Abstract

In this paper we present spatially mapped point-spread function (PSF) measurements of an optical coherence tomography (OCT) instrument and subsequent spatial deconvolution. The OCT B-scan image plane was divided into 2400 subimages, for which PSFs were determined from OCT measurements of a specially designed phantom. Each PSF was deconvolved from its corresponding subimage of the phantom using the Lucy–Richardson algorithm. Following deconvolution, all of the subimages were reassembled to form a final deconvolved image, from which the resolution improvement was quantitatively assessed. The lateral resolution was found to improve by 3.1μm compared to an axial resolution enhancement of 4.5μm. The spatial uniformity of both axial and lateral resolution was also observed to increase following deconvolution, demonstrating the advantage of deconvolving local PSFs from their associated subimages.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. M. C. Tempany and B. J. McNeil, “Advances in biomedical imaging,” J. Am. Med. Assn. 285, 562-567 (2001).
    [CrossRef]
  2. A. D. Robinson and R. K. Leach, “Overview of tomography techniques to measure wafer thickness in mems structures,” NPL Report ENG 8 (National Physical Laboratory, 2008).
  3. P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D 38, 2519-2535 (2005).
    [CrossRef]
  4. W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 9, 47-71 (2004).
    [CrossRef] [PubMed]
  5. A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, “Three-dimensional cellular-level imaging using full-field optical coherence tomography,” Phys. Med. Biol. 49, 1227-1234 (2004).
    [CrossRef] [PubMed]
  6. R. K. Wang, V. V. Tuchin, X. Xu, and J. B. Elder, “Concurrent enhancement of imaging depth and contrast for optical coherence tomography by hyperosmotic agents,” J. Opt. Soc. Am. B 18, 948-953 (2001).
    [CrossRef]
  7. R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study,” Phys. Med. Biol. 47, 2281-2299 (2002).
    [CrossRef] [PubMed]
  8. B. R. Biedermann, W. Wieser, C. M. Eigenwillig, and R. Huber, “Recent developments in Fourier domain mode locked lasers for optical coherence tomography: imaging at 1310 nm vs. 1550 nm wavelength,” J. Biophoton. 2, 357-363 (2009).
    [CrossRef]
  9. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Inverse scattering for optical coherence tomography,” J. Opt. Soc. Am. A 23, 1027-1037 (2006).
    [CrossRef]
  10. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nature Phys. 3, 129-134 (2007).
    [CrossRef]
  11. R. K. Wang, “Resolution improved optical coherence-gated tomography for imaging through biological tissues,” J. Mod. Opt. 46, 1905-1912 (1999).
    [CrossRef]
  12. J. M. Schmitt, “Restoration of optical coherence images of living tissue using the clean algorithm,” J. Biomed. Opt. 3, 66-75 (1998).
    [CrossRef]
  13. Y. Liu, Y. Liang, G. Mu, and X. Zhu, “Deconvolution methods for image deblurring in optical coherence tomography,” J. Opt. Soc. Am. A 26, 72-77 (2009).
    [CrossRef]
  14. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003).
    [CrossRef]
  15. C. Akcay, P. Parrein, and J. P. Rolland, “Estimation of longitudinal resolution in optical coherence imaging,” Appl. Opt. 41, 5256-5262 (2002).
    [CrossRef] [PubMed]
  16. A. C. Akcay, J. P. Rolland, and J. M. Eichenholz, “Spectral shaping to improve the point spread function in optical coherence tomography,” Opt. Lett. 28, 1921-1923 (2003).
    [CrossRef] [PubMed]
  17. A. Yariv, Optical Electronics, 3rd ed. (Holt, Rinehart and Winston, 1985).
  18. P. H. Tomlins, “Point spread function phantoms for optical coherence tomography,” NPL Report OP2 (National Physical Laboratory, 2009).
  19. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).
  20. J. D. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley, 1978).
  21. J. Holmes, S. Hattersley, N. Stone, F. Bazant-Hegemark, and H. Barr, “Multi-channel fourier domain OCT system with superior lateral resolution for biomedical applications,” Proc. SPIE 6847, 68470O (2008).
    [CrossRef]
  22. R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed. (Prentice Hall, 2008).
  23. C. Dorrer, N. Belabas, J.-P. Likforman, and M. Joffre, “Spectral resolution and sampling issues in Fourier-transform spectral interferometry,” J. Opt. Soc. Am. B 17, 1795-1802 (2000).
    [CrossRef]

2009 (2)

