Abstract

The applicability of layers of ion-implanted polymethyl methacrylate (PMMA) for beam splitting of laser light at the telecommunications wavelength of 1.55μm is examined. Bulk PMMA is studied, subjected to low-energy (50keV) silicon ion implantation at various ion fluences in the range from 1014 to 1017cm2. The formed ultrathin near-surface ion-implanted layer of a thickness of about 100nm, buried in a depth of 100nm, can be used to split (or combine) laser beams at 1.55μm with a low absorption loss.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. V. Sviridov, V. B. Odzhaev, and I. P. Kozlov, “Ion-implanted polymers,” in Electrical and Optical Polymer Systems--Fundamentals, Methods and Applications, D.L.Wise, G.E.Wnek, D.J.Trantolo, T.M.Cooper, and J.D.Gresser, eds. (Marcel Dekker, 1998), pp. 387-422.
  2. D. V. Sviridov, “Chemical aspects of implantation of high-energy ions into polymeric materials,” Russ. Chem. Rev. 71, 315-327 (2002).
    [CrossRef]
  3. J. R. Kulisch, H. Franke, A. Singh, R. A. Lessard, and E. J. Knystautas, “Ion implantation, a method for fabricating lightguides in polymers,” J. Appl. Phys. 63, 2517-2521 (1988).
    [CrossRef]
  4. D. M. Rück, S. Brunner, W. Frank, J. Kulisch, and H. Franke, “Optical waveguides in polymeric material by ion implantation,” Surf. Coat. Technol. 51, 318-323 (1992).
    [CrossRef]
  5. Y. Koval, M. V. Fistul, and P. Müller, “Conductance enhancement of polymethylmethacrylate bombarded by low-energy ions,” J. Vac. Sci. Technol. A 23, 1375-1378 (2005).
    [CrossRef]
  6. J. R. Kulisch, H. Franke, R. Irmscher, and Ch. Buchal, “Opto-optical switching in ion-implanted poly(methyl methacrylate)-waveguides,” J. Appl. Phys. 71, 3123-3126 (1992).
    [CrossRef]
  7. S. Brunner, D. M. Rück, K. Tinschert, W. F. X. Frank, and B. Knödler, “Polymer based waveguiding structures obtained by ion beam irradiation at different energies,” Nucl. Instrum. Methods Phys. Res. B 107, 333-336 (1996).
    [CrossRef]
  8. A. A. Bettiol, T. C. Sum, F. C. Cheong, C. H. Sow, S. V. Rao, J. A. van Kan, E. J. Teo, K. Ansari, and F. Watt, “A progress review of proton beam writing applications in microphotonics,” Nucl. Instrum. Methods Phys. Res. B 231, 364-371 (2005).
    [CrossRef]
  9. T. C. Sum, A. A. Bettiol, C. Florea, and F. Watt, “Proton-beam writing of poly-methylmethacrylate buried channel waveguides,” J. Lightwave Technol. 24, 3803-3809 (2006).
    [CrossRef]
  10. A. A. Bettiol, K. Ansari, T. C. Sum, J. A. van Kan, and F. Watt, “Fabrication of micro-optical components in polymer using proton beam writing,” Proc. SPIE 5347, 255-263 (2004).
    [CrossRef]
  11. B. G. Hoover, C. K. McMichael, L. T. Wood, Z. Zhang, J. R. Liu, and W. K. Chu, “Laser-array generators produced by patterned ion irradiation of acrylic films,” Proc. SPIE. 5897, 589706 (2005).
    [CrossRef]
  12. G. B. Hadjichristov, V. K. Gueorguiev, Tz. E. Ivanov, Y. G. Marinov, V. G. Ivanov, and E. Faulques, “Silicon ion implanted PMMA for soft electronics,” Org. Electron. 9, 1051-1060 (2008).
    [CrossRef]
  13. G. B. Hadjichristov, V. Ivanov, and E. Faulques, “Reflectivity modification of polymethylmethacrylate by silicon ion implantation,” Appl. Surf. Sci. 254, 4820-4827 (2008).
    [CrossRef]
  14. G. B. Hadjichristov, I. L. Stefanov, B. I. Florian, G. D. Blaskova, V. G. Ivanov, and E. Faulques, “Optical reflectivity study of silicon ion implanted poly(methyl methacrylate),” Appl. Surf. Sci. 256, 779-786 (2009).
    [CrossRef]
  15. V. G. Ivanov, G. Hadjichristov, and E. Faulques, “Characterization of chemical bonding in ion-implanted polymers by means of mid-infrared reflectivity,” Appl. Spectrosc. 63, 1022-1026 (2009).
    [CrossRef]
  16. J. F. Ziegler, J. P. Biersack, and M. D. Ziegler, SRIM--The Stopping and Range of Ions in Matter (SRIM Co., 2008); the code is available from http://www.srim.org.
  17. M. Behar and D. Fink, “Mechanisms of particle-polymer interaction,” in Fundamentals of Ion Irradiated Polymers, D.Fink, ed. (Springer, 2004), pp. 119-169.

