Abstract

We derived simple sets of equations to describe the microwave response of the magnetized hydrogen plasma slab embedded inside carbon nanotubes, which were grown by iron-catalyzed high-pressure disproportionation. These equations, which are useful when interference effects due to multiple reflections between plasma film interfaces are small, were used to analyze the reflection, absorption, and transmission coefficients of the magnetized hydrogen plasma slab. A discussion on the effects of the continuously changing external magnetic field and hydrogen plasma parameters on the reflected power, absorbed power, and transmitted power in the system is presented.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354, 56-58 (1991).
    [CrossRef]
  2. G. Y. Slepyan, S. A. Maksimenko, A. Lakhtakia, O. M. Yevtushenko, and A. V. Gusakov, “Electronic and electromagnetic properties of nanotubes,” Phys. Rev. B 57, 9485-9497(1998).
    [CrossRef]
  3. M. V. Shuba, S. A. Maksimenko, and A. Lakhtakia, “Electromagnetic wave propagation in an almost circular bundle of closely packed metallic carbon nanotubes,” Phys. Rev. B 76, 155407 (2007).
    [CrossRef]
  4. A. Moradi and H. Khosravi, “Collective excitations in single-walled carbon nanotubes,” Phys. Rev. B 76, 113411 (2007).
    [CrossRef]
  5. A. Moradi and H. Khosravi, “Plasmon dispersion in metallic carbon nanotubes in the presence of low-frequency electromagnetic radiation,” Phys. Lett. A 371, 1-6 (2007).
    [CrossRef]
  6. A. Moradi, “Electron-hole plasma excitations in single-walled carbon nanotubes,” Phys. Lett. A 372, 5614-5616 (2008).
    [CrossRef]
  7. A. Moradi, “Guided dispersion characteristics of metallic single-walled carbon nanotubes in the presence of dielectric media,” Opt. Commun. 283, 160-163 (2010).
    [CrossRef]
  8. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645-6650 (2005).
    [CrossRef] [PubMed]
  9. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189-193 (2006).
    [CrossRef] [PubMed]
  10. C. A. Grimes, C. Mungle, and D. Kouzoudis, “The 500 MHz to 5.50 GHz complex permittivity spectra of single-wall carbon nanotube-loaded polymer composites,” Chem. Phys. Lett. 319, 460-464 (2000).
    [CrossRef]
  11. C. A. Grimes, E. C. Dickey, C. Mungle, K. G. Ong, and D. Qian, “Effect of purification of the electrical conductivity and complex permittivity of multiwall carbon nanotubes,” J. Appl. Phys. 90, 4134-4137 (2001).
    [CrossRef]
  12. J. A. Roberts, T. Imholt, Z. Ye, C. A. Dyke, D. W. Price, and J. M. Tour, “Electromagnetic wave properties of polymer blends of single wall carbon nanotubes using a resonant microwave cavity as a probe,” J. Appl. Phys. 95, 4352-4356 (2004).
    [CrossRef]
  13. A. L. Higginbotham, P. G. Moloney, M. C. Waid, J. G. Duque, C. Kittrell, H. K. Schmidt, J. J. Stephenson, S. Arepalli, L. L. Yowell, and J. M. Tour, “Carbon nanotube composite curing through absorption of microwave radiation,” Compos. Sci. Technol. 68, 3087-3092 (2008).
    [CrossRef]
  14. Z. Peng, J. Peng, Y. Peng, Y. Ou, and Y. Ning, “Complex permittivity and microwave absorption properties of carbon nanotubes/polymer composite: a numerical study,” Phys. Lett. A 372, 3714-3718 (2008).
    [CrossRef]
  15. T. J. Imholt, C. A. Dyke, B. Hasslacher, J. M. Perez, D. W. Price, J. A. Roberts, J. B. Scott, A. Wadhawan, Z. Ye, and J. M. Tour, “Nanotubes in microwave fields: light emission, intense heat, out-gassing and reconstruction,” Chem. Mater. 15, 3969-3970 (2003).
    [CrossRef]
  16. A. Wadhawan, D. Garret, and J. M. Perez, “Nanoparticle-assisted microwave absorption by single-wall carbon nanotubes,” Appl. Phys. Lett. 83, 2683-2685 (2003).
    [CrossRef]
  17. F. Naab, M. Dhoubhadel, W. Holland, J. Duggan, J. Roberts, and F. McDaniel, Proceedings of the 10th International Conference on Particle Induced X-ray Emission and Analytical Applications (Wiley, 2005).
  18. Z. Peng, J. Peng, and Y. Ou, “Microwave absorbing properties of hydrogen plasma in single wall carbon nanotubes,” Phys. Lett. A 359, 56-60 (2006).
    [CrossRef]
  19. Z. Peng, J. Peng, Y. Peng, Y. Ou, and Y. Ning, “Investigation of the microwave absorbing mechanisms of HiPco carbon nanotubes,” Physica E (Amsterdam) 40, 2400-2405 (2008).
    [CrossRef]
  20. A. Moradi, “Microwave absorption of magnetized hydrogen plasma in carbon nanotubes,” Phys. Plasmas 16, 113501(2009).
    [CrossRef]
  21. K. Miyamoto, Plasma Physics and Controlled Nuclear Fusion (Springer-Verlag, 2005).
  22. J. Han, A. Lakhtakia, and C.-W. Qiu, “Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tunability,” Opt. Express 16, 14390-14396 (2008).
    [CrossRef] [PubMed]
  23. K. Toi, R. Ikeda, M. Takeuchi, T. Ito, C. Suzuki, G. Matsunaga, T. Shoji, and S. Okamura, “Experimental simulation of high temperature plasma transport using almost dimensionally similar cold plasmas in the compact helical system,” J. Plasma Fusion Res. 6, 516-518 (2004).
  24. K. Akhtar, J. E. Scharer, S. M. Tysk, and E. Kho, “Plasma interferometry at high pressures,” Rev. Sci. Instrum. 74, 996-1001 (2003).
    [CrossRef]

