Abstract

We present, theoretically and experimentally, an investigation of temperature dependence of a macrobending single-mode fiber-based refractometer utilizing a ratiometric scheme. The conventional scalar approximation method is utilized for predicting the temperature dependent loss of the proposed fiber refractometer. An all-fiber ratiometric measurement system is built to allow the comparison of modeled and measured results. Calculated and measured results for an SMF28 refractometer are in good agreement and confirm the effect of temperature on refractive index measurements. Both calculated and measured ratio responses monotonically change with temperature, which allows for a temperature correction process.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
    [CrossRef]
  2. A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17, 1253-1255 (2005).
    [CrossRef]
  3. T. Wei, Y. Han, Y. Li, H-L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16, 5764-5769 (2008).
    [CrossRef] [PubMed]
  4. Z. Tian, S. S-H. Yam, and H-P. Loock, “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber,” Opt. Lett. 33, 1105-1107 (2008).
    [CrossRef] [PubMed]
  5. J. Villatoro and D. Monzón-Hernández, “Low-cost optical fiber refractive-index sensor based on core diameter mismatch,” J. Lightwave Technol. 24, 1409-1413 (2006).
    [CrossRef]
  6. Q. Wang and G. Farrell, “All-fiber multimode-interference-based refractometer sensor: proposal and design,” Opt. Lett. 31, 317-319 (2006).
    [CrossRef] [PubMed]
  7. Q. Wang, G. Farrell, T. Freir, G. Rajan, and P. Wang, “Low-cost wavelength measurement based on a macrobending single-mode fiber,” Opt. Lett. 31, 1785-1787 (2006).
    [CrossRef] [PubMed]
  8. P. Wang, Y. Semenova, Q. Wu, G. Farrell, Y. Ti, and J. Zheng, “Macrobending single-mode fiber-based refractometer,” Appl. Opt. 48, 6044-6049 (2009).
    [CrossRef] [PubMed]
  9. P. Wang, Y. Semenova, and G. Farrell, “Temperature dependence of macrobending loss in all-fiber bend loss edge filter,” Opt. Commun. 281, 4312-4316 (2008).
    [CrossRef]
  10. P. Wang, G. Rajan, G. Farrell, and Y. Semenova, “Temperature dependence of a macrobending edge filter based on a high-bend loss fiber,” Opt. Lett. 33, 2470-2472 (2008).
    [CrossRef] [PubMed]
  11. S. H. Nam and S. Yin, “High-temperature sensing using whispering gallery mode resonance in bent optical fibers,” IEEE Photon. Technol. Lett. 17, 2391-2393 (2005).
    [CrossRef]

2009 (1)

2008 (4)

2006 (3)

2005 (3)

S. H. Nam and S. Yin, “High-temperature sensing using whispering gallery mode resonance in bent optical fibers,” IEEE Photon. Technol. Lett. 17, 2391-2393 (2005).
[CrossRef]

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17, 1253-1255 (2005).
[CrossRef]

Chryssis, A. N.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17, 1253-1255 (2005).
[CrossRef]

Dagenais, M.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17, 1253-1255 (2005).
[CrossRef]

Farrell, G.

Freir, T.

Han, Y.

Huang, Y. Y.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Lee, R. K.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Lee, S. B.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17, 1253-1255 (2005).
[CrossRef]

Lee, S. M.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17, 1253-1255 (2005).
[CrossRef]

Li, Y.

Liang, W.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Loock, H-P.

Monzón-Hernández, D.

Nam, S. H.

S. H. Nam and S. Yin, “High-temperature sensing using whispering gallery mode resonance in bent optical fibers,” IEEE Photon. Technol. Lett. 17, 2391-2393 (2005).
[CrossRef]

Rajan, G.

Saini, S. S.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17, 1253-1255 (2005).
[CrossRef]

Semenova, Y.

Ti, Y.

Tian, Z.

Tsai, H-L.

Villatoro, J.

Wang, P.

Wang, Q.

Wei, T.

Wu, Q.

Xiao, H.

Xu, Y.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Yam, S. S-H.