2009 (2)

G. B. Hadjichristov, I. L. Stefanov, B. I. Florian, G. D. Blaskova, V. G. Ivanov, and E. Faulques, “Optical reflectivity study of silicon ion implanted poly(methyl methacrylate),” Appl. Surf. Sci. 256, 779-786 (2009).
[CrossRef]

V. G. Ivanov, G. Hadjichristov, and E. Faulques, “Characterization of chemical bonding in ion-implanted polymers by means of mid-infrared reflectivity,” Appl. Spectrosc. 63, 1022-1026 (2009).
[CrossRef]

2008 (2)

G. B. Hadjichristov, V. K. Gueorguiev, Tz. E. Ivanov, Y. G. Marinov, V. G. Ivanov, and E. Faulques, “Silicon ion implanted PMMA for soft electronics,” Org. Electron. 9, 1051-1060 (2008).
[CrossRef]

G. B. Hadjichristov, V. Ivanov, and E. Faulques, “Reflectivity modification of polymethylmethacrylate by silicon ion implantation,” Appl. Surf. Sci. 254, 4820-4827 (2008).
[CrossRef]

2006 (1)

2005 (3)

B. G. Hoover, C. K. McMichael, L. T. Wood, Z. Zhang, J. R. Liu, and W. K. Chu, “Laser-array generators produced by patterned ion irradiation of acrylic films,” Proc. SPIE. 5897, 589706 (2005).
[CrossRef]

Y. Koval, M. V. Fistul, and P. Müller, “Conductance enhancement of polymethylmethacrylate bombarded by low-energy ions,” J. Vac. Sci. Technol. A 23, 1375-1378 (2005).
[CrossRef]

A. A. Bettiol, T. C. Sum, F. C. Cheong, C. H. Sow, S. V. Rao, J. A. van Kan, E. J. Teo, K. Ansari, and F. Watt, “A progress review of proton beam writing applications in microphotonics,” Nucl. Instrum. Methods Phys. Res. B 231, 364-371 (2005).
[CrossRef]

2004 (1)

A. A. Bettiol, K. Ansari, T. C. Sum, J. A. van Kan, and F. Watt, “Fabrication of micro-optical components in polymer using proton beam writing,” Proc. SPIE 5347, 255-263 (2004).
[CrossRef]

2002 (1)

D. V. Sviridov, “Chemical aspects of implantation of high-energy ions into polymeric materials,” Russ. Chem. Rev. 71, 315-327 (2002).
[CrossRef]

1996 (1)

S. Brunner, D. M. Rück, K. Tinschert, W. F. X. Frank, and B. Knödler, “Polymer based waveguiding structures obtained by ion beam irradiation at different energies,” Nucl. Instrum. Methods Phys. Res. B 107, 333-336 (1996).
[CrossRef]

1992 (2)

D. M. Rück, S. Brunner, W. Frank, J. Kulisch, and H. Franke, “Optical waveguides in polymeric material by ion implantation,” Surf. Coat. Technol. 51, 318-323 (1992).
[CrossRef]

J. R. Kulisch, H. Franke, R. Irmscher, and Ch. Buchal, “Opto-optical switching in ion-implanted poly(methyl methacrylate)-waveguides,” J. Appl. Phys. 71, 3123-3126 (1992).
[CrossRef]

1988 (1)

J. R. Kulisch, H. Franke, A. Singh, R. A. Lessard, and E. J. Knystautas, “Ion implantation, a method for fabricating lightguides in polymers,” J. Appl. Phys. 63, 2517-2521 (1988).
[CrossRef]

Ansari, K.

