transmittance of semiconductor wafers with rough surfaces,” Rev. Sci. Instrum. 74, 4885-4892 (2003).
[CrossRef]

Appl. Opt.

Commun. ACM

R. L. Rivest, A. Shamir, and L. Adleman, “Method for obtaining digital signatures and public-key cryptosystems,” Commun. ACM 21, 120-126 (1978).
[CrossRef]

J. Comput. Theor. Nanosci.

B. J. Lee, Y.-B. Chen, and Z. M. Zhang, “Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-infrared,” J. Comput. Theor. Nanosci. 5, 201-213 (2008).
[CrossRef]

J. Heat Transfer

Y.-B. Chen, Z. M. Zhang, and P. J. Timans, “Radiative properties of patterned wafers with nanoscale linewidth,” J. Heat Transfer 129, 79-90 (2007).
[CrossRef]

Y.-B. Chen, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of submicron metallic slits,” J. Heat Transfer 130, 082404 (2008).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

Nature

C. T. Clelland, V. Risca, and C. Bancroft, “Hiding messages in DNA microdots,” Nature 399, 533-534 (1999).
[CrossRef]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. P. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61-64 (2002).
[CrossRef]

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ pipe radiant modes of periodic micromachined silicon surfaces,” Nature 324, 549-551 (1986).
[CrossRef]

Opt. Commun.

Y.-B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269, 411-417 (2007).
[CrossRef]

M. Laroche, F. Marquier, R. Carminati, and J. J. Greffet, “Tailoring silicon radiative properties,” Opt. Commun. 250, 316-320 (2005).
[CrossRef]

Opt. Express

Phys. Today

B. Javidi, “Securing information with optical technologies,” Phys. Today 50, 27-32 (1997).
[CrossRef]

Proc. IEEE

F. A. P. Petitcolas, R. J. Anderson, and M. G. Kuhn, “Information hiding--a survey,” Proc. IEEE 87, 1062-1078 (1999).
[CrossRef]

Rev. Sci. Instrum.

Y. J. Shen, Q. Z. Zhu, and Z. M. Zhang, “A scatterometer for measuring the bidirectional reflectance and transmittance of semiconductor wafers with rough surfaces,” Rev. Sci. Instrum. 74, 4885-4892 (2003).
[CrossRef]

Science

R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way functions,” Science 297, 2026-2030 (2002).
[CrossRef]

C. H. Bennett and P. W. Shor, “Quantum cryptography--privacy in a quantum world,” Science 284, 747-748 (1999).
[CrossRef]

Other

A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of Applied Cryptography (CRC Press, 1997).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Scheme of a typical cryptosystem for a two-party communication. The developed optical cryptosystem has the same scheme, and its encryption/decryption keys and the sender’s signature employed are also specifically illustrated in the figure.

Fig. 2
Fig. 2

Example demonstrating the working principles of the optical cryptosystem. The ciphertext is a metallic grating and a series of ten numbers, while “_A_SECRET_” is the plaintext message for delivery. The sequence of four keys in the encryption and decryption steps is clearly described.

Fig. 3
Fig. 3

Representative binary surface-relief grating characteristics and its optical responses utilized in the crypto system. (a) The profile dimensions of the silver grating are quantitatively marked and the optical setup capable of measuring the specular reflectance is also shown. (b) Spectra of the specular reflectance ( R s ) from the grating at λ = 405 , 660, and 785 nm at the TM wave incidence. Digits corresponding to three reflectance levels are 0, 1, and 2, as marked at the right-hand side of the figure.

Fig. 4
Fig. 4

Two secure ways of delivering the message from Alice to Bob using the cryptosystem. An adversary, Eve, cannot obtain the original information by simply analyzing the frequency of numbers shown in the ciphertext.

Tables (2)

Tables Icon

Table 1 Three Keys Commonly Used in the Encryption and Decryption Steps of the Optical Cryptosystem

Tables Icon

Table 2 Characters Employed in the Example Message, Their Codes, Corresponding Ranges of the Angle of Incidence, and Selected Angles for the Example Grating in the Cryptosystem

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε ( ω ) = ε ω p 2 ω 2 + i ω γ ,
± 1 = sin θ j = sin θ + j λ Λ ,

Metrics