2010 (1)

A. Moradi, “Guided dispersion characteristics of metallic single-walled carbon nanotubes in the presence of dielectric media,” Opt. Commun. 283, 160-163 (2010).
[CrossRef]

2009 (1)

A. Moradi, “Microwave absorption of magnetized hydrogen plasma in carbon nanotubes,” Phys. Plasmas 16, 113501(2009).
[CrossRef]

2008 (5)

A. L. Higginbotham, P. G. Moloney, M. C. Waid, J. G. Duque, C. Kittrell, H. K. Schmidt, J. J. Stephenson, S. Arepalli, L. L. Yowell, and J. M. Tour, “Carbon nanotube composite curing through absorption of microwave radiation,” Compos. Sci. Technol. 68, 3087-3092 (2008).
[CrossRef]

Z. Peng, J. Peng, Y. Peng, Y. Ou, and Y. Ning, “Complex permittivity and microwave absorption properties of carbon nanotubes/polymer composite: a numerical study,” Phys. Lett. A 372, 3714-3718 (2008).
[CrossRef]

A. Moradi, “Electron-hole plasma excitations in single-walled carbon nanotubes,” Phys. Lett. A 372, 5614-5616 (2008).
[CrossRef]

Z. Peng, J. Peng, Y. Peng, Y. Ou, and Y. Ning, “Investigation of the microwave absorbing mechanisms of HiPco carbon nanotubes,” Physica E (Amsterdam) 40, 2400-2405 (2008).
[CrossRef]

J. Han, A. Lakhtakia, and C.-W. Qiu, “Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tunability,” Opt. Express 16, 14390-14396 (2008).
[CrossRef] [PubMed]

2007 (3)

M. V. Shuba, S. A. Maksimenko, and A. Lakhtakia, “Electromagnetic wave propagation in an almost circular bundle of closely packed metallic carbon nanotubes,” Phys. Rev. B 76, 155407 (2007).
[CrossRef]

A. Moradi and H. Khosravi, “Collective excitations in single-walled carbon nanotubes,” Phys. Rev. B 76, 113411 (2007).
[CrossRef]

A. Moradi and H. Khosravi, “Plasmon dispersion in metallic carbon nanotubes in the presence of low-frequency electromagnetic radiation,” Phys. Lett. A 371, 1-6 (2007).
[CrossRef]

2006 (2)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189-193 (2006).
[CrossRef] [PubMed]

Z. Peng, J. Peng, and Y. Ou, “Microwave absorbing properties of hydrogen plasma in single wall carbon nanotubes,” Phys. Lett. A 359, 56-60 (2006).
[CrossRef]

2005 (1)

2004 (2)

J. A. Roberts, T. Imholt, Z. Ye, C. A. Dyke, D. W. Price, and J. M. Tour, “Electromagnetic wave properties of polymer blends of single wall carbon nanotubes using a resonant microwave cavity as a probe,” J. Appl. Phys. 95, 4352-4356 (2004).
[CrossRef]

K. Toi, R. Ikeda, M. Takeuchi, T. Ito, C. Suzuki, G. Matsunaga, T. Shoji, and S. Okamura, “Experimental simulation of high temperature plasma transport using almost dimensionally similar cold plasmas in the compact helical system,” J. Plasma Fusion Res. 6, 516-518 (2004).