A. A. Bettiol, T. C. Sum, F. C. Cheong, C. H. Sow, S. V. Rao, J. A. van Kan, E. J. Teo, K. Ansari, and F. Watt, “A progress review of proton beam writing applications in microphotonics,” Nucl. Instrum. Methods Phys. Res. B 231, 364-371 (2005).
[CrossRef]

A. A. Bettiol, K. Ansari, T. C. Sum, J. A. van Kan, and F. Watt, “Fabrication of micro-optical components in polymer using proton beam writing,” Proc. SPIE 5347, 255-263 (2004).
[CrossRef]

Behar, M.

M. Behar and D. Fink, “Mechanisms of particle-polymer interaction,” in Fundamentals of Ion Irradiated Polymers, D.Fink, ed. (Springer, 2004), pp. 119-169.

Bettiol, A. A.

T. C. Sum, A. A. Bettiol, C. Florea, and F. Watt, “Proton-beam writing of poly-methylmethacrylate buried channel waveguides,” J. Lightwave Technol. 24, 3803-3809 (2006).
[CrossRef]

A. A. Bettiol, T. C. Sum, F. C. Cheong, C. H. Sow, S. V. Rao, J. A. van Kan, E. J. Teo, K. Ansari, and F. Watt, “A progress review of proton beam writing applications in microphotonics,” Nucl. Instrum. Methods Phys. Res. B 231, 364-371 (2005).
[CrossRef]

A. A. Bettiol, K. Ansari, T. C. Sum, J. A. van Kan, and F. Watt, “Fabrication of micro-optical components in polymer using proton beam writing,” Proc. SPIE 5347, 255-263 (2004).
[CrossRef]

Biersack, J. P.

J. F. Ziegler, J. P. Biersack, and M. D. Ziegler, SRIM--The Stopping and Range of Ions in Matter (SRIM Co., 2008); the code is available from http://www.srim.org.

Blaskova, G. D.

G. B. Hadjichristov, I. L. Stefanov, B. I. Florian, G. D. Blaskova, V. G. Ivanov, and E. Faulques, “Optical reflectivity study of silicon ion implanted poly(methyl methacrylate),” Appl. Surf. Sci. 256, 779-786 (2009).
[CrossRef]

Brunner, S.

S. Brunner, D. M. Rück, K. Tinschert, W. F. X. Frank, and B. Knödler, “Polymer based waveguiding structures obtained by ion beam irradiation at different energies,” Nucl. Instrum. Methods Phys. Res. B 107, 333-336 (1996).
[CrossRef]

D. M. Rück, S. Brunner, W. Frank, J. Kulisch, and H. Franke, “Optical waveguides in polymeric material by ion implantation,” Surf. Coat. Technol. 51, 318-323 (1992).
[CrossRef]

Buchal, Ch.

J. R. Kulisch, H. Franke, R. Irmscher, and Ch. Buchal, “Opto-optical switching in ion-implanted poly(methyl methacrylate)-waveguides,” J. Appl. Phys. 71, 3123-3126 (1992).
[CrossRef]

Cheong, F. C.

A. A. Bettiol, T. C. Sum, F. C. Cheong, C. H. Sow, S. V. Rao, J. A. van Kan, E. J. Teo, K. Ansari, and F. Watt, “A progress review of proton beam writing applications in microphotonics,” Nucl. Instrum. Methods Phys. Res. B 231, 364-371 (2005).
[CrossRef]

Chu, W. K.

B. G. Hoover, C. K. McMichael, L. T. Wood, Z. Zhang, J. R. Liu, and W. K. Chu, “Laser-array generators produced by patterned ion irradiation of acrylic films,” Proc. SPIE. 5897, 589706 (2005).
[CrossRef]

Faulques, E.

V. G. Ivanov, G. Hadjichristov, and E. Faulques, “Characterization of chemical bonding in ion-implanted polymers by means of mid-infrared reflectivity,” Appl. Spectrosc. 63, 1022-1026 (2009).
[CrossRef]

G. B. Hadjichristov, I. L. Stefanov, B. I. Florian, G. D. Blaskova, V. G. Ivanov, and E. Faulques, “Optical reflectivity study of silicon ion implanted poly(methyl methacrylate),” Appl. Surf. Sci. 256, 779-786 (2009).
[CrossRef]

G. B. Hadjichristov, V. Ivanov, and E. Faulques, “Reflectivity modification of polymethylmethacrylate by silicon ion implantation,” Appl. Surf. Sci. 254, 4820-4827 (2008).
[CrossRef]

G. B. Hadjichristov, V. K. Gueorguiev, Tz. E. Ivanov, Y. G. Marinov, V. G. Ivanov, and E. Faulques, “Silicon ion implanted PMMA for soft electronics,” Org. Electron. 9, 1051-1060 (2008).
[CrossRef]

Fink, D.

