Abstract

We propose and analyze a new optical system to transform linearly polarized laser modes into axially symmetric (radial or azimuthal) modes that show more promise in various applications, as well as generating various inhomogeneously polarized configurations. The system is based on the coherent composition of modal beams with phase diffraction gratings that allow the intermode phase shift to be varied without the need for auxiliary components. What makes the system simple and universal is the use of diffractive optical elements to generate required mode patterns with specific space orientation along with the simultaneous generation of different beams with different transverse mode content, all of which can subsequently be combined.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1-57 (2009).
    [CrossRef]
  2. S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1-7 (2000).
    [CrossRef]
  3. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77-87(2000).
    [CrossRef] [PubMed]
  4. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
    [CrossRef] [PubMed]
  5. Y. Kozawa and S. Sato, “Sharper focal spot formed by higher-order radially polarized laser beams,” J. Opt. Soc. Am. A 24, 1793-1798 (2007).
    [CrossRef]
  6. V. V. Kotlyar, A. A. Kovalev, and S. S. Stafeev, “Sharp focus area of radially-polarized Gaussian beam propagation through an axicon,” Prog. Electromagn. Res. C 5, 35-43 (2008).
  7. L. Rao, J. Pu, Z. Chen, and P. Yei, “Focus shaping of cylindrically polarized vortex beams by a high numerical-aperture lens,” Opt. Laser Technol. 41, 922 (2009).
    [CrossRef]
  8. B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85, 4482-4485 (2000).
    [CrossRef] [PubMed]
  9. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251-5254 (2001).
    [CrossRef] [PubMed]
  10. Q. Zhan and J. R. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10, 324-331 (2002).
    [PubMed]
  11. H. Kawauchi, K. Yonezawa, Y. Kozawa, and S. Sato, “Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam,” Opt. Lett. 32, 1839-1841 (2007).
    [CrossRef] [PubMed]
  12. R. D. Romea and W. D. Kimura, “Modeling of inverse Cherenkov laser acceleration with axicon laser beam focusing,” Phys. Rev. D 42, 1807-1818 (1990).
    [CrossRef]
  13. D. N. Gupta, N. Kant, D. E. Kim, and H. Suk, “Electron acceleration to GeV energy by a radially polarized laser,” Phys. Lett. A 368, 402-407 (2007).
    [CrossRef]
  14. V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting rfficiency,” J. Phys. D 32, 1455-1461 (1999).
    [CrossRef]
  15. K. Venkatakrishnan and B. Tan, “Interconnect microvia drilling with a radially polarized laser beam,” J. Micromech. Microeng. 16, 2603-2607 (2006).
    [CrossRef]
  16. Y. Yirmiyahu, A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Excitation of a single hollow waveguide mode using inhomogeneous anisotropic subwavelength structures,” Opt. Express 15, 13404-13414 (2007).
    [CrossRef] [PubMed]
  17. Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett. 30, 3063-3065 (2005).
    [CrossRef] [PubMed]
  18. H. Kawauchi, Y. Kozawa, S. Sato, T. Sato, and S. Kawakami, “Simultaneous generation of helical beams with linear and radial polarization by use of a segmented half-wave plate,” Opt. Lett. 33, 399-401 (2008).
    [CrossRef] [PubMed]
  19. V. G. Nizyev, V. P. Yakunin, and N. G. Turkin, “Generation of inhomogeneously polarized modes in a high-power CO2-laser,” IEEE J. Quantum Electron. 39, 505-514 (2009).
    [CrossRef]
  20. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27, 285-287 (2002).
    [CrossRef]
  21. K. Yonezawa, Y. Kozawa, and S. Sato, “Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal,” Opt. Lett. 31, 2151-2153 (2006).
    [CrossRef] [PubMed]
  22. K. Yonezawa, Y. Kozawa, and S. Sato, “Compact laser with radial polarization using birefringent laser medium,” Jpn. J. Appl. Phys. 46, 5160-5163 (2007).
    [CrossRef]
  23. Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1, 022008 (2008).
    [CrossRef]
  24. S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt. 29, 2234-2239 (1990).
    [CrossRef] [PubMed]
  25. K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77-87 (2000).
    [CrossRef] [PubMed]
  26. N. Passilly, R. de Saint Denis, K. Aït-Ameur, F. Treussart, R. Hierle, and J.-F. Roch, “Simple interferometric technique for generation of a radially polarized light beam,” J. Opt. Soc. Am. A 22, 984-991 (2005).
    [CrossRef]
  27. D. P. Biss, K. S. Youngworth, and T. G. Brown, “Dark-field imaging with cylindrical-vector beams,” Appl. Opt. 45, 470-479 (2006).
    [CrossRef] [PubMed]
  28. J. A. Davis, D. E. McNamara, D. M. Cottrell, and T. Sonehara, “Two dimensional polarization encoding with a phase only liquid-crystal spatial light modulator,” Appl. Opt. 39, 1549-1551 (2000).
    [CrossRef]
  29. M. A. A. Neil, F. Massoumian, R. Juskaitis, and T. Wilson, “Method for the generation of arbitrary complex vector wave fronts,” Opt. Lett. 27, 1929-1931 (2002).
    [CrossRef]
  30. C. Kohler, T. Haist, X. Schwab, and W. Osten, “Hologram optimization for SLM-based reconstruction with regard to polarization effects,” Opt. Express 16, 14853-14861 (2008).
    [CrossRef] [PubMed]
  31. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550-1567 (1966).
    [CrossRef] [PubMed]
  32. G. Volpe and D. Petrov, “Generation of cylindrical vector beams with few-mode filigbers excited by Laguerre-Gaussian beams,” Opt. Commun. 237, 89-95 (2004).
    [CrossRef]
  33. T. Hirayama, Y. Kozawa, T. Nakamura, and S. Sato, “Generation of a cylindrically symmetric, polarized laser beam with narrow linewidth and fine tunability,” Opt. Express 14, 12839-12845 (2006).
    [CrossRef] [PubMed]
  34. F. T. S. Yu, Introduction to Diffraction, Information Processing, and Holography (MIT Press, 1973).
  35. S. N. Khonina, V. V. Kotlyar, and V. A. Soifer, “Diffraction optical elements matched to the Gauss-Laguerre modes,” Opt. Spectrosc. 85, 636-644 (1998).
  36. S. N. Khonina, V. V. Kotlyar, and V. A. Soifer, “Self-reproduction of multimode Hermite-Gaussian beams,” Tech. Phys. Lett. 25, 489-491 (1999).
    [CrossRef]
  37. S. N. Khonina, S. A. Balalayev, R. V. Skidanov, V. V. Kotlyar, B. Paivanranta, and J. Turunen, “Encoded binary diffractive element to form hyper-geometric laser beams,” J. Opt. A: Pure Appl. Opt. 11, 065702 (2009).
    [CrossRef]
  38. V. A. Soifer, Methods for Computer Design of Diffractive Optical Elements (Wiley, 2002).

