Abstract

The effect of a thin high-index coating deposited on polyimide waveguide grating couplers was investigated. A comprehensive numerical study was performed using an efficient simulation tool based on a Floquet–Bloch algorithm, and the results of this study were compared with experimentally obtained values for input coupling efficiencies. The application of a high-index coating permits efficient coupling from narrow beams even in material systems with a low index difference. This not only facilitates a denser integration of grating couplers but also permits low-loss lateral tapering to single-mode waveguides.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Wang, F. Liu, and A. Adibi, “45 Degree polymer micromirror integration for board-level three-dimensional optical interconnects,” Opt. Express 17, 10514-10521 (2009).
    [CrossRef]
  2. R. Waldhäusl, B. Schnabel, P. Dannberg, E.-B. Kley, A. Bräuer, and W. Karthe, “Efficient coupling into polymer waveguides by gratings,” Appl. Opt. 36, 9383-9390 (1997).
    [CrossRef]
  3. G. Voirin, D. Gehringer, O. M. Parriaux, and B. Usievich, “Si3N4/SiO2/Si waveguide grating for fluorescent biosensors,” Proc. SPIE 109-116 (1999).
  4. R. Orobtchouk, A. Layadi, H. Gualous, D. Pascal, A. Koster, and S. Laval, “High-efficiency light coupling in a submicrometric silicon-on-insulator waveguide,” Appl. Opt. 39, 5773-5777 (2000).
    [CrossRef]
  5. N. Destouches, D. Blanc, J. Franc, S. Tonchev, N. Hendrickx, P. Van Daele, and O. Parriaux, “Efficient and tolerant resonant grating coupler for multimode optical interconnections,” Opt. Express 15, 16870-16879 (2007).
    [CrossRef]
  6. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29, 2749-2751 (2004).
    [CrossRef]
  7. G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency grating coupler between silicon-on-insulator waveguides and perfectly vertical optical fibers,” Opt. Lett. 32, 1495-1497(2007).
    [CrossRef]
  8. R. Bruck, and R. Hainberger, “Efficiency enhancement of grating couplers for single-mode polymer waveguides through high index coatings,” in Proceedings 14th European Conference on Integrated Optics (2008, pp. 201-204
  9. O. Parriaux, V. A. Sychugovz, and A. V. Tishchenko, “Coupling gratings as waveguide functional elements,” Pure Appl. Opt. 5, 453-469 (1996).
    [CrossRef]
  10. A. A. Spikhal'skii, “Effective use of diffraction gratings in optical devices based on diffused waveguides,” Sov. J. Quantum Electron. 15, 1018-1020 (1985).
    [CrossRef]
  11. N. Destouches, D. Blanc, J. Franc, S. Tonchev, N. Hendrickx, P. Van Daele, and O. Parriaux, “Efficient and tolerant resonant grating coupler for multimode optical interconnections,” Opt. Express 15, 1687-1696 (2007).
  12. T. Tamir, Integrated Optics (Springer-Verlag, 1979).
  13. R. Bruck and R. Hainberger, “Efficient small grating couplers for low-index difference waveguide systems,” Proc. SPIE 7218, 72180A (2009).
  14. H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill,1985).
  15. N. Finger and E. Gornik, “Analysis of metallized-grating coupled twin-waveguide structures,” IEEE J. Quantum Electron. 35, 832-843 (1999).
    [CrossRef]
  16. R. J. Noll and S. H. Macomber, “Analysis of grating surface emitting lasers,” IEEE J. Quantum Electron. 26, 456-466(1990).
    [CrossRef]
  17. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302-307 (1996).
  18. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. Burr, “Improving accuracy by subpixel smoothing in FDTD,” Opt. Lett. 31, 2972-2974 (2006).
    [CrossRef]
  19. N. Finger, C. Pacher, and W. Boxleitner, “Simulation of guided-wave photonic devices with variational mode-matching,” AIP Conf. Proc. 893, 1493-1494 (2007).
    [CrossRef]
  20. T. Bakke, C. T. Sullivan, and S. D. Mukherjee, “Polymeric optical spot-size transformer with vertical and lateral tapers,” J. Lightwave Technol. 20, 1188-1197 (2002).
    [CrossRef]
  21. K. Tiefenthaler and W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. B 6, 209-220 (1989).
    [CrossRef]

2009 (2)

R. Bruck and R. Hainberger, “Efficient small grating couplers for low-index difference waveguide systems,” Proc. SPIE 7218, 72180A (2009).