M. Behar and D. Fink, “Mechanisms of particle-polymer interaction,” in Fundamentals of Ion Irradiated Polymers, D.Fink, ed. (Springer, 2004), pp. 119-169.

Fistul, M. V.

Y. Koval, M. V. Fistul, and P. Müller, “Conductance enhancement of polymethylmethacrylate bombarded by low-energy ions,” J. Vac. Sci. Technol. A 23, 1375-1378 (2005).
[CrossRef]

Florea, C.

Florian, B. I.

G. B. Hadjichristov, I. L. Stefanov, B. I. Florian, G. D. Blaskova, V. G. Ivanov, and E. Faulques, “Optical reflectivity study of silicon ion implanted poly(methyl methacrylate),” Appl. Surf. Sci. 256, 779-786 (2009).
[CrossRef]

Frank, W.

D. M. Rück, S. Brunner, W. Frank, J. Kulisch, and H. Franke, “Optical waveguides in polymeric material by ion implantation,” Surf. Coat. Technol. 51, 318-323 (1992).
[CrossRef]

Frank, W. F. X.

S. Brunner, D. M. Rück, K. Tinschert, W. F. X. Frank, and B. Knödler, “Polymer based waveguiding structures obtained by ion beam irradiation at different energies,” Nucl. Instrum. Methods Phys. Res. B 107, 333-336 (1996).
[CrossRef]

Franke, H.

J. R. Kulisch, H. Franke, R. Irmscher, and Ch. Buchal, “Opto-optical switching in ion-implanted poly(methyl methacrylate)-waveguides,” J. Appl. Phys. 71, 3123-3126 (1992).
[CrossRef]

D. M. Rück, S. Brunner, W. Frank, J. Kulisch, and H. Franke, “Optical waveguides in polymeric material by ion implantation,” Surf. Coat. Technol. 51, 318-323 (1992).
[CrossRef]

J. R. Kulisch, H. Franke, A. Singh, R. A. Lessard, and E. J. Knystautas, “Ion implantation, a method for fabricating lightguides in polymers,” J. Appl. Phys. 63, 2517-2521 (1988).
[CrossRef]

Gueorguiev, V. K.

G. B. Hadjichristov, V. K. Gueorguiev, Tz. E. Ivanov, Y. G. Marinov, V. G. Ivanov, and E. Faulques, “Silicon ion implanted PMMA for soft electronics,” Org. Electron. 9, 1051-1060 (2008).
[CrossRef]

Hadjichristov, G.

Hadjichristov, G. B.

G. B. Hadjichristov, I. L. Stefanov, B. I. Florian, G. D. Blaskova, V. G. Ivanov, and E. Faulques, “Optical reflectivity study of silicon ion implanted poly(methyl methacrylate),” Appl. Surf. Sci. 256, 779-786 (2009).
[CrossRef]

G. B. Hadjichristov, V. Ivanov, and E. Faulques, “Reflectivity modification of polymethylmethacrylate by silicon ion implantation,” Appl. Surf. Sci. 254, 4820-4827 (2008).
[CrossRef]

G. B. Hadjichristov, V. K. Gueorguiev, Tz. E. Ivanov, Y. G. Marinov, V. G. Ivanov, and E. Faulques, “Silicon ion implanted PMMA for soft electronics,” Org. Electron. 9, 1051-1060 (2008).
[CrossRef]

Hoover, B. G.

B. G. Hoover, C. K. McMichael, L. T. Wood, Z. Zhang, J. R. Liu, and W. K. Chu, “Laser-array generators produced by patterned ion irradiation of acrylic films,” Proc. SPIE. 5897, 589706 (2005).
[CrossRef]

Irmscher, R.

J. R. Kulisch, H. Franke, R. Irmscher, and Ch. Buchal, “Opto-optical switching in ion-implanted poly(methyl methacrylate)-waveguides,” J. Appl. Phys. 71, 3123-3126 (1992).
[CrossRef]

Ivanov, Tz. E.

G. B. Hadjichristov, V. K. Gueorguiev, Tz. E. Ivanov, Y. G. Marinov, V. G. Ivanov, and E. Faulques, “Silicon ion implanted PMMA for soft electronics,” Org. Electron. 9, 1051-1060 (2008).
[CrossRef]

Ivanov, V.