2009 (4)

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1-57 (2009).
[CrossRef]

L. Rao, J. Pu, Z. Chen, and P. Yei, “Focus shaping of cylindrically polarized vortex beams by a high numerical-aperture lens,” Opt. Laser Technol. 41, 922 (2009).
[CrossRef]

V. G. Nizyev, V. P. Yakunin, and N. G. Turkin, “Generation of inhomogeneously polarized modes in a high-power CO2-laser,” IEEE J. Quantum Electron. 39, 505-514 (2009).
[CrossRef]

S. N. Khonina, S. A. Balalayev, R. V. Skidanov, V. V. Kotlyar, B. Paivanranta, and J. Turunen, “Encoded binary diffractive element to form hyper-geometric laser beams,” J. Opt. A: Pure Appl. Opt. 11, 065702 (2009).
[CrossRef]

2008 (4)

H. Kawauchi, Y. Kozawa, S. Sato, T. Sato, and S. Kawakami, “Simultaneous generation of helical beams with linear and radial polarization by use of a segmented half-wave plate,” Opt. Lett. 33, 399-401 (2008).
[CrossRef] [PubMed]

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1, 022008 (2008).
[CrossRef]

C. Kohler, T. Haist, X. Schwab, and W. Osten, “Hologram optimization for SLM-based reconstruction with regard to polarization effects,” Opt. Express 16, 14853-14861 (2008).
[CrossRef] [PubMed]

V. V. Kotlyar, A. A. Kovalev, and S. S. Stafeev, “Sharp focus area of radially-polarized Gaussian beam propagation through an axicon,” Prog. Electromagn. Res. C 5, 35-43 (2008).

