Abstract

We developed a tip-enhanced Raman spectrometer (TERS) with reflection mode. The instrument, with a scanning shear-force microscope (ShFM) and a side-illumination Raman spectroscope, can overcome the diffraction limit and has high sensitivity. A chemical method to fabricate optical fiber probes with Ag coating is proposed. The local electromagnetic responses of the silver-coated optical fiber probe are numerically analyzed by the finite-difference time-domain method, and the excitation wavelength is optimized to resonate with the localized surface plasmons (LSP) of the probe tip. The instrument is applied to investigate a single multiwall carbon nanotube. The experiment results indicate that our TERS instrument has a spatial resolution better than 70nm, and the enhancement factor is about 5×103.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. S. Anderson, “Locally enhanced Raman spectroscopy with an atomic force microscope,” Appl. Phys. Lett. 76, 3130-3132(2000).
    [CrossRef]
  2. N. Hayazawa, Y. Inouye, Z. Sekkat, and S. Kawata, “Metallized tip amplification of near-field Raman scattering,” Opt. Commun. 183, 333-336 (2000).
    [CrossRef]
  3. R. M. Stockle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131-136 (2000).
    [CrossRef]
  4. B. Pettinger, G. Picardi, R. Schuster, and G. Ertl, “Surface enhanced Raman spectroscopy: towards single molecular spectroscopy,” Electrochemistry 68, 942-949 (2000).
  5. X. Wang, Z. Liu, M. D. Zhuang, H. M. Zhang, Z. X. Xie, D. Y. Wu, B. Ren, and Z. Q. Tian, “Tip-enhanced Raman spectroscopy for investigating adsorbed species on a single-crystal surface using electrochemically prepared Au tips,” Appl. Phys. Lett. 91, 101105 (2007).
    [CrossRef]
  6. L. Zhu, C. Georgi, M. Hecker, J. Rinderknecht, A. Mai, Y. Ritz, and E. Zschech, “Nano-Raman spectroscopy with metallized atomic force microscopy tips on strained silicon structures,” J. Appl. Phys. 101, 104305 (2007).
    [CrossRef]
  7. W. X. Sun and Z. X. Shen, “Optimizing the near field around silver tips,” J. Opt. Soc. Am. A 20, 2254-2259 (2003).
    [CrossRef]
  8. J. Steidtner and B. Pettinger, “High-resolution microscope for tip-enhanced optical processes in ultrahigh vacuum,” Rev. Sci. Instrum. 78, 103104 (2007).
    [CrossRef] [PubMed]
  9. J. Steidtner and B. Pettinger, “Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nmresolution,” Phys. Rev. Lett. 100, 236101 (2008).
    [CrossRef] [PubMed]
  10. J. J. Wang, Y. Saito, D. N. Batchelder, J. Kirkham, C. Robinson, and D. A. Smith, “Controllable method for the preparation of metalized probes for efficient scanning near-field optical Raman microscopy,” Appl. Phys. Lett. 86, 263111 (2005).
    [CrossRef]
  11. D. Chen, H.-Y. Liu, J.-S. Liu, X.-L. Ren, X.-W. Meng, W. Wu, and F.-Q. Tang, “A general method for synthesis continuous silver nanoshells on dielectric colloids,” Thin Solid Films , 6371-6376 (2008).
    [CrossRef]
  12. D. R. Turner, “Etch procedure for optical fibers,” U.S. patent 4,469,554 (4 Sept. 1984).
  13. N. Hayazawa, T. Yano, H. Watanabe, Y. Inouye, and S. Kawata, “Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy,” Chem. Phys. Lett. 376, 174-180 (2003).
    [CrossRef]
  14. Y. Saito, N. Hayazawa, H. Kataura, T. Murakami, K. Tsukagoshi, Y. Inouye, and S. Kawata, “Polarization measurements in tip-enhanced Raman spectroscopy applied to single-walled carbon nanotubes,” Chem. Phys. Lett. 410, 136-141 (2005).
    [CrossRef]
  15. N. Anderson, A. Hartschuh, S. Cronin, and L. Novotny, “Nanoscale vibrational analysis of single-walled carbon nanotubes,” J. Am. Chem. Soc. 127, 2533-2537 (2005).
    [CrossRef] [PubMed]
  16. T. Yano, P. Verma, S. Kawata, and Y. Inouye, “Diameter-selective near-field Raman analysis and imaging of isolated carbon nanotube bundles,” Appl. Phys. Lett. 88, 093125 (2006).
    [CrossRef]
  17. G. Picardi, M. Chaigneau, and R. Ossikovski, “High resolution probing of multi wall carbon nanotubes by tip enhanced Raman spectroscopy in gap-mode,” Chem. Phys. Lett. 469, 161-165 (2009).
    [CrossRef]
  18. T. Schmid, B. S. Yeo, W. Zhang, and R. Zenobi, “Use of tip-enhanced vibrational spectroscopy for analytical applications in chemistry, biology, and materials science,” in Tip Enhancement, S.Kawata and V.M.Shalaev, eds. (Elsevier, 2007), pp. 115-155.
    [CrossRef]