G. B. Hadjichristov, V. Ivanov, and E. Faulques, “Reflectivity modification of polymethylmethacrylate by silicon ion implantation,” Appl. Surf. Sci. 254, 4820-4827 (2008).
[CrossRef]

Ivanov, V. G.

V. G. Ivanov, G. Hadjichristov, and E. Faulques, “Characterization of chemical bonding in ion-implanted polymers by means of mid-infrared reflectivity,” Appl. Spectrosc. 63, 1022-1026 (2009).
[CrossRef]

G. B. Hadjichristov, I. L. Stefanov, B. I. Florian, G. D. Blaskova, V. G. Ivanov, and E. Faulques, “Optical reflectivity study of silicon ion implanted poly(methyl methacrylate),” Appl. Surf. Sci. 256, 779-786 (2009).
[CrossRef]

G. B. Hadjichristov, V. K. Gueorguiev, Tz. E. Ivanov, Y. G. Marinov, V. G. Ivanov, and E. Faulques, “Silicon ion implanted PMMA for soft electronics,” Org. Electron. 9, 1051-1060 (2008).
[CrossRef]

Knödler, B.

S. Brunner, D. M. Rück, K. Tinschert, W. F. X. Frank, and B. Knödler, “Polymer based waveguiding structures obtained by ion beam irradiation at different energies,” Nucl. Instrum. Methods Phys. Res. B 107, 333-336 (1996).
[CrossRef]

Knystautas, E. J.

J. R. Kulisch, H. Franke, A. Singh, R. A. Lessard, and E. J. Knystautas, “Ion implantation, a method for fabricating lightguides in polymers,” J. Appl. Phys. 63, 2517-2521 (1988).
[CrossRef]

Koval, Y.

Y. Koval, M. V. Fistul, and P. Müller, “Conductance enhancement of polymethylmethacrylate bombarded by low-energy ions,” J. Vac. Sci. Technol. A 23, 1375-1378 (2005).
[CrossRef]

Kozlov, I. P.

D. V. Sviridov, V. B. Odzhaev, and I. P. Kozlov, “Ion-implanted polymers,” in Electrical and Optical Polymer Systems--Fundamentals, Methods and Applications, D.L.Wise, G.E.Wnek, D.J.Trantolo, T.M.Cooper, and J.D.Gresser, eds. (Marcel Dekker, 1998), pp. 387-422.

Kulisch, J.

D. M. Rück, S. Brunner, W. Frank, J. Kulisch, and H. Franke, “Optical waveguides in polymeric material by ion implantation,” Surf. Coat. Technol. 51, 318-323 (1992).
[CrossRef]

Kulisch, J. R.

J. R. Kulisch, H. Franke, R. Irmscher, and Ch. Buchal, “Opto-optical switching in ion-implanted poly(methyl methacrylate)-waveguides,” J. Appl. Phys. 71, 3123-3126 (1992).
[CrossRef]

J. R. Kulisch, H. Franke, A. Singh, R. A. Lessard, and E. J. Knystautas, “Ion implantation, a method for fabricating lightguides in polymers,” J. Appl. Phys. 63, 2517-2521 (1988).
[CrossRef]

Lessard, R. A.

J. R. Kulisch, H. Franke, A. Singh, R. A. Lessard, and E. J. Knystautas, “Ion implantation, a method for fabricating lightguides in polymers,” J. Appl. Phys. 63, 2517-2521 (1988).
[CrossRef]

Liu, J. R.

B. G. Hoover, C. K. McMichael, L. T. Wood, Z. Zhang, J. R. Liu, and W. K. Chu, “Laser-array generators produced by patterned ion irradiation of acrylic films,” Proc. SPIE. 5897, 589706 (2005).
[CrossRef]

Marinov, Y. G.

G. B. Hadjichristov, V. K. Gueorguiev, Tz. E. Ivanov, Y. G. Marinov, V. G. Ivanov, and E. Faulques, “Silicon ion implanted PMMA for soft electronics,” Org. Electron. 9, 1051-1060 (2008).
[CrossRef]

McMichael, C. K.

B. G. Hoover, C. K. McMichael, L. T. Wood, Z. Zhang, J. R. Liu, and W. K. Chu, “Laser-array generators produced by patterned ion irradiation of acrylic films,” Proc. SPIE. 5897, 589706 (2005).
[CrossRef]

Müller, P.