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, and R. Huber, “Recent developments in Fourier domain mode locked lasers for optical coherence tomography: imaging at 1310 nm vs. 1550 nm wavelength,” J. Biophoton. 2, 357-363 (2009).
[CrossRef]

Y. Liu, Y. Liang, G. Mu, and X. Zhu, “Deconvolution methods for image deblurring in optical coherence tomography,” J. Opt. Soc. Am. A 26, 72-77 (2009).
[CrossRef]

2008 (1)

J. Holmes, S. Hattersley, N. Stone, F. Bazant-Hegemark, and H. Barr, “Multi-channel fourier domain OCT system with superior lateral resolution for biomedical applications,” Proc. SPIE 6847, 68470O (2008).
[CrossRef]

2007 (1)

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nature Phys. 3, 129-134 (2007).
[CrossRef]

2006 (1)

2005 (1)

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D 38, 2519-2535 (2005).
[CrossRef]

2004 (2)

W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 9, 47-71 (2004).
[CrossRef] [PubMed]

A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, “Three-dimensional cellular-level imaging using full-field optical coherence tomography,” Phys. Med. Biol. 49, 1227-1234 (2004).
[CrossRef] [PubMed]

2003 (2)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

A. C. Akcay, J. P. Rolland, and J. M. Eichenholz, “Spectral shaping to improve the point spread function in optical coherence tomography,” Opt. Lett. 28, 1921-1923 (2003).
[CrossRef] [PubMed]

2002 (2)

C. Akcay, P. Parrein, and J. P. Rolland, “Estimation of longitudinal resolution in optical coherence imaging,” Appl. Opt. 41, 5256-5262 (2002).
[CrossRef] [PubMed]

R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study,” Phys. Med. Biol. 47, 2281-2299 (2002).
[CrossRef] [PubMed]

2001 (2)

2000 (1)

1999 (1)

R. K. Wang, “Resolution improved optical coherence-gated tomography for imaging through biological tissues,” J. Mod. Opt. 46, 1905-1912 (1999).
[CrossRef]

1998 (1)

J. M. Schmitt, “Restoration of optical coherence images of living tissue using the clean algorithm,” J. Biomed. Opt. 3, 66-75 (1998).
[CrossRef]

Akcay, A. C.

Akcay, C.

Barr, H.

J. Holmes, S. Hattersley, N. Stone, F. Bazant-Hegemark, and H. Barr, “Multi-channel fourier domain OCT system with superior lateral resolution for biomedical applications,” Proc. SPIE 6847, 68470O (2008).
[CrossRef]

Bazant-Hegemark, F.

J. Holmes, S. Hattersley, N. Stone, F. Bazant-Hegemark, and H. Barr, “Multi-channel fourier domain OCT system with superior lateral resolution for biomedical applications,” Proc. SPIE 6847, 68470O (2008).
[CrossRef]

Belabas, N.

Biedermann, B. R.

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, and R. Huber, “Recent developments in Fourier domain mode locked lasers for optical coherence tomography: imaging at 1310 nm vs. 1550 nm wavelength,” J. Biophoton. 2, 357-363 (2009).
[CrossRef]

Boccara, A. C.

A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, “Three-dimensional cellular-level imaging using full-field optical coherence tomography,” Phys. Med. Biol. 49, 1227-1234 (2004).
[CrossRef] [PubMed]

Boppart, S. A.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nature Phys. 3, 129-134 (2007).
[CrossRef]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Inverse scattering for optical coherence tomography,” J. Opt. Soc. Am. A 23, 1027-1037 (2006).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).

Carney, P. S.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nature Phys. 3, 129-134 (2007).
[CrossRef]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Inverse scattering for optical coherence tomography,” J. Opt. Soc. Am. A 23, 1027-1037 (2006).
[CrossRef]

Dorrer, C.

Drexler, W.

W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 9, 47-71 (2004).
[CrossRef] [PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Dubois, A.

A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, “Three-dimensional cellular-level imaging using full-field optical coherence tomography,” Phys. Med. Biol. 49, 1227-1234 (2004).
[CrossRef] [PubMed]

Eichenholz, J. M.

Eigenwillig, C. M.

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, and R. Huber, “Recent developments in Fourier domain mode locked lasers for optical coherence tomography: imaging at 1310 nm vs. 1550 nm wavelength,” J. Biophoton. 2, 357-363 (2009).
[CrossRef]

Elder, J. B.

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Gaskill, J. D.

J. D. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley, 1978).

Gonzalez, R. C.

R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed. (Prentice Hall, 2008).

Grieve, K.