2007 (5)

2006 (4)

2005 (2)

2004 (1)

G. Volpe and D. Petrov, “Generation of cylindrical vector beams with few-mode filigbers excited by Laguerre-Gaussian beams,” Opt. Commun. 237, 89-95 (2004).
[CrossRef]

2003 (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

2002 (3)

2001 (1)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251-5254 (2001).
[CrossRef] [PubMed]

2000 (5)

1999 (2)

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting rfficiency,” J. Phys. D 32, 1455-1461 (1999).
[CrossRef]

S. N. Khonina, V. V. Kotlyar, and V. A. Soifer, “Self-reproduction of multimode Hermite-Gaussian beams,” Tech. Phys. Lett. 25, 489-491 (1999).
[CrossRef]

1998 (1)

S. N. Khonina, V. V. Kotlyar, and V. A. Soifer, “Diffraction optical elements matched to the Gauss-Laguerre modes,” Opt. Spectrosc. 85, 636-644 (1998).

1990 (2)

S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt. 29, 2234-2239 (1990).
[CrossRef] [PubMed]

R. D. Romea and W. D. Kimura, “Modeling of inverse Cherenkov laser acceleration with axicon laser beam focusing,” Phys. Rev. D 42, 1807-1818 (1990).
[CrossRef]

1966 (1)

Aït-Ameur, K.

Balalayev, S. A.

S. N. Khonina, S. A. Balalayev, R. V. Skidanov, V. V. Kotlyar, B. Paivanranta, and J. Turunen, “Encoded binary diffractive element to form hyper-geometric laser beams,” J. Opt. A: Pure Appl. Opt. 11, 065702 (2009).
[CrossRef]

Beversluis, M. R.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251-5254 (2001).
[CrossRef] [PubMed]

Biener, G.

Biss, D. P.

Bomzon, Z.

Brown, T.

Brown, T. G.

Chen, Z.

L. Rao, J. Pu, Z. Chen, and P. Yei, “Focus shaping of cylindrically polarized vortex beams by a high numerical-aperture lens,” Opt. Laser Technol. 41, 922 (2009).
[CrossRef]

Cottrell, D. M.

Davis, J. A.

de Saint Denis, R.

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1-7 (2000).
[CrossRef]

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1-7 (2000).
[CrossRef]

Ford, D. H.

Glockl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1-7 (2000).
[CrossRef]

Gupta, D. N.

D. N. Gupta, N. Kant, D. E. Kim, and H. Suk, “Electron acceleration to GeV energy by a radially polarized laser,” Phys. Lett. A 368, 402-407 (2007).
[CrossRef]

Haist, T.

Hasman, E.

Hecht, B.

B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85, 4482-4485 (2000).
[CrossRef] [PubMed]

Hierle, R.

Hirayama, T.

Inoue, Y.

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1, 022008 (2008).
[CrossRef]

Juskaitis, R.

Kant, N.

D. N. Gupta, N. Kant, D. E. Kim, and H. Suk, “Electron acceleration to GeV energy by a radially polarized laser,” Phys. Lett. A 368, 402-407 (2007).
[CrossRef]

Kawakami, S.

H. Kawauchi, Y. Kozawa, S. Sato, T. Sato, and S. Kawakami, “Simultaneous generation of helical beams with linear and radial polarization by use of a segmented half-wave plate,” Opt. Lett. 33, 399-401 (2008).
[CrossRef] [PubMed]

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1, 022008 (2008).
[CrossRef]

Kawauchi, H.

Khonina, S. N.

S. N. Khonina, S. A. Balalayev, R. V. Skidanov, V. V. Kotlyar, B. Paivanranta, and J. Turunen, “Encoded binary diffractive element to form hyper-geometric laser beams,” J. Opt. A: Pure Appl. Opt. 11, 065702 (2009).
[CrossRef]

S. N. Khonina, V. V. Kotlyar, and V. A. Soifer, “Self-reproduction of multimode Hermite-Gaussian beams,” Tech. Phys. Lett. 25, 489-491 (1999).
[CrossRef]

S. N. Khonina, V. V. Kotlyar, and V. A. Soifer, “Diffraction optical elements matched to the Gauss-Laguerre modes,” Opt. Spectrosc. 85, 636-644 (1998).