F. Wang, F. Liu, and A. Adibi, “45 Degree polymer micromirror integration for board-level three-dimensional optical interconnects,” Opt. Express 17, 10514-10521 (2009).
[CrossRef]

2007 (4)

N. Destouches, D. Blanc, J. Franc, S. Tonchev, N. Hendrickx, P. Van Daele, and O. Parriaux, “Efficient and tolerant resonant grating coupler for multimode optical interconnections,” Opt. Express 15, 1687-1696 (2007).

N. Finger, C. Pacher, and W. Boxleitner, “Simulation of guided-wave photonic devices with variational mode-matching,” AIP Conf. Proc. 893, 1493-1494 (2007).
[CrossRef]

G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency grating coupler between silicon-on-insulator waveguides and perfectly vertical optical fibers,” Opt. Lett. 32, 1495-1497(2007).
[CrossRef]

N. Destouches, D. Blanc, J. Franc, S. Tonchev, N. Hendrickx, P. Van Daele, and O. Parriaux, “Efficient and tolerant resonant grating coupler for multimode optical interconnections,” Opt. Express 15, 16870-16879 (2007).
[CrossRef]

2006 (1)

2004 (1)

2002 (1)

2000 (1)

1999 (2)

G. Voirin, D. Gehringer, O. M. Parriaux, and B. Usievich, “Si3N4/SiO2/Si waveguide grating for fluorescent biosensors,” Proc. SPIE 109-116 (1999).

N. Finger and E. Gornik, “Analysis of metallized-grating coupled twin-waveguide structures,” IEEE J. Quantum Electron. 35, 832-843 (1999).
[CrossRef]

1997 (1)

1996 (2)

O. Parriaux, V. A. Sychugovz, and A. V. Tishchenko, “Coupling gratings as waveguide functional elements,” Pure Appl. Opt. 5, 453-469 (1996).
[CrossRef]

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302-307 (1996).

1990 (1)

R. J. Noll and S. H. Macomber, “Analysis of grating surface emitting lasers,” IEEE J. Quantum Electron. 26, 456-466(1990).
[CrossRef]

1989 (1)

1985 (1)

A. A. Spikhal'skii, “Effective use of diffraction gratings in optical devices based on diffused waveguides,” Sov. J. Quantum Electron. 15, 1018-1020 (1985).
[CrossRef]

Adibi, A.

Baets, R.

Bakke, T.

Bermel, P.

Bienstman, P.

Blanc, D.

N. Destouches, D. Blanc, J. Franc, S. Tonchev, N. Hendrickx, P. Van Daele, and O. Parriaux, “Efficient and tolerant resonant grating coupler for multimode optical interconnections,” Opt. Express 15, 1687-1696 (2007).

N. Destouches, D. Blanc, J. Franc, S. Tonchev, N. Hendrickx, P. Van Daele, and O. Parriaux, “Efficient and tolerant resonant grating coupler for multimode optical interconnections,” Opt. Express 15, 16870-16879 (2007).
[CrossRef]

Boxleitner, W.

N. Finger, C. Pacher, and W. Boxleitner, “Simulation of guided-wave photonic devices with variational mode-matching,” AIP Conf. Proc. 893, 1493-1494 (2007).
[CrossRef]

Bräuer, A.

Bruck, R.

R. Bruck and R. Hainberger, “Efficient small grating couplers for low-index difference waveguide systems,” Proc. SPIE 7218, 72180A (2009).

R. Bruck, and R. Hainberger, “Efficiency enhancement of grating couplers for single-mode polymer waveguides through high index coatings,” in Proceedings 14th European Conference on Integrated Optics (2008, pp. 201-204

Burr, G.

Dannberg, P.

Destouches, N.