Yariv, A.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Yin, S.

S. H. Nam and S. Yin, “High-temperature sensing using whispering gallery mode resonance in bent optical fibers,” IEEE Photon. Technol. Lett. 17, 2391-2393 (2005).
[CrossRef]

Zheng, J.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17, 1253-1255 (2005).
[CrossRef]

S. H. Nam and S. Yin, “High-temperature sensing using whispering gallery mode resonance in bent optical fibers,” IEEE Photon. Technol. Lett. 17, 2391-2393 (2005).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Commun. (1)

P. Wang, Y. Semenova, and G. Farrell, “Temperature dependence of macrobending loss in all-fiber bend loss edge filter,” Opt. Commun. 281, 4312-4316 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Calculated bend loss versus temperature ( 20 ° C 70 ° C ) and RI changes ( 1.46 1.56 ) for the bend radius of 7.7 mm . The cladding diameter is (a)  125 μm and (b)  81 μm ; the operating wavelength is 1550 nm .

Fig. 2
Fig. 2

Schematic of the ratiometric RI measurement system.

Fig. 3
Fig. 3

Calculated and measured TDL ratio responses as a function of the difference of temperature from 20 ° C to 70 ° C at a wavelength of 1550 nm , when the cladding diameter is (a)  125 μm and (b)  81 μm . (Theoretical data: theoretically calculated results for the RI liquid: A, RI = 1.4586 at 25 ° C ; and B, RI = 1.5396 at 25 ° C . Measured results: measured results with the error bars for the RI liquid: A, RI = 1.4586 at 25 ° C ; and B, RI = 1.5396 at 25 ° C .)

Fig. 4
Fig. 4

Calculated and measured TDL ratio response (with the error bars) between 20 ° C and 70 ° C as a function of RI (with an interval of 0.009) at a wavelength of 1550 nm , when the cladding diameter is (a)  125 μm and (b)  81 μm .

Fig. 5
Fig. 5

Calculated and measured TDL ratio response (with error bars) between 25 ° C and 70 ° C as a function of RI (with an interval of 0.009) at a wavelength of 1550 nm , when the cladding diameter is (a)  125 μm and (b)  81 μm . Both modeled and measured results are corrected without the influence of the thermo-optic effect of RI liquids (see text for detail).

Tables (1)

Tables Icon

Table 1 Refractive Indices and Thermo-Optic Coefficients of Cargille Oils at Wavelength 1550 nm at 25 ° C

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

TDL fiber + TDL liquids = TDL total ,
TDL = Loss Y ° C Loss X ° C .
Loss total X ° C Loss total 20 ° C = TDL total X ° C = TDL fiber X ° C + TDL liquids X ° C ,
Loss total Y ° C Loss total 20 ° C = TDL total Y ° C = TDL fiber Y ° C + TDL liquids Y ° C ,
Loss fiber X ° C + Loss liquids X ° C = Loss total X ° C ,
Loss fiber Y ° C + Loss liquids Y ° C = Loss total Y ° C .
TDL fiber X ° C + TDL RI 1 X ° C = TDL total 1 X ° C = Loss total 1 X ° C Loss total 1 20 ° C ,
TDL fiber Y ° C + TDL RI 2 Y ° C = TDL total 2 Y ° C = Loss total 2 Y ° C Loss total 2 20 ° C ,
Loss fiber X ° C + Loss RI 1 X ° C = Loss total 1 X ° C ,
Loss fiber Y ° C + Loss RI 2 Y ° C = Loss total 2 Y ° C .
Loss fiber X ° C + Loss RI 1 X ° C Loss total 1 20 ° C = T D L total 1 X ° C ,
Loss fiber Y ° C + Loss RI 2 Y ° C Loss total 2 20 ° C = T D L total 2 Y ° C .
Loss fiber Y ° C Loss fiber X ° C + Loss RI 2 Y ° C Loss RI 1 X ° C Loss total 2 20 ° C + Loss total 1 20 ° C = TDL total 2 Y ° C TDL total 1 X ° C .

Metrics