2009 (1)

G. Picardi, M. Chaigneau, and R. Ossikovski, “High resolution probing of multi wall carbon nanotubes by tip enhanced Raman spectroscopy in gap-mode,” Chem. Phys. Lett. 469, 161-165 (2009).
[CrossRef]

2008 (2)

D. Chen, H.-Y. Liu, J.-S. Liu, X.-L. Ren, X.-W. Meng, W. Wu, and F.-Q. Tang, “A general method for synthesis continuous silver nanoshells on dielectric colloids,” Thin Solid Films , 6371-6376 (2008).
[CrossRef]

J. Steidtner and B. Pettinger, “Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nmresolution,” Phys. Rev. Lett. 100, 236101 (2008).
[CrossRef] [PubMed]

2007 (3)

X. Wang, Z. Liu, M. D. Zhuang, H. M. Zhang, Z. X. Xie, D. Y. Wu, B. Ren, and Z. Q. Tian, “Tip-enhanced Raman spectroscopy for investigating adsorbed species on a single-crystal surface using electrochemically prepared Au tips,” Appl. Phys. Lett. 91, 101105 (2007).
[CrossRef]

L. Zhu, C. Georgi, M. Hecker, J. Rinderknecht, A. Mai, Y. Ritz, and E. Zschech, “Nano-Raman spectroscopy with metallized atomic force microscopy tips on strained silicon structures,” J. Appl. Phys. 101, 104305 (2007).
[CrossRef]

J. Steidtner and B. Pettinger, “High-resolution microscope for tip-enhanced optical processes in ultrahigh vacuum,” Rev. Sci. Instrum. 78, 103104 (2007).
[CrossRef] [PubMed]

2006 (1)

T. Yano, P. Verma, S. Kawata, and Y. Inouye, “Diameter-selective near-field Raman analysis and imaging of isolated carbon nanotube bundles,” Appl. Phys. Lett. 88, 093125 (2006).
[CrossRef]

2005 (3)

Y. Saito, N. Hayazawa, H. Kataura, T. Murakami, K. Tsukagoshi, Y. Inouye, and S. Kawata, “Polarization measurements in tip-enhanced Raman spectroscopy applied to single-walled carbon nanotubes,” Chem. Phys. Lett. 410, 136-141 (2005).
[CrossRef]

N. Anderson, A. Hartschuh, S. Cronin, and L. Novotny, “Nanoscale vibrational analysis of single-walled carbon nanotubes,” J. Am. Chem. Soc. 127, 2533-2537 (2005).
[CrossRef] [PubMed]

J. J. Wang, Y. Saito, D. N. Batchelder, J. Kirkham, C. Robinson, and D. A. Smith, “Controllable method for the preparation of metalized probes for efficient scanning near-field optical Raman microscopy,” Appl. Phys. Lett. 86, 263111 (2005).
[CrossRef]

2003 (2)

W. X. Sun and Z. X. Shen, “Optimizing the near field around silver tips,” J. Opt. Soc. Am. A 20, 2254-2259 (2003).
[CrossRef]

N. Hayazawa, T. Yano, H. Watanabe, Y. Inouye, and S. Kawata, “Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy,” Chem. Phys. Lett. 376, 174-180 (2003).
[CrossRef]

2000 (4)

M. S. Anderson, “Locally enhanced Raman spectroscopy with an atomic force microscope,” Appl. Phys. Lett. 76, 3130-3132(2000).
[CrossRef]

N. Hayazawa, Y. Inouye, Z. Sekkat, and S. Kawata, “Metallized tip amplification of near-field Raman scattering,” Opt. Commun. 183, 333-336 (2000).
[CrossRef]

R. M. Stockle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131-136 (2000).
[CrossRef]

B. Pettinger, G. Picardi, R. Schuster, and G. Ertl, “Surface enhanced Raman spectroscopy: towards single molecular spectroscopy,” Electrochemistry 68, 942-949 (2000).