N. Destouches, D. Blanc, J. Franc, S. Tonchev, N. Hendrickx, P. Van Daele, and O. Parriaux, “Efficient and tolerant resonant grating coupler for multimode optical interconnections,” Opt. Express 15, 16870-16879 (2007).
[CrossRef]

N. Destouches, D. Blanc, J. Franc, S. Tonchev, N. Hendrickx, P. Van Daele, and O. Parriaux, “Efficient and tolerant resonant grating coupler for multimode optical interconnections,” Opt. Express 15, 1687-1696 (2007).

Farjadpour, A.

Finger, N.

N. Finger, C. Pacher, and W. Boxleitner, “Simulation of guided-wave photonic devices with variational mode-matching,” AIP Conf. Proc. 893, 1493-1494 (2007).
[CrossRef]

N. Finger and E. Gornik, “Analysis of metallized-grating coupled twin-waveguide structures,” IEEE J. Quantum Electron. 35, 832-843 (1999).
[CrossRef]

Franc, J.

N. Destouches, D. Blanc, J. Franc, S. Tonchev, N. Hendrickx, P. Van Daele, and O. Parriaux, “Efficient and tolerant resonant grating coupler for multimode optical interconnections,” Opt. Express 15, 1687-1696 (2007).

N. Destouches, D. Blanc, J. Franc, S. Tonchev, N. Hendrickx, P. Van Daele, and O. Parriaux, “Efficient and tolerant resonant grating coupler for multimode optical interconnections,” Opt. Express 15, 16870-16879 (2007).
[CrossRef]

Gehringer, D.

G. Voirin, D. Gehringer, O. M. Parriaux, and B. Usievich, “Si3N4/SiO2/Si waveguide grating for fluorescent biosensors,” Proc. SPIE 109-116 (1999).

Gornik, E.

N. Finger and E. Gornik, “Analysis of metallized-grating coupled twin-waveguide structures,” IEEE J. Quantum Electron. 35, 832-843 (1999).
[CrossRef]

Gualous, H.

Hainberger, R.

R. Bruck and R. Hainberger, “Efficient small grating couplers for low-index difference waveguide systems,” Proc. SPIE 7218, 72180A (2009).

R. Bruck, and R. Hainberger, “Efficiency enhancement of grating couplers for single-mode polymer waveguides through high index coatings,” in Proceedings 14th European Conference on Integrated Optics (2008, pp. 201-204

Haruna, M.

H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill,1985).

Hendrickx, N.

N. Destouches, D. Blanc, J. Franc, S. Tonchev, N. Hendrickx, P. Van Daele, and O. Parriaux, “Efficient and tolerant resonant grating coupler for multimode optical interconnections,” Opt. Express 15, 1687-1696 (2007).

N. Destouches, D. Blanc, J. Franc, S. Tonchev, N. Hendrickx, P. Van Daele, and O. Parriaux, “Efficient and tolerant resonant grating coupler for multimode optical interconnections,” Opt. Express 15, 16870-16879 (2007).
[CrossRef]

Ibanescu, M.

Joannopoulos, J. D.

Johnson, S. G.

Karthe, W.

Kley, E.-B.

Koster, A.

Laval, S.

Layadi, A.

Liu, F.

Lukosz, W.

Macomber, S. H.

R. J. Noll and S. H. Macomber, “Analysis of grating surface emitting lasers,” IEEE J. Quantum Electron. 26, 456-466(1990).
[CrossRef]

Mukherjee, S. D.

Nishihara, H.

H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill,1985).

Noll, R. J.

R. J. Noll and S. H. Macomber, “Analysis of grating surface emitting lasers,” IEEE J. Quantum Electron. 26, 456-466(1990).
[CrossRef]

Orobtchouk, R.

Pacher, C.

N. Finger, C. Pacher, and W. Boxleitner, “Simulation of guided-wave photonic devices with variational mode-matching,” AIP Conf. Proc. 893, 1493-1494 (2007).
[CrossRef]

Parriaux, O.

N. Destouches, D. Blanc, J. Franc, S. Tonchev, N. Hendrickx, P. Van Daele, and O. Parriaux, “Efficient and tolerant resonant grating coupler for multimode optical interconnections,” Opt. Express 15, 1687-1696 (2007).