A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, “Three-dimensional cellular-level imaging using full-field optical coherence tomography,” Phys. Med. Biol. 49, 1227-1234 (2004).
[CrossRef] [PubMed]

Hattersley, S.

J. Holmes, S. Hattersley, N. Stone, F. Bazant-Hegemark, and H. Barr, “Multi-channel fourier domain OCT system with superior lateral resolution for biomedical applications,” Proc. SPIE 6847, 68470O (2008).
[CrossRef]

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Holmes, J.

J. Holmes, S. Hattersley, N. Stone, F. Bazant-Hegemark, and H. Barr, “Multi-channel fourier domain OCT system with superior lateral resolution for biomedical applications,” Proc. SPIE 6847, 68470O (2008).
[CrossRef]

Huber, R.

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, and R. Huber, “Recent developments in Fourier domain mode locked lasers for optical coherence tomography: imaging at 1310 nm vs. 1550 nm wavelength,” J. Biophoton. 2, 357-363 (2009).
[CrossRef]

Joffre, M.

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Leach, R. K.

A. D. Robinson and R. K. Leach, “Overview of tomography techniques to measure wafer thickness in mems structures,” NPL Report ENG 8 (National Physical Laboratory, 2008).

Liang, Y.

Likforman, J.-P.

Liu, Y.

Marks, D. L.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nature Phys. 3, 129-134 (2007).
[CrossRef]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Inverse scattering for optical coherence tomography,” J. Opt. Soc. Am. A 23, 1027-1037 (2006).
[CrossRef]

McNeil, B. J.

C. M. C. Tempany and B. J. McNeil, “Advances in biomedical imaging,” J. Am. Med. Assn. 285, 562-567 (2001).
[CrossRef]

Moneron, G.

A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, “Three-dimensional cellular-level imaging using full-field optical coherence tomography,” Phys. Med. Biol. 49, 1227-1234 (2004).
[CrossRef] [PubMed]

Mu, G.

Parrein, P.

Ralston, T. S.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nature Phys. 3, 129-134 (2007).
[CrossRef]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Inverse scattering for optical coherence tomography,” J. Opt. Soc. Am. A 23, 1027-1037 (2006).
[CrossRef]

Robinson, A. D.

A. D. Robinson and R. K. Leach, “Overview of tomography techniques to measure wafer thickness in mems structures,” NPL Report ENG 8 (National Physical Laboratory, 2008).

Rolland, J. P.

Schmitt, J. M.

J. M. Schmitt, “Restoration of optical coherence images of living tissue using the clean algorithm,” J. Biomed. Opt. 3, 66-75 (1998).
[CrossRef]

Stone, N.

J. Holmes, S. Hattersley, N. Stone, F. Bazant-Hegemark, and H. Barr, “Multi-channel fourier domain OCT system with superior lateral resolution for biomedical applications,” Proc. SPIE 6847, 68470O (2008).
[CrossRef]

Tempany, C. M. C.

C. M. C. Tempany and B. J. McNeil, “Advances in biomedical imaging,” J. Am. Med. Assn. 285, 562-567 (2001).
[CrossRef]

Tomlins, P. H.

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D 38, 2519-2535 (2005).
[CrossRef]

P. H. Tomlins, “Point spread function phantoms for optical coherence tomography,” NPL Report OP2 (National Physical Laboratory, 2009).

Tuchin, V. V.

Wang, R. K.

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D 38, 2519-2535 (2005).
[CrossRef]

R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study,” Phys. Med. Biol. 47, 2281-2299 (2002).
[CrossRef] [PubMed]

R. K. Wang, V. V. Tuchin, X. Xu, and J. B. Elder, “Concurrent enhancement of imaging depth and contrast for optical coherence tomography by hyperosmotic agents,” J. Opt. Soc. Am. B 18, 948-953 (2001).
[CrossRef]

R. K. Wang, “Resolution improved optical coherence-gated tomography for imaging through biological tissues,” J. Mod. Opt. 46, 1905-1912 (1999).
[CrossRef]

Wieser, W.

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, and R. Huber, “Recent developments in Fourier domain mode locked lasers for optical coherence tomography: imaging at 1310 nm vs. 1550 nm wavelength,” J. Biophoton. 2, 357-363 (2009).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).

Woods, R. E.

R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed. (Prentice Hall, 2008).

Xu, X.

Yariv, A.

A. Yariv, Optical Electronics, 3rd ed. (Holt, Rinehart and Winston, 1985).

Zhu, X.