Anderson, M. S.

M. S. Anderson, “Locally enhanced Raman spectroscopy with an atomic force microscope,” Appl. Phys. Lett. 76, 3130-3132(2000).
[CrossRef]

Anderson, N.

N. Anderson, A. Hartschuh, S. Cronin, and L. Novotny, “Nanoscale vibrational analysis of single-walled carbon nanotubes,” J. Am. Chem. Soc. 127, 2533-2537 (2005).
[CrossRef] [PubMed]

Batchelder, D. N.

J. J. Wang, Y. Saito, D. N. Batchelder, J. Kirkham, C. Robinson, and D. A. Smith, “Controllable method for the preparation of metalized probes for efficient scanning near-field optical Raman microscopy,” Appl. Phys. Lett. 86, 263111 (2005).
[CrossRef]

Chaigneau, M.

G. Picardi, M. Chaigneau, and R. Ossikovski, “High resolution probing of multi wall carbon nanotubes by tip enhanced Raman spectroscopy in gap-mode,” Chem. Phys. Lett. 469, 161-165 (2009).
[CrossRef]

Chen, D.

D. Chen, H.-Y. Liu, J.-S. Liu, X.-L. Ren, X.-W. Meng, W. Wu, and F.-Q. Tang, “A general method for synthesis continuous silver nanoshells on dielectric colloids,” Thin Solid Films , 6371-6376 (2008).
[CrossRef]

Cronin, S.

N. Anderson, A. Hartschuh, S. Cronin, and L. Novotny, “Nanoscale vibrational analysis of single-walled carbon nanotubes,” J. Am. Chem. Soc. 127, 2533-2537 (2005).
[CrossRef] [PubMed]

Deckert, V.

R. M. Stockle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131-136 (2000).
[CrossRef]

Ertl, G.

B. Pettinger, G. Picardi, R. Schuster, and G. Ertl, “Surface enhanced Raman spectroscopy: towards single molecular spectroscopy,” Electrochemistry 68, 942-949 (2000).

Georgi, C.

L. Zhu, C. Georgi, M. Hecker, J. Rinderknecht, A. Mai, Y. Ritz, and E. Zschech, “Nano-Raman spectroscopy with metallized atomic force microscopy tips on strained silicon structures,” J. Appl. Phys. 101, 104305 (2007).
[CrossRef]

Hartschuh, A.

N. Anderson, A. Hartschuh, S. Cronin, and L. Novotny, “Nanoscale vibrational analysis of single-walled carbon nanotubes,” J. Am. Chem. Soc. 127, 2533-2537 (2005).
[CrossRef] [PubMed]

Hayazawa, N.

Y. Saito, N. Hayazawa, H. Kataura, T. Murakami, K. Tsukagoshi, Y. Inouye, and S. Kawata, “Polarization measurements in tip-enhanced Raman spectroscopy applied to single-walled carbon nanotubes,” Chem. Phys. Lett. 410, 136-141 (2005).
[CrossRef]

N. Hayazawa, T. Yano, H. Watanabe, Y. Inouye, and S. Kawata, “Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy,” Chem. Phys. Lett. 376, 174-180 (2003).
[CrossRef]

N. Hayazawa, Y. Inouye, Z. Sekkat, and S. Kawata, “Metallized tip amplification of near-field Raman scattering,” Opt. Commun. 183, 333-336 (2000).
[CrossRef]

Hecker, M.

L. Zhu, C. Georgi, M. Hecker, J. Rinderknecht, A. Mai, Y. Ritz, and E. Zschech, “Nano-Raman spectroscopy with metallized atomic force microscopy tips on strained silicon structures,” J. Appl. Phys. 101, 104305 (2007).
[CrossRef]

Inouye, Y.