N. Destouches, D. Blanc, J. Franc, S. Tonchev, N. Hendrickx, P. Van Daele, and O. Parriaux, “Efficient and tolerant resonant grating coupler for multimode optical interconnections,” Opt. Express 15, 16870-16879 (2007).
[CrossRef]

O. Parriaux, V. A. Sychugovz, and A. V. Tishchenko, “Coupling gratings as waveguide functional elements,” Pure Appl. Opt. 5, 453-469 (1996).
[CrossRef]

Parriaux, O. M.

G. Voirin, D. Gehringer, O. M. Parriaux, and B. Usievich, “Si3N4/SiO2/Si waveguide grating for fluorescent biosensors,” Proc. SPIE 109-116 (1999).

Pascal, D.

Rodriguez, A.

Roelkens, G.

Roundy, D.

Schnabel, B.

Spikhal'skii, A. A.

A. A. Spikhal'skii, “Effective use of diffraction gratings in optical devices based on diffused waveguides,” Sov. J. Quantum Electron. 15, 1018-1020 (1985).
[CrossRef]

Suhara, T.

H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill,1985).

Sullivan, C. T.

Sychugovz, V. A.

O. Parriaux, V. A. Sychugovz, and A. V. Tishchenko, “Coupling gratings as waveguide functional elements,” Pure Appl. Opt. 5, 453-469 (1996).
[CrossRef]

Taillaert, D.

Tamir, T.

T. Tamir, Integrated Optics (Springer-Verlag, 1979).

Tiefenthaler, K.

Tishchenko, A. V.

O. Parriaux, V. A. Sychugovz, and A. V. Tishchenko, “Coupling gratings as waveguide functional elements,” Pure Appl. Opt. 5, 453-469 (1996).
[CrossRef]

Tonchev, S.

N. Destouches, D. Blanc, J. Franc, S. Tonchev, N. Hendrickx, P. Van Daele, and O. Parriaux, “Efficient and tolerant resonant grating coupler for multimode optical interconnections,” Opt. Express 15, 16870-16879 (2007).
[CrossRef]

N. Destouches, D. Blanc, J. Franc, S. Tonchev, N. Hendrickx, P. Van Daele, and O. Parriaux, “Efficient and tolerant resonant grating coupler for multimode optical interconnections,” Opt. Express 15, 1687-1696 (2007).

Usievich, B.

G. Voirin, D. Gehringer, O. M. Parriaux, and B. Usievich, “Si3N4/SiO2/Si waveguide grating for fluorescent biosensors,” Proc. SPIE 109-116 (1999).

Van Daele, P.

N. Destouches, D. Blanc, J. Franc, S. Tonchev, N. Hendrickx, P. Van Daele, and O. Parriaux, “Efficient and tolerant resonant grating coupler for multimode optical interconnections,” Opt. Express 15, 16870-16879 (2007).
[CrossRef]

N. Destouches, D. Blanc, J. Franc, S. Tonchev, N. Hendrickx, P. Van Daele, and O. Parriaux, “Efficient and tolerant resonant grating coupler for multimode optical interconnections,” Opt. Express 15, 1687-1696 (2007).

Van Thourhout, D.

Voirin, G.

G. Voirin, D. Gehringer, O. M. Parriaux, and B. Usievich, “Si3N4/SiO2/Si waveguide grating for fluorescent biosensors,” Proc. SPIE 109-116 (1999).

Waldhäusl, R.

Wang, F.

Yee, K.

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302-307 (1996).

AIP Conf. Proc. (1)

N. Finger, C. Pacher, and W. Boxleitner, “Simulation of guided-wave photonic devices with variational mode-matching,” AIP Conf. Proc. 893, 1493-1494 (2007).
[CrossRef]

Appl. Opt. (2)

IEEE J. Quantum Electron. (2)

N. Finger and E. Gornik, “Analysis of metallized-grating coupled twin-waveguide structures,” IEEE J. Quantum Electron. 35, 832-843 (1999).
[CrossRef]

R. J. Noll and S. H. Macomber, “Analysis of grating surface emitting lasers,” IEEE J. Quantum Electron. 26, 456-466(1990).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302-307 (1996).