Y. Koval, M. V. Fistul, and P. Müller, “Conductance enhancement of polymethylmethacrylate bombarded by low-energy ions,” J. Vac. Sci. Technol. A 23, 1375-1378 (2005).
[CrossRef]

Odzhaev, V. B.

D. V. Sviridov, V. B. Odzhaev, and I. P. Kozlov, “Ion-implanted polymers,” in Electrical and Optical Polymer Systems--Fundamentals, Methods and Applications, D.L.Wise, G.E.Wnek, D.J.Trantolo, T.M.Cooper, and J.D.Gresser, eds. (Marcel Dekker, 1998), pp. 387-422.

Rao, S. V.

A. A. Bettiol, T. C. Sum, F. C. Cheong, C. H. Sow, S. V. Rao, J. A. van Kan, E. J. Teo, K. Ansari, and F. Watt, “A progress review of proton beam writing applications in microphotonics,” Nucl. Instrum. Methods Phys. Res. B 231, 364-371 (2005).
[CrossRef]

Rück, D. M.

S. Brunner, D. M. Rück, K. Tinschert, W. F. X. Frank, and B. Knödler, “Polymer based waveguiding structures obtained by ion beam irradiation at different energies,” Nucl. Instrum. Methods Phys. Res. B 107, 333-336 (1996).
[CrossRef]

D. M. Rück, S. Brunner, W. Frank, J. Kulisch, and H. Franke, “Optical waveguides in polymeric material by ion implantation,” Surf. Coat. Technol. 51, 318-323 (1992).
[CrossRef]

Singh, A.

J. R. Kulisch, H. Franke, A. Singh, R. A. Lessard, and E. J. Knystautas, “Ion implantation, a method for fabricating lightguides in polymers,” J. Appl. Phys. 63, 2517-2521 (1988).
[CrossRef]

Sow, C. H.

A. A. Bettiol, T. C. Sum, F. C. Cheong, C. H. Sow, S. V. Rao, J. A. van Kan, E. J. Teo, K. Ansari, and F. Watt, “A progress review of proton beam writing applications in microphotonics,” Nucl. Instrum. Methods Phys. Res. B 231, 364-371 (2005).
[CrossRef]

Stefanov, I. L.

G. B. Hadjichristov, I. L. Stefanov, B. I. Florian, G. D. Blaskova, V. G. Ivanov, and E. Faulques, “Optical reflectivity study of silicon ion implanted poly(methyl methacrylate),” Appl. Surf. Sci. 256, 779-786 (2009).
[CrossRef]

Sum, T. C.

T. C. Sum, A. A. Bettiol, C. Florea, and F. Watt, “Proton-beam writing of poly-methylmethacrylate buried channel waveguides,” J. Lightwave Technol. 24, 3803-3809 (2006).
[CrossRef]

A. A. Bettiol, T. C. Sum, F. C. Cheong, C. H. Sow, S. V. Rao, J. A. van Kan, E. J. Teo, K. Ansari, and F. Watt, “A progress review of proton beam writing applications in microphotonics,” Nucl. Instrum. Methods Phys. Res. B 231, 364-371 (2005).
[CrossRef]

A. A. Bettiol, K. Ansari, T. C. Sum, J. A. van Kan, and F. Watt, “Fabrication of micro-optical components in polymer using proton beam writing,” Proc. SPIE 5347, 255-263 (2004).
[CrossRef]

Sviridov, D. V.

D. V. Sviridov, “Chemical aspects of implantation of high-energy ions into polymeric materials,” Russ. Chem. Rev. 71, 315-327 (2002).
[CrossRef]

D. V. Sviridov, V. B. Odzhaev, and I. P. Kozlov, “Ion-implanted polymers,” in Electrical and Optical Polymer Systems--Fundamentals, Methods and Applications, D.L.Wise, G.E.Wnek, D.J.Trantolo, T.M.Cooper, and J.D.Gresser, eds. (Marcel Dekker, 1998), pp. 387-422.

Teo, E. J.

A. A. Bettiol, T. C. Sum, F. C. Cheong, C. H. Sow, S. V. Rao, J. A. van Kan, E. J. Teo, K. Ansari, and F. Watt, “A progress review of proton beam writing applications in microphotonics,” Nucl. Instrum. Methods Phys. Res. B 231, 364-371 (2005).
[CrossRef]

Tinschert, K.