T. Yano, P. Verma, S. Kawata, and Y. Inouye, “Diameter-selective near-field Raman analysis and imaging of isolated carbon nanotube bundles,” Appl. Phys. Lett. 88, 093125 (2006).
[CrossRef]

Y. Saito, N. Hayazawa, H. Kataura, T. Murakami, K. Tsukagoshi, Y. Inouye, and S. Kawata, “Polarization measurements in tip-enhanced Raman spectroscopy applied to single-walled carbon nanotubes,” Chem. Phys. Lett. 410, 136-141 (2005).
[CrossRef]

N. Hayazawa, T. Yano, H. Watanabe, Y. Inouye, and S. Kawata, “Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy,” Chem. Phys. Lett. 376, 174-180 (2003).
[CrossRef]

N. Hayazawa, Y. Inouye, Z. Sekkat, and S. Kawata, “Metallized tip amplification of near-field Raman scattering,” Opt. Commun. 183, 333-336 (2000).
[CrossRef]

Kataura, H.

Y. Saito, N. Hayazawa, H. Kataura, T. Murakami, K. Tsukagoshi, Y. Inouye, and S. Kawata, “Polarization measurements in tip-enhanced Raman spectroscopy applied to single-walled carbon nanotubes,” Chem. Phys. Lett. 410, 136-141 (2005).
[CrossRef]

Kawata, S.

T. Yano, P. Verma, S. Kawata, and Y. Inouye, “Diameter-selective near-field Raman analysis and imaging of isolated carbon nanotube bundles,” Appl. Phys. Lett. 88, 093125 (2006).
[CrossRef]

Y. Saito, N. Hayazawa, H. Kataura, T. Murakami, K. Tsukagoshi, Y. Inouye, and S. Kawata, “Polarization measurements in tip-enhanced Raman spectroscopy applied to single-walled carbon nanotubes,” Chem. Phys. Lett. 410, 136-141 (2005).
[CrossRef]

N. Hayazawa, T. Yano, H. Watanabe, Y. Inouye, and S. Kawata, “Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy,” Chem. Phys. Lett. 376, 174-180 (2003).
[CrossRef]

N. Hayazawa, Y. Inouye, Z. Sekkat, and S. Kawata, “Metallized tip amplification of near-field Raman scattering,” Opt. Commun. 183, 333-336 (2000).
[CrossRef]

Kirkham, J.

J. J. Wang, Y. Saito, D. N. Batchelder, J. Kirkham, C. Robinson, and D. A. Smith, “Controllable method for the preparation of metalized probes for efficient scanning near-field optical Raman microscopy,” Appl. Phys. Lett. 86, 263111 (2005).
[CrossRef]

Liu, H.-Y.

D. Chen, H.-Y. Liu, J.-S. Liu, X.-L. Ren, X.-W. Meng, W. Wu, and F.-Q. Tang, “A general method for synthesis continuous silver nanoshells on dielectric colloids,” Thin Solid Films , 6371-6376 (2008).
[CrossRef]

Liu, J.-S.

D. Chen, H.-Y. Liu, J.-S. Liu, X.-L. Ren, X.-W. Meng, W. Wu, and F.-Q. Tang, “A general method for synthesis continuous silver nanoshells on dielectric colloids,” Thin Solid Films , 6371-6376 (2008).
[CrossRef]

Liu, Z.

X. Wang, Z. Liu, M. D. Zhuang, H. M. Zhang, Z. X. Xie, D. Y. Wu, B. Ren, and Z. Q. Tian, “Tip-enhanced Raman spectroscopy for investigating adsorbed species on a single-crystal surface using electrochemically prepared Au tips,” Appl. Phys. Lett. 91, 101105 (2007).
[CrossRef]

Mai, A.

L. Zhu, C. Georgi, M. Hecker, J. Rinderknecht, A. Mai, Y. Ritz, and E. Zschech, “Nano-Raman spectroscopy with metallized atomic force microscopy tips on strained silicon structures,” J. Appl. Phys. 101, 104305 (2007).
[CrossRef]

Meng, X.-W.

D. Chen, H.-Y. Liu, J.-S. Liu, X.-L. Ren, X.-W. Meng, W. Wu, and F.-Q. Tang, “A general method for synthesis continuous silver nanoshells on dielectric colloids,” Thin Solid Films , 6371-6376 (2008).
[CrossRef]

Murakami, T.

Y. Saito, N. Hayazawa, H. Kataura, T. Murakami, K. Tsukagoshi, Y. Inouye, and S. Kawata, “Polarization measurements in tip-enhanced Raman spectroscopy applied to single-walled carbon nanotubes,” Chem. Phys. Lett. 410, 136-141 (2005).
[CrossRef]

Novotny, L.