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Opt. Express (3)

Opt. Lett. (3)

Proc. SPIE (2)

R. Bruck and R. Hainberger, “Efficient small grating couplers for low-index difference waveguide systems,” Proc. SPIE 7218, 72180A (2009).

G. Voirin, D. Gehringer, O. M. Parriaux, and B. Usievich, “Si3N4/SiO2/Si waveguide grating for fluorescent biosensors,” Proc. SPIE 109-116 (1999).

Pure Appl. Opt. (1)

O. Parriaux, V. A. Sychugovz, and A. V. Tishchenko, “Coupling gratings as waveguide functional elements,” Pure Appl. Opt. 5, 453-469 (1996).
[CrossRef]

Sov. J. Quantum Electron. (1)

A. A. Spikhal'skii, “Effective use of diffraction gratings in optical devices based on diffused waveguides,” Sov. J. Quantum Electron. 15, 1018-1020 (1985).
[CrossRef]

Other (3)

T. Tamir, Integrated Optics (Springer-Verlag, 1979).

H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill,1985).

R. Bruck, and R. Hainberger, “Efficiency enhancement of grating couplers for single-mode polymer waveguides through high index coatings,” in Proceedings 14th European Conference on Integrated Optics (2008, pp. 201-204

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Grating output coupler that diffracts light into the 1 st diffraction order; the graph below plots the amplitude of the guided mode in the waveguide along the z direction. The spot size of the Gaussian beam on the grating is s = d / cos ϕ 1 .

Fig. 2
Fig. 2

(a) Relationship between coupling strength and optimum spot size; typical regions for SOI and for polymer waveguide systems are indicated. (b) Optimum spot size of grating couplers as function of the index difference between the substrate and the cladding ( n s = n c = 1.46 ). The waveguide thickness t (see Table 1) is optimized for surface sensing in each material system. The results are presented for three different etch depths given in percentage of the waveguide thickness.

Fig. 3
Fig. 3

Simulated grating structure with applied HIC.

Fig. 4
Fig. 4

Comparison of the calculated input coupling efficiency obtained from the Floquet–Bloch-based simulation tool (solid curves) and the FDTD-based software package Meep (dotted curves). The TE polarization was simulated with a HIC thick ness of 170 nm and an etch depth of 210 nm , whereas the TM- polarization was simulated with 200 nm SiN HIC and an etch depth of 500 nm .

Fig. 5
Fig. 5

(a), (c) Calculated optimum spot size for PI grating couplers, as depicted in Fig. 3, with SiN HICs of different thicknesses as a function of the grating etch depth e for TE and TM polarization. (b), (d) Input coupling efficiency of a 30 μm wide Gaussian beam incident on the PI grating couplers as function of etch depth e and thickness of the SiN HIC t HIC for TE and TM polarization. For each plotted point, the angle of incidence and the z position of the Gaussian beam were optimized for maximum in-coupling efficiency.

Fig. 6
Fig. 6

Calculated (dotted curves) and experimentally obtained (solid curve) relative enhancements of the input coupling efficiency between coated and uncoated PI grating couplers for a 30 μm wide Gaussian beam incident from the cladding as function of SiN HIC thickness.

Fig. 7
Fig. 7

(a) SEM picture of the grating cross section. A reference sample was processed in the same way as the measured samples and was cleaved through the grating. The picture shows deviations from the optimum duty cycle and that the HIC on the sidewalls is nearly as thick as on the horizontal surfaces of the grating as well as that the side wall angle is only about 55 ° . (b) AFM measurement of the surface topology of the 1 μm thick PI layer above a grating coupler. The 200 nm modulation of the grating below the PI layer leads to a 30 nm modulation of the surface of the PI layer.

Tables (1)

Tables Icon

Table 1 Waveguide Thickness and Index Difference Used for Simulations in Fig. 2b a

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A ( z ) = A 0 e α z .
α s opt = 1.36756 .
L δ k x 2 π ,

Metrics