Appl. Opt. (1)

J. Am. Med. Assn. (1)

C. M. C. Tempany and B. J. McNeil, “Advances in biomedical imaging,” J. Am. Med. Assn. 285, 562-567 (2001).
[CrossRef]

J. Biomed. Opt. (2)

W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 9, 47-71 (2004).
[CrossRef] [PubMed]

J. M. Schmitt, “Restoration of optical coherence images of living tissue using the clean algorithm,” J. Biomed. Opt. 3, 66-75 (1998).
[CrossRef]

J. Biophoton. (1)

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, and R. Huber, “Recent developments in Fourier domain mode locked lasers for optical coherence tomography: imaging at 1310 nm vs. 1550 nm wavelength,” J. Biophoton. 2, 357-363 (2009).
[CrossRef]

J. Mod. Opt. (1)

R. K. Wang, “Resolution improved optical coherence-gated tomography for imaging through biological tissues,” J. Mod. Opt. 46, 1905-1912 (1999).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (2)

J. Phys. D (1)

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D 38, 2519-2535 (2005).
[CrossRef]

Nature Phys. (1)

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nature Phys. 3, 129-134 (2007).
[CrossRef]

Opt. Lett. (1)

Phys. Med. Biol. (2)

R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study,” Phys. Med. Biol. 47, 2281-2299 (2002).
[CrossRef] [PubMed]

A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, “Three-dimensional cellular-level imaging using full-field optical coherence tomography,” Phys. Med. Biol. 49, 1227-1234 (2004).
[CrossRef] [PubMed]

Proc. SPIE (1)

J. Holmes, S. Hattersley, N. Stone, F. Bazant-Hegemark, and H. Barr, “Multi-channel fourier domain OCT system with superior lateral resolution for biomedical applications,” Proc. SPIE 6847, 68470O (2008).
[CrossRef]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Other (6)

A. Yariv, Optical Electronics, 3rd ed. (Holt, Rinehart and Winston, 1985).

P. H. Tomlins, “Point spread function phantoms for optical coherence tomography,” NPL Report OP2 (National Physical Laboratory, 2009).

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).

J. D. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley, 1978).

A. D. Robinson and R. K. Leach, “Overview of tomography techniques to measure wafer thickness in mems structures,” NPL Report ENG 8 (National Physical Laboratory, 2008).

R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed. (Prentice Hall, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Surface flatness over the total area of the 25 mm diameter phantoms.

Fig. 2
Fig. 2

Typical phantom surface profile indicating local surface height variations of less than 100 nm .

Fig. 3
Fig. 3

(a) Points identified from a single B-scan OCT image of a PSF phantom. (b) Surface plot of a single point with (c) axial and (d) lateral cross sections of a 2D elliptical Gaussian.

Fig. 4
Fig. 4

Spatial distribution throughout the B-scan image plane prior to deconvolution of (a) the lateral resolution and (b) the axial resolution.

Fig. 5
Fig. 5

Measured beam waist (diamond points) and simulated detected Gaussian beam waist using Eq. (8), where w 0 = 7.1 μm and λ 0 = 1310 nm . The beam waist after deconvolution is represented by circular points.

Fig. 6
Fig. 6

Spatial distribution throughout the B-scan image plane after deconvolution of (a) the lateral resolution and (b) the axial resolution.

Fig. 7
Fig. 7

Typical B-scan OCT images of the phantom (a) before and (b) after deconvolution. Three corresponding scattering point clusters are identified in each image by a surrounding white square. These subimages are enlarged below the main OCT images and labeled i, ii, and iii.

Fig. 8
Fig. 8

Histograms of (a) lateral resolution prior to deconvolution, (b) axial resolution prior to deconvolution, (c) lateral resolution after deconvolution, and (d) axial resolution after deconvolution.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

h ( x , z ) = A exp { [ ( x x 0 ) 2 w x 2 + ( z z 0 ) 2 w z 2 ] } ,
Δ x = 2 w x ln 2 ,
Δ z = 2 w z ln 2 .
Δ z = 0.44 λ 0 2 Δ λ .
w i ( z ) = w 0 1 + ( z z 0 z R ) 2 ,
Δ x i = 2 w 0 ln 2 .
w x = w 0 2 .
w d ( z ) = w x 1 + ( z z 0 z R ) 2 ,
Δ x = 2 w x ln 2 2 0.37 λ NA ,
g ( x , y ) = f ( x x 0 , y y 0 ) h ( x 0 , y 0 ) d x 0 d y 0 .
R 2 = 1 N n = 1 N [ h meas ( x n , z n ) h ( x n , z n ) ] 2 .

Metrics