N. Anderson, A. Hartschuh, S. Cronin, and L. Novotny, “Nanoscale vibrational analysis of single-walled carbon nanotubes,” J. Am. Chem. Soc. 127, 2533-2537 (2005).
[CrossRef] [PubMed]

Ossikovski, R.

G. Picardi, M. Chaigneau, and R. Ossikovski, “High resolution probing of multi wall carbon nanotubes by tip enhanced Raman spectroscopy in gap-mode,” Chem. Phys. Lett. 469, 161-165 (2009).
[CrossRef]

Pettinger, B.

J. Steidtner and B. Pettinger, “Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nmresolution,” Phys. Rev. Lett. 100, 236101 (2008).
[CrossRef] [PubMed]

J. Steidtner and B. Pettinger, “High-resolution microscope for tip-enhanced optical processes in ultrahigh vacuum,” Rev. Sci. Instrum. 78, 103104 (2007).
[CrossRef] [PubMed]

B. Pettinger, G. Picardi, R. Schuster, and G. Ertl, “Surface enhanced Raman spectroscopy: towards single molecular spectroscopy,” Electrochemistry 68, 942-949 (2000).

Picardi, G.

G. Picardi, M. Chaigneau, and R. Ossikovski, “High resolution probing of multi wall carbon nanotubes by tip enhanced Raman spectroscopy in gap-mode,” Chem. Phys. Lett. 469, 161-165 (2009).
[CrossRef]

B. Pettinger, G. Picardi, R. Schuster, and G. Ertl, “Surface enhanced Raman spectroscopy: towards single molecular spectroscopy,” Electrochemistry 68, 942-949 (2000).

Ren, B.

X. Wang, Z. Liu, M. D. Zhuang, H. M. Zhang, Z. X. Xie, D. Y. Wu, B. Ren, and Z. Q. Tian, “Tip-enhanced Raman spectroscopy for investigating adsorbed species on a single-crystal surface using electrochemically prepared Au tips,” Appl. Phys. Lett. 91, 101105 (2007).
[CrossRef]

Ren, X.-L.

D. Chen, H.-Y. Liu, J.-S. Liu, X.-L. Ren, X.-W. Meng, W. Wu, and F.-Q. Tang, “A general method for synthesis continuous silver nanoshells on dielectric colloids,” Thin Solid Films , 6371-6376 (2008).
[CrossRef]

Rinderknecht, J.

L. Zhu, C. Georgi, M. Hecker, J. Rinderknecht, A. Mai, Y. Ritz, and E. Zschech, “Nano-Raman spectroscopy with metallized atomic force microscopy tips on strained silicon structures,” J. Appl. Phys. 101, 104305 (2007).
[CrossRef]

Ritz, Y.

L. Zhu, C. Georgi, M. Hecker, J. Rinderknecht, A. Mai, Y. Ritz, and E. Zschech, “Nano-Raman spectroscopy with metallized atomic force microscopy tips on strained silicon structures,” J. Appl. Phys. 101, 104305 (2007).
[CrossRef]

Robinson, C.

J. J. Wang, Y. Saito, D. N. Batchelder, J. Kirkham, C. Robinson, and D. A. Smith, “Controllable method for the preparation of metalized probes for efficient scanning near-field optical Raman microscopy,” Appl. Phys. Lett. 86, 263111 (2005).
[CrossRef]

Saito, Y.

Y. Saito, N. Hayazawa, H. Kataura, T. Murakami, K. Tsukagoshi, Y. Inouye, and S. Kawata, “Polarization measurements in tip-enhanced Raman spectroscopy applied to single-walled carbon nanotubes,” Chem. Phys. Lett. 410, 136-141 (2005).
[CrossRef]

J. J. Wang, Y. Saito, D. N. Batchelder, J. Kirkham, C. Robinson, and D. A. Smith, “Controllable method for the preparation of metalized probes for efficient scanning near-field optical Raman microscopy,” Appl. Phys. Lett. 86, 263111 (2005).
[CrossRef]

Schmid, T.

T. Schmid, B. S. Yeo, W. Zhang, and R. Zenobi, “Use of tip-enhanced vibrational spectroscopy for analytical applications in chemistry, biology, and materials science,” in Tip Enhancement, S.Kawata and V.M.Shalaev, eds. (Elsevier, 2007), pp. 115-155.
[CrossRef]

Schuster, R.