Kim, D. E.

D. N. Gupta, N. Kant, D. E. Kim, and H. Suk, “Electron acceleration to GeV energy by a radially polarized laser,” Phys. Lett. A 368, 402-407 (2007).
[CrossRef]

Kimura, W. D.

R. D. Romea and W. D. Kimura, “Modeling of inverse Cherenkov laser acceleration with axicon laser beam focusing,” Phys. Rev. D 42, 1807-1818 (1990).
[CrossRef]

S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt. 29, 2234-2239 (1990).
[CrossRef] [PubMed]

Kleiner, V.

Kogelnik, H.

Kohler, C.

Kotlyar, V. V.

S. N. Khonina, S. A. Balalayev, R. V. Skidanov, V. V. Kotlyar, B. Paivanranta, and J. Turunen, “Encoded binary diffractive element to form hyper-geometric laser beams,” J. Opt. A: Pure Appl. Opt. 11, 065702 (2009).
[CrossRef]

V. V. Kotlyar, A. A. Kovalev, and S. S. Stafeev, “Sharp focus area of radially-polarized Gaussian beam propagation through an axicon,” Prog. Electromagn. Res. C 5, 35-43 (2008).

S. N. Khonina, V. V. Kotlyar, and V. A. Soifer, “Self-reproduction of multimode Hermite-Gaussian beams,” Tech. Phys. Lett. 25, 489-491 (1999).
[CrossRef]

S. N. Khonina, V. V. Kotlyar, and V. A. Soifer, “Diffraction optical elements matched to the Gauss-Laguerre modes,” Opt. Spectrosc. 85, 636-644 (1998).

Kovalev, A. A.

V. V. Kotlyar, A. A. Kovalev, and S. S. Stafeev, “Sharp focus area of radially-polarized Gaussian beam propagation through an axicon,” Prog. Electromagn. Res. C 5, 35-43 (2008).

Kozawa, Y.

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1, 022008 (2008).
[CrossRef]

H. Kawauchi, Y. Kozawa, S. Sato, T. Sato, and S. Kawakami, “Simultaneous generation of helical beams with linear and radial polarization by use of a segmented half-wave plate,” Opt. Lett. 33, 399-401 (2008).
[CrossRef] [PubMed]

K. Yonezawa, Y. Kozawa, and S. Sato, “Compact laser with radial polarization using birefringent laser medium,” Jpn. J. Appl. Phys. 46, 5160-5163 (2007).
[CrossRef]

Y. Kozawa and S. Sato, “Sharper focal spot formed by higher-order radially polarized laser beams,” J. Opt. Soc. Am. A 24, 1793-1798 (2007).
[CrossRef]

H. Kawauchi, K. Yonezawa, Y. Kozawa, and S. Sato, “Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam,” Opt. Lett. 32, 1839-1841 (2007).
[CrossRef] [PubMed]

K. Yonezawa, Y. Kozawa, and S. Sato, “Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal,” Opt. Lett. 31, 2151-2153 (2006).
[CrossRef] [PubMed]

T. Hirayama, Y. Kozawa, T. Nakamura, and S. Sato, “Generation of a cylindrically symmetric, polarized laser beam with narrow linewidth and fine tunability,” Opt. Express 14, 12839-12845 (2006).
[CrossRef] [PubMed]

Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett. 30, 3063-3065 (2005).
[CrossRef] [PubMed]

Leger, J. R.

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1-7 (2000).
[CrossRef]

Li, T.

Massoumian, F.

McNamara, D. E.

Nakamura, T.

Neil, M. A. A.

Nesterov, A. V.

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting rfficiency,” J. Phys. D 32, 1455-1461 (1999).
[CrossRef]

Niv, A.

Niziev, V. G.

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting rfficiency,” J. Phys. D 32, 1455-1461 (1999).
[CrossRef]

Nizyev, V. G.

V. G. Nizyev, V. P. Yakunin, and N. G. Turkin, “Generation of inhomogeneously polarized modes in a high-power CO2-laser,” IEEE J. Quantum Electron. 39, 505-514 (2009).
[CrossRef]

Novotny, L.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251-5254 (2001).
[CrossRef] [PubMed]

B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85, 4482-4485 (2000).
[CrossRef] [PubMed]

Ohtera, Y.