S. Brunner, D. M. Rück, K. Tinschert, W. F. X. Frank, and B. Knödler, “Polymer based waveguiding structures obtained by ion beam irradiation at different energies,” Nucl. Instrum. Methods Phys. Res. B 107, 333-336 (1996).
[CrossRef]

van Kan, J. A.

A. A. Bettiol, T. C. Sum, F. C. Cheong, C. H. Sow, S. V. Rao, J. A. van Kan, E. J. Teo, K. Ansari, and F. Watt, “A progress review of proton beam writing applications in microphotonics,” Nucl. Instrum. Methods Phys. Res. B 231, 364-371 (2005).
[CrossRef]

A. A. Bettiol, K. Ansari, T. C. Sum, J. A. van Kan, and F. Watt, “Fabrication of micro-optical components in polymer using proton beam writing,” Proc. SPIE 5347, 255-263 (2004).
[CrossRef]

Watt, F.

T. C. Sum, A. A. Bettiol, C. Florea, and F. Watt, “Proton-beam writing of poly-methylmethacrylate buried channel waveguides,” J. Lightwave Technol. 24, 3803-3809 (2006).
[CrossRef]

A. A. Bettiol, T. C. Sum, F. C. Cheong, C. H. Sow, S. V. Rao, J. A. van Kan, E. J. Teo, K. Ansari, and F. Watt, “A progress review of proton beam writing applications in microphotonics,” Nucl. Instrum. Methods Phys. Res. B 231, 364-371 (2005).
[CrossRef]

A. A. Bettiol, K. Ansari, T. C. Sum, J. A. van Kan, and F. Watt, “Fabrication of micro-optical components in polymer using proton beam writing,” Proc. SPIE 5347, 255-263 (2004).
[CrossRef]

Wood, L. T.

B. G. Hoover, C. K. McMichael, L. T. Wood, Z. Zhang, J. R. Liu, and W. K. Chu, “Laser-array generators produced by patterned ion irradiation of acrylic films,” Proc. SPIE. 5897, 589706 (2005).
[CrossRef]

Zhang, Z.

B. G. Hoover, C. K. McMichael, L. T. Wood, Z. Zhang, J. R. Liu, and W. K. Chu, “Laser-array generators produced by patterned ion irradiation of acrylic films,” Proc. SPIE. 5897, 589706 (2005).
[CrossRef]

Ziegler, J. F.

J. F. Ziegler, J. P. Biersack, and M. D. Ziegler, SRIM--The Stopping and Range of Ions in Matter (SRIM Co., 2008); the code is available from http://www.srim.org.

Ziegler, M. D.

J. F. Ziegler, J. P. Biersack, and M. D. Ziegler, SRIM--The Stopping and Range of Ions in Matter (SRIM Co., 2008); the code is available from http://www.srim.org.

Appl. Spectrosc. (1)

Appl. Surf. Sci. (2)

G. B. Hadjichristov, V. Ivanov, and E. Faulques, “Reflectivity modification of polymethylmethacrylate by silicon ion implantation,” Appl. Surf. Sci. 254, 4820-4827 (2008).
[CrossRef]

G. B. Hadjichristov, I. L. Stefanov, B. I. Florian, G. D. Blaskova, V. G. Ivanov, and E. Faulques, “Optical reflectivity study of silicon ion implanted poly(methyl methacrylate),” Appl. Surf. Sci. 256, 779-786 (2009).
[CrossRef]

J. Appl. Phys. (2)

J. R. Kulisch, H. Franke, A. Singh, R. A. Lessard, and E. J. Knystautas, “Ion implantation, a method for fabricating lightguides in polymers,” J. Appl. Phys. 63, 2517-2521 (1988).
[CrossRef]

J. R. Kulisch, H. Franke, R. Irmscher, and Ch. Buchal, “Opto-optical switching in ion-implanted poly(methyl methacrylate)-waveguides,” J. Appl. Phys. 71, 3123-3126 (1992).
[CrossRef]

J. Lightwave Technol. (1)

J. Vac. Sci. Technol. A (1)

Y. Koval, M. V. Fistul, and P. Müller, “Conductance enhancement of polymethylmethacrylate bombarded by low-energy ions,” J. Vac. Sci. Technol. A 23, 1375-1378 (2005).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B (2)

S. Brunner, D. M. Rück, K. Tinschert, W. F. X. Frank, and B. Knödler, “Polymer based waveguiding structures obtained by ion beam irradiation at different energies,” Nucl. Instrum. Methods Phys. Res. B 107, 333-336 (1996).
[CrossRef]