B. Pettinger, G. Picardi, R. Schuster, and G. Ertl, “Surface enhanced Raman spectroscopy: towards single molecular spectroscopy,” Electrochemistry 68, 942-949 (2000).

Sekkat, Z.

N. Hayazawa, Y. Inouye, Z. Sekkat, and S. Kawata, “Metallized tip amplification of near-field Raman scattering,” Opt. Commun. 183, 333-336 (2000).
[CrossRef]

Shen, Z. X.

Smith, D. A.

J. J. Wang, Y. Saito, D. N. Batchelder, J. Kirkham, C. Robinson, and D. A. Smith, “Controllable method for the preparation of metalized probes for efficient scanning near-field optical Raman microscopy,” Appl. Phys. Lett. 86, 263111 (2005).
[CrossRef]

Steidtner, J.

J. Steidtner and B. Pettinger, “Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nmresolution,” Phys. Rev. Lett. 100, 236101 (2008).
[CrossRef] [PubMed]

J. Steidtner and B. Pettinger, “High-resolution microscope for tip-enhanced optical processes in ultrahigh vacuum,” Rev. Sci. Instrum. 78, 103104 (2007).
[CrossRef] [PubMed]

Stockle, R. M.

R. M. Stockle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131-136 (2000).
[CrossRef]

Suh, Y. D.

R. M. Stockle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131-136 (2000).
[CrossRef]

Sun, W. X.

Tang, F.-Q.

D. Chen, H.-Y. Liu, J.-S. Liu, X.-L. Ren, X.-W. Meng, W. Wu, and F.-Q. Tang, “A general method for synthesis continuous silver nanoshells on dielectric colloids,” Thin Solid Films , 6371-6376 (2008).
[CrossRef]

Tian, Z. Q.

X. Wang, Z. Liu, M. D. Zhuang, H. M. Zhang, Z. X. Xie, D. Y. Wu, B. Ren, and Z. Q. Tian, “Tip-enhanced Raman spectroscopy for investigating adsorbed species on a single-crystal surface using electrochemically prepared Au tips,” Appl. Phys. Lett. 91, 101105 (2007).
[CrossRef]

Tsukagoshi, K.

Y. Saito, N. Hayazawa, H. Kataura, T. Murakami, K. Tsukagoshi, Y. Inouye, and S. Kawata, “Polarization measurements in tip-enhanced Raman spectroscopy applied to single-walled carbon nanotubes,” Chem. Phys. Lett. 410, 136-141 (2005).
[CrossRef]

Turner, D. R.

D. R. Turner, “Etch procedure for optical fibers,” U.S. patent 4,469,554 (4 Sept. 1984).

Verma, P.

T. Yano, P. Verma, S. Kawata, and Y. Inouye, “Diameter-selective near-field Raman analysis and imaging of isolated carbon nanotube bundles,” Appl. Phys. Lett. 88, 093125 (2006).
[CrossRef]

Wang, J. J.

J. J. Wang, Y. Saito, D. N. Batchelder, J. Kirkham, C. Robinson, and D. A. Smith, “Controllable method for the preparation of metalized probes for efficient scanning near-field optical Raman microscopy,” Appl. Phys. Lett. 86, 263111 (2005).
[CrossRef]

Wang, X.

X. Wang, Z. Liu, M. D. Zhuang, H. M. Zhang, Z. X. Xie, D. Y. Wu, B. Ren, and Z. Q. Tian, “Tip-enhanced Raman spectroscopy for investigating adsorbed species on a single-crystal surface using electrochemically prepared Au tips,” Appl. Phys. Lett. 91, 101105 (2007).
[CrossRef]

Watanabe, H.

N. Hayazawa, T. Yano, H. Watanabe, Y. Inouye, and S. Kawata, “Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy,” Chem. Phys. Lett. 376, 174-180 (2003).
[CrossRef]

Wu, D. Y.

X. Wang, Z. Liu, M. D. Zhuang, H. M. Zhang, Z. X. Xie, D. Y. Wu, B. Ren, and Z. Q. Tian, “Tip-enhanced Raman spectroscopy for investigating adsorbed species on a single-crystal surface using electrochemically prepared Au tips,” Appl. Phys. Lett. 91, 101105 (2007).
[CrossRef]

Wu, W.