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1, 022008 (2008).
[CrossRef]

Osten, W.

Paivanranta, B.

S. N. Khonina, S. A. Balalayev, R. V. Skidanov, V. V. Kotlyar, B. Paivanranta, and J. Turunen, “Encoded binary diffractive element to form hyper-geometric laser beams,” J. Opt. A: Pure Appl. Opt. 11, 065702 (2009).
[CrossRef]

Passilly, N.

Petrov, D.

G. Volpe and D. Petrov, “Generation of cylindrical vector beams with few-mode filigbers excited by Laguerre-Gaussian beams,” Opt. Commun. 237, 89-95 (2004).
[CrossRef]

Pu, J.

L. Rao, J. Pu, Z. Chen, and P. Yei, “Focus shaping of cylindrically polarized vortex beams by a high numerical-aperture lens,” Opt. Laser Technol. 41, 922 (2009).
[CrossRef]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1-7 (2000).
[CrossRef]

Rao, L.

L. Rao, J. Pu, Z. Chen, and P. Yei, “Focus shaping of cylindrically polarized vortex beams by a high numerical-aperture lens,” Opt. Laser Technol. 41, 922 (2009).
[CrossRef]

Roch, J.-F.

Romea, R. D.

R. D. Romea and W. D. Kimura, “Modeling of inverse Cherenkov laser acceleration with axicon laser beam focusing,” Phys. Rev. D 42, 1807-1818 (1990).
[CrossRef]

Sato, S.

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1, 022008 (2008).
[CrossRef]

H. Kawauchi, Y. Kozawa, S. Sato, T. Sato, and S. Kawakami, “Simultaneous generation of helical beams with linear and radial polarization by use of a segmented half-wave plate,” Opt. Lett. 33, 399-401 (2008).
[CrossRef] [PubMed]

K. Yonezawa, Y. Kozawa, and S. Sato, “Compact laser with radial polarization using birefringent laser medium,” Jpn. J. Appl. Phys. 46, 5160-5163 (2007).
[CrossRef]

H. Kawauchi, K. Yonezawa, Y. Kozawa, and S. Sato, “Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam,” Opt. Lett. 32, 1839-1841 (2007).
[CrossRef] [PubMed]

Y. Kozawa and S. Sato, “Sharper focal spot formed by higher-order radially polarized laser beams,” J. Opt. Soc. Am. A 24, 1793-1798 (2007).
[CrossRef]

K. Yonezawa, Y. Kozawa, and S. Sato, “Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal,” Opt. Lett. 31, 2151-2153 (2006).
[CrossRef] [PubMed]

T. Hirayama, Y. Kozawa, T. Nakamura, and S. Sato, “Generation of a cylindrically symmetric, polarized laser beam with narrow linewidth and fine tunability,” Opt. Express 14, 12839-12845 (2006).
[CrossRef] [PubMed]

Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett. 30, 3063-3065 (2005).
[CrossRef] [PubMed]

Sato, T.

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1, 022008 (2008).
[CrossRef]

H. Kawauchi, Y. Kozawa, S. Sato, T. Sato, and S. Kawakami, “Simultaneous generation of helical beams with linear and radial polarization by use of a segmented half-wave plate,” Opt. Lett. 33, 399-401 (2008).
[CrossRef] [PubMed]

Schwab, X.

Sick, B.

B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85, 4482-4485 (2000).
[CrossRef] [PubMed]

Skidanov, R. V.

S. N. Khonina, S. A. Balalayev, R. V. Skidanov, V. V. Kotlyar, B. Paivanranta, and J. Turunen, “Encoded binary diffractive element to form hyper-geometric laser beams,” J. Opt. A: Pure Appl. Opt. 11, 065702 (2009).
[CrossRef]

Soifer, V. A.

S. N. Khonina, V. V. Kotlyar, and V. A. Soifer, “Self-reproduction of multimode Hermite-Gaussian beams,” Tech. Phys. Lett. 25, 489-491 (1999).
[CrossRef]

S. N. Khonina, V. V. Kotlyar, and V. A. Soifer, “Diffraction optical elements matched to the Gauss-Laguerre modes,” Opt. Spectrosc. 85, 636-644 (1998).