A. A. Bettiol, T. C. Sum, F. C. Cheong, C. H. Sow, S. V. Rao, J. A. van Kan, E. J. Teo, K. Ansari, and F. Watt, “A progress review of proton beam writing applications in microphotonics,” Nucl. Instrum. Methods Phys. Res. B 231, 364-371 (2005).
[CrossRef]

Org. Electron. (1)

G. B. Hadjichristov, V. K. Gueorguiev, Tz. E. Ivanov, Y. G. Marinov, V. G. Ivanov, and E. Faulques, “Silicon ion implanted PMMA for soft electronics,” Org. Electron. 9, 1051-1060 (2008).
[CrossRef]

Proc. SPIE (1)

A. A. Bettiol, K. Ansari, T. C. Sum, J. A. van Kan, and F. Watt, “Fabrication of micro-optical components in polymer using proton beam writing,” Proc. SPIE 5347, 255-263 (2004).
[CrossRef]

Proc. SPIE. (1)

B. G. Hoover, C. K. McMichael, L. T. Wood, Z. Zhang, J. R. Liu, and W. K. Chu, “Laser-array generators produced by patterned ion irradiation of acrylic films,” Proc. SPIE. 5897, 589706 (2005).
[CrossRef]

Russ. Chem. Rev. (1)

D. V. Sviridov, “Chemical aspects of implantation of high-energy ions into polymeric materials,” Russ. Chem. Rev. 71, 315-327 (2002).
[CrossRef]

Surf. Coat. Technol. (1)

D. M. Rück, S. Brunner, W. Frank, J. Kulisch, and H. Franke, “Optical waveguides in polymeric material by ion implantation,” Surf. Coat. Technol. 51, 318-323 (1992).
[CrossRef]

Other (3)

D. V. Sviridov, V. B. Odzhaev, and I. P. Kozlov, “Ion-implanted polymers,” in Electrical and Optical Polymer Systems--Fundamentals, Methods and Applications, D.L.Wise, G.E.Wnek, D.J.Trantolo, T.M.Cooper, and J.D.Gresser, eds. (Marcel Dekker, 1998), pp. 387-422.

J. F. Ziegler, J. P. Biersack, and M. D. Ziegler, SRIM--The Stopping and Range of Ions in Matter (SRIM Co., 2008); the code is available from http://www.srim.org.

M. Behar and D. Fink, “Mechanisms of particle-polymer interaction,” in Fundamentals of Ion Irradiated Polymers, D.Fink, ed. (Springer, 2004), pp. 119-169.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the experimental arrangement for the measurement of beam-splitting (R/T) ratio upon illumination with a 1.55 μm laser source coupled to an optic fiber. OPM, optical powermeters for measurement of reflected (R) and transmitted (T) laser beams.

Fig. 2
Fig. 2

(a) Schematic view of ion-implanted sample. On the right is given the in-depth profile of the range of Si + ion distribution in the ion-implanted layer. (b) Detailed graph of the depth profile of ion-implanted layer formed when PMMA (density 1.19 g / cm 2 ) is subjected to an implantation with 50 keV Si + ions, as obtained by SRIM calculations. The range distribution function is presented by columns (bars). Polynomial and Gaussian fits to the ion ranges are given with solid and dashed curves, respectively.

Fig. 3
Fig. 3

(a) Power-splitting (R/T) for randomly polarized laser light at λ = 1.55 μm incident on Si + implanted beam splitter versus the incidence angle θ in . The implantation Si + ion fluence: 1, 3.2 × 10 14 ; 2, 10 15 ; 3, 3.2 × 10 15 ; 4, 10 16 ; 5, 3.2 × 10 16 ; 6, 10 17 cm 2 . The open circles and dashed curve represent the R/T measured for a nonimplanted sample. (b) The dependence of R/T ( θ in = 45 ° ) on the implantation Si + ion fluence. The error bars to the experimental data represent the uncertainty limits of ± 6 % discussed in the text.

Fig. 4
Fig. 4

R/T for Si + implanted sample (ion fluence 3.2 × 10 15 cm 2 ) measured with linearly polarized laser light at 1.55 μm at 8.3 mW . Data for s- and p-polarization directions of the incident laser beam are given by solid and open symbols, respectively. The error bars represent the uncertainty limits ± 6 % .

Metrics