D. Chen, H.-Y. Liu, J.-S. Liu, X.-L. Ren, X.-W. Meng, W. Wu, and F.-Q. Tang, “A general method for synthesis continuous silver nanoshells on dielectric colloids,” Thin Solid Films , 6371-6376 (2008).
[CrossRef]

Xie, Z. X.

X. Wang, Z. Liu, M. D. Zhuang, H. M. Zhang, Z. X. Xie, D. Y. Wu, B. Ren, and Z. Q. Tian, “Tip-enhanced Raman spectroscopy for investigating adsorbed species on a single-crystal surface using electrochemically prepared Au tips,” Appl. Phys. Lett. 91, 101105 (2007).
[CrossRef]

Yano, T.

T. Yano, P. Verma, S. Kawata, and Y. Inouye, “Diameter-selective near-field Raman analysis and imaging of isolated carbon nanotube bundles,” Appl. Phys. Lett. 88, 093125 (2006).
[CrossRef]

N. Hayazawa, T. Yano, H. Watanabe, Y. Inouye, and S. Kawata, “Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy,” Chem. Phys. Lett. 376, 174-180 (2003).
[CrossRef]

Yeo, B. S.

T. Schmid, B. S. Yeo, W. Zhang, and R. Zenobi, “Use of tip-enhanced vibrational spectroscopy for analytical applications in chemistry, biology, and materials science,” in Tip Enhancement, S.Kawata and V.M.Shalaev, eds. (Elsevier, 2007), pp. 115-155.
[CrossRef]

Zenobi, R.

R. M. Stockle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131-136 (2000).
[CrossRef]

T. Schmid, B. S. Yeo, W. Zhang, and R. Zenobi, “Use of tip-enhanced vibrational spectroscopy for analytical applications in chemistry, biology, and materials science,” in Tip Enhancement, S.Kawata and V.M.Shalaev, eds. (Elsevier, 2007), pp. 115-155.
[CrossRef]

Zhang, H. M.

X. Wang, Z. Liu, M. D. Zhuang, H. M. Zhang, Z. X. Xie, D. Y. Wu, B. Ren, and Z. Q. Tian, “Tip-enhanced Raman spectroscopy for investigating adsorbed species on a single-crystal surface using electrochemically prepared Au tips,” Appl. Phys. Lett. 91, 101105 (2007).
[CrossRef]

Zhang, W.

T. Schmid, B. S. Yeo, W. Zhang, and R. Zenobi, “Use of tip-enhanced vibrational spectroscopy for analytical applications in chemistry, biology, and materials science,” in Tip Enhancement, S.Kawata and V.M.Shalaev, eds. (Elsevier, 2007), pp. 115-155.
[CrossRef]

Zhu, L.

L. Zhu, C. Georgi, M. Hecker, J. Rinderknecht, A. Mai, Y. Ritz, and E. Zschech, “Nano-Raman spectroscopy with metallized atomic force microscopy tips on strained silicon structures,” J. Appl. Phys. 101, 104305 (2007).
[CrossRef]

Zhuang, M. D.

X. Wang, Z. Liu, M. D. Zhuang, H. M. Zhang, Z. X. Xie, D. Y. Wu, B. Ren, and Z. Q. Tian, “Tip-enhanced Raman spectroscopy for investigating adsorbed species on a single-crystal surface using electrochemically prepared Au tips,” Appl. Phys. Lett. 91, 101105 (2007).
[CrossRef]

Zschech, E.

L. Zhu, C. Georgi, M. Hecker, J. Rinderknecht, A. Mai, Y. Ritz, and E. Zschech, “Nano-Raman spectroscopy with metallized atomic force microscopy tips on strained silicon structures,” J. Appl. Phys. 101, 104305 (2007).
[CrossRef]

Appl. Phys. Lett. (4)

M. S. Anderson, “Locally enhanced Raman spectroscopy with an atomic force microscope,” Appl. Phys. Lett. 76, 3130-3132(2000).
[CrossRef]

X. Wang, Z. Liu, M. D. Zhuang, H. M. Zhang, Z. X. Xie, D. Y. Wu, B. Ren, and Z. Q. Tian, “Tip-enhanced Raman spectroscopy for investigating adsorbed species on a single-crystal surface using electrochemically prepared Au tips,” Appl. Phys. Lett. 91, 101105 (2007).
[CrossRef]