V. A. Soifer, Methods for Computer Design of Diffractive Optical Elements (Wiley, 2002).

Sonehara, T.

Stafeev, S. S.

V. V. Kotlyar, A. A. Kovalev, and S. S. Stafeev, “Sharp focus area of radially-polarized Gaussian beam propagation through an axicon,” Prog. Electromagn. Res. C 5, 35-43 (2008).

Suk, H.

D. N. Gupta, N. Kant, D. E. Kim, and H. Suk, “Electron acceleration to GeV energy by a radially polarized laser,” Phys. Lett. A 368, 402-407 (2007).
[CrossRef]

Tan, B.

K. Venkatakrishnan and B. Tan, “Interconnect microvia drilling with a radially polarized laser beam,” J. Micromech. Microeng. 16, 2603-2607 (2006).
[CrossRef]

Tidwell, S. C.

Treussart, F.

Turkin, N. G.

V. G. Nizyev, V. P. Yakunin, and N. G. Turkin, “Generation of inhomogeneously polarized modes in a high-power CO2-laser,” IEEE J. Quantum Electron. 39, 505-514 (2009).
[CrossRef]

Turunen, J.

S. N. Khonina, S. A. Balalayev, R. V. Skidanov, V. V. Kotlyar, B. Paivanranta, and J. Turunen, “Encoded binary diffractive element to form hyper-geometric laser beams,” J. Opt. A: Pure Appl. Opt. 11, 065702 (2009).
[CrossRef]

Venkatakrishnan, K.

K. Venkatakrishnan and B. Tan, “Interconnect microvia drilling with a radially polarized laser beam,” J. Micromech. Microeng. 16, 2603-2607 (2006).
[CrossRef]

Volpe, G.

G. Volpe and D. Petrov, “Generation of cylindrical vector beams with few-mode filigbers excited by Laguerre-Gaussian beams,” Opt. Commun. 237, 89-95 (2004).
[CrossRef]

Wilson, T.

Yakunin, V. P.

V. G. Nizyev, V. P. Yakunin, and N. G. Turkin, “Generation of inhomogeneously polarized modes in a high-power CO2-laser,” IEEE J. Quantum Electron. 39, 505-514 (2009).
[CrossRef]

Yei, P.

L. Rao, J. Pu, Z. Chen, and P. Yei, “Focus shaping of cylindrically polarized vortex beams by a high numerical-aperture lens,” Opt. Laser Technol. 41, 922 (2009).
[CrossRef]

Yirmiyahu, Y.

Yonezawa, K.

Youngworth, K.

Youngworth, K. S.

Yu, F. T. S.

F. T. S. Yu, Introduction to Diffraction, Information Processing, and Holography (MIT Press, 1973).

Zhan, Q.

Adv. Opt. Photon. (1)

Appl. Opt. (4)

Appl. Phys. Express (1)

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1, 022008 (2008).
[CrossRef]

IEEE J. Quantum Electron. (1)

V. G. Nizyev, V. P. Yakunin, and N. G. Turkin, “Generation of inhomogeneously polarized modes in a high-power CO2-laser,” IEEE J. Quantum Electron. 39, 505-514 (2009).
[CrossRef]

J. Micromech. Microeng. (1)

K. Venkatakrishnan and B. Tan, “Interconnect microvia drilling with a radially polarized laser beam,” J. Micromech. Microeng. 16, 2603-2607 (2006).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

S. N. Khonina, S. A. Balalayev, R. V. Skidanov, V. V. Kotlyar, B. Paivanranta, and J. Turunen, “Encoded binary diffractive element to form hyper-geometric laser beams,” J. Opt. A: Pure Appl. Opt. 11, 065702 (2009).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Phys. D (1)

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting rfficiency,” J. Phys. D 32, 1455-1461 (1999).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Yonezawa, Y. Kozawa, and S. Sato, “Compact laser with radial polarization using birefringent laser medium,” Jpn. J. Appl. Phys. 46, 5160-5163 (2007).
[CrossRef]

Opt. Commun. (2)

G. Volpe and D. Petrov, “Generation of cylindrical vector beams with few-mode filigbers excited by Laguerre-Gaussian beams,” Opt. Commun. 237, 89-95 (2004).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1-7 (2000).
[CrossRef]

Opt. Express (6)

Opt. Laser Technol. (1)

L. Rao, J. Pu, Z. Chen, and P. Yei, “Focus shaping of cylindrically polarized vortex beams by a high numerical-aperture lens,” Opt. Laser Technol. 41, 922 (2009).
[CrossRef]

Opt. Lett. (6)

Opt. Spectrosc. (1)

S. N. Khonina, V. V. Kotlyar, and V. A. Soifer, “Diffraction optical elements matched to the Gauss-Laguerre modes,” Opt. Spectrosc. 85, 636-644 (1998).