J. J. Wang, Y. Saito, D. N. Batchelder, J. Kirkham, C. Robinson, and D. A. Smith, “Controllable method for the preparation of metalized probes for efficient scanning near-field optical Raman microscopy,” Appl. Phys. Lett. 86, 263111 (2005).
[CrossRef]

T. Yano, P. Verma, S. Kawata, and Y. Inouye, “Diameter-selective near-field Raman analysis and imaging of isolated carbon nanotube bundles,” Appl. Phys. Lett. 88, 093125 (2006).
[CrossRef]

Chem. Phys. Lett. (4)

G. Picardi, M. Chaigneau, and R. Ossikovski, “High resolution probing of multi wall carbon nanotubes by tip enhanced Raman spectroscopy in gap-mode,” Chem. Phys. Lett. 469, 161-165 (2009).
[CrossRef]

N. Hayazawa, T. Yano, H. Watanabe, Y. Inouye, and S. Kawata, “Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy,” Chem. Phys. Lett. 376, 174-180 (2003).
[CrossRef]

Y. Saito, N. Hayazawa, H. Kataura, T. Murakami, K. Tsukagoshi, Y. Inouye, and S. Kawata, “Polarization measurements in tip-enhanced Raman spectroscopy applied to single-walled carbon nanotubes,” Chem. Phys. Lett. 410, 136-141 (2005).
[CrossRef]

R. M. Stockle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131-136 (2000).
[CrossRef]

Electrochemistry (1)

B. Pettinger, G. Picardi, R. Schuster, and G. Ertl, “Surface enhanced Raman spectroscopy: towards single molecular spectroscopy,” Electrochemistry 68, 942-949 (2000).

J. Am. Chem. Soc. (1)

N. Anderson, A. Hartschuh, S. Cronin, and L. Novotny, “Nanoscale vibrational analysis of single-walled carbon nanotubes,” J. Am. Chem. Soc. 127, 2533-2537 (2005).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

L. Zhu, C. Georgi, M. Hecker, J. Rinderknecht, A. Mai, Y. Ritz, and E. Zschech, “Nano-Raman spectroscopy with metallized atomic force microscopy tips on strained silicon structures,” J. Appl. Phys. 101, 104305 (2007).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

N. Hayazawa, Y. Inouye, Z. Sekkat, and S. Kawata, “Metallized tip amplification of near-field Raman scattering,” Opt. Commun. 183, 333-336 (2000).
[CrossRef]

Phys. Rev. Lett. (1)

J. Steidtner and B. Pettinger, “Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nmresolution,” Phys. Rev. Lett. 100, 236101 (2008).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

J. Steidtner and B. Pettinger, “High-resolution microscope for tip-enhanced optical processes in ultrahigh vacuum,” Rev. Sci. Instrum. 78, 103104 (2007).
[CrossRef] [PubMed]

Thin Solid Films (1)

D. Chen, H.-Y. Liu, J.-S. Liu, X.-L. Ren, X.-W. Meng, W. Wu, and F.-Q. Tang, “A general method for synthesis continuous silver nanoshells on dielectric colloids,” Thin Solid Films , 6371-6376 (2008).
[CrossRef]

Other (2)

D. R. Turner, “Etch procedure for optical fibers,” U.S. patent 4,469,554 (4 Sept. 1984).

T. Schmid, B. S. Yeo, W. Zhang, and R. Zenobi, “Use of tip-enhanced vibrational spectroscopy for analytical applications in chemistry, biology, and materials science,” in Tip Enhancement, S.Kawata and V.M.Shalaev, eds. (Elsevier, 2007), pp. 115-155.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of a home-built TERS instrument.

Fig. 2
Fig. 2

SEM images and photomicrographs of the optical fiber probe tip (a) before the coating process and (b) after the coating process. (c) and (d) are the partial enlargements of (b) and indicate a deposited film composed of Ag particles with a di ameter of about 20 nm was formed.

Fig. 3
Fig. 3

Local electromagnetic response of the silver-coated optical fiber probes with various tip sizes by FDTD simulation.

Fig. 4
Fig. 4

TERS experiment on the single MWCNT. (a) The topography image of the single MWCNT, (b) the corresponding height cross sections along the measuring points marked in (a), and (c) the tip-enhanced Raman spectra of the MWCNT at different points and the far-field micro-Raman spectrum of the whole area. (Integration time is 10 s at each point; the laser power is around 1 mW on the sample surface).

Metrics