Phys. Lett. A (1)

D. N. Gupta, N. Kant, D. E. Kim, and H. Suk, “Electron acceleration to GeV energy by a radially polarized laser,” Phys. Lett. A 368, 402-407 (2007).
[CrossRef]

Phys. Rev. D (1)

R. D. Romea and W. D. Kimura, “Modeling of inverse Cherenkov laser acceleration with axicon laser beam focusing,” Phys. Rev. D 42, 1807-1818 (1990).
[CrossRef]

Phys. Rev. Lett. (3)

B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85, 4482-4485 (2000).
[CrossRef] [PubMed]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251-5254 (2001).
[CrossRef] [PubMed]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Prog. Electromagn. Res. C (1)

V. V. Kotlyar, A. A. Kovalev, and S. S. Stafeev, “Sharp focus area of radially-polarized Gaussian beam propagation through an axicon,” Prog. Electromagn. Res. C 5, 35-43 (2008).

Tech. Phys. Lett. (1)

S. N. Khonina, V. V. Kotlyar, and V. A. Soifer, “Self-reproduction of multimode Hermite-Gaussian beams,” Tech. Phys. Lett. 25, 489-491 (1999).
[CrossRef]

Other (2)

F. T. S. Yu, Introduction to Diffraction, Information Processing, and Holography (MIT Press, 1973).

V. A. Soifer, Methods for Computer Design of Diffractive Optical Elements (Wiley, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the coherent composition of two light fields with arbitrary complex coefficients by use of a diffraction grating.

Fig. 2
Fig. 2

Intensity distribution at the polarization converter output: (a) experimental and (b) experimental and theoretical sections.

Fig. 3
Fig. 3

Output distributions obtained using the polarization filter [1, vertical positions; 2, turned right by 45 ° ; 3, horizontal position; 4, turned left by 45 ° ] for different superpositions of the original linearly polarized modes: (а) radial, (b) azimuthal, (c) mixed linear–circular polarization.

Tables (1)

Tables Icon

Table 1 Schemes to Produce Different Types of Beam Polarization Using a Coherent Superposition of Linearly Polarized Orthogonal Gaussian Modes

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

f ( x , y ) = ψ 1 ( x α , y ) + ψ 2 ( x + α , y ) ,
F ( u , v ) = [ ψ 1 ( x α , y ) + ψ 2 ( x + α , y ) ] exp [ i k f ( x u + y v ) ] d x d y = Ψ 1 ( u , v ) exp ( i k f α u ) + Ψ 2 ( u , v ) ( i k f α u ) ,
τ ( u ) = 0.5 [ 1 + cos ( β u + u 0 ) ] ,
C 1 [ Ψ 1 ( u , v ) exp ( i k f α u ) + Ψ 2 ( u , v ) exp ( i k f α u ) ] + C 2 [ exp ( i 2 u 0 ) Ψ 1 ( u , v ) exp ( i k f α u + i β u ) + Ψ 2 ( u , v ) exp ( i k f α u i β u ) ] + C 2 [ exp ( i 2 u 0 ) Ψ 1 ( u , v ) exp ( i k f α u i β u ) + Ψ 2 ( u , v ) exp ( i k f α u + i β u ) ] .
α = β λ f 2 π = λ f T ,
f p ( x , y ) = c 2 [ exp ( i 2 u 0 ) ψ 1 ( x , y ) + ψ 2 ( x , y ) ] + c 1 [ ψ 1 ( x + α , y ) + ψ 2 ( x α , y ) ] + c 2 [ exp ( i 2 u 0 ) ψ 1 ( x + 2 α , y ) + ψ 2 ( x 2 α , y ) ] ,

Metrics