2003 (3)

K. Akhtar, J. E. Scharer, S. M. Tysk, and E. Kho, “Plasma interferometry at high pressures,” Rev. Sci. Instrum. 74, 996-1001 (2003).
[CrossRef]

T. J. Imholt, C. A. Dyke, B. Hasslacher, J. M. Perez, D. W. Price, J. A. Roberts, J. B. Scott, A. Wadhawan, Z. Ye, and J. M. Tour, “Nanotubes in microwave fields: light emission, intense heat, out-gassing and reconstruction,” Chem. Mater. 15, 3969-3970 (2003).
[CrossRef]

A. Wadhawan, D. Garret, and J. M. Perez, “Nanoparticle-assisted microwave absorption by single-wall carbon nanotubes,” Appl. Phys. Lett. 83, 2683-2685 (2003).
[CrossRef]

2001 (1)

C. A. Grimes, E. C. Dickey, C. Mungle, K. G. Ong, and D. Qian, “Effect of purification of the electrical conductivity and complex permittivity of multiwall carbon nanotubes,” J. Appl. Phys. 90, 4134-4137 (2001).
[CrossRef]

2000 (1)

C. A. Grimes, C. Mungle, and D. Kouzoudis, “The 500 MHz to 5.50 GHz complex permittivity spectra of single-wall carbon nanotube-loaded polymer composites,” Chem. Phys. Lett. 319, 460-464 (2000).
[CrossRef]

1998 (1)

G. Y. Slepyan, S. A. Maksimenko, A. Lakhtakia, O. M. Yevtushenko, and A. V. Gusakov, “Electronic and electromagnetic properties of nanotubes,” Phys. Rev. B 57, 9485-9497(1998).
[CrossRef]

1991 (1)

S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354, 56-58 (1991).
[CrossRef]

Akhtar, K.

K. Akhtar, J. E. Scharer, S. M. Tysk, and E. Kho, “Plasma interferometry at high pressures,” Rev. Sci. Instrum. 74, 996-1001 (2003).
[CrossRef]

Arepalli, S.

A. L. Higginbotham, P. G. Moloney, M. C. Waid, J. G. Duque, C. Kittrell, H. K. Schmidt, J. J. Stephenson, S. Arepalli, L. L. Yowell, and J. M. Tour, “Carbon nanotube composite curing through absorption of microwave radiation,” Compos. Sci. Technol. 68, 3087-3092 (2008).
[CrossRef]

Dhoubhadel, M.

F. Naab, M. Dhoubhadel, W. Holland, J. Duggan, J. Roberts, and F. McDaniel, Proceedings of the 10th International Conference on Particle Induced X-ray Emission and Analytical Applications (Wiley, 2005).

Dickey, E. C.

C. A. Grimes, E. C. Dickey, C. Mungle, K. G. Ong, and D. Qian, “Effect of purification of the electrical conductivity and complex permittivity of multiwall carbon nanotubes,” J. Appl. Phys. 90, 4134-4137 (2001).
[CrossRef]

Duggan, J.

F. Naab, M. Dhoubhadel, W. Holland, J. Duggan, J. Roberts, and F. McDaniel, Proceedings of the 10th International Conference on Particle Induced X-ray Emission and Analytical Applications (Wiley, 2005).

Duque, J. G.

A. L. Higginbotham, P. G. Moloney, M. C. Waid, J. G. Duque, C. Kittrell, H. K. Schmidt, J. J. Stephenson, S. Arepalli, L. L. Yowell, and J. M. Tour, “Carbon nanotube composite curing through absorption of microwave radiation,” Compos. Sci. Technol. 68, 3087-3092 (2008).
[CrossRef]

Dyke, C. A.

J. A. Roberts, T. Imholt, Z. Ye, C. A. Dyke, D. W. Price, and J. M. Tour, “Electromagnetic wave properties of polymer blends of single wall carbon nanotubes using a resonant microwave cavity as a probe,” J. Appl. Phys. 95, 4352-4356 (2004).
[CrossRef]

T. J. Imholt, C. A. Dyke, B. Hasslacher, J. M. Perez, D. W. Price, J. A. Roberts, J. B. Scott, A. Wadhawan, Z. Ye, and J. M. Tour, “Nanotubes in microwave fields: light emission, intense heat, out-gassing and reconstruction,” Chem. Mater. 15, 3969-3970 (2003).
[CrossRef]

Garret, D.

A. Wadhawan, D. Garret, and J. M. Perez, “Nanoparticle-assisted microwave absorption by single-wall carbon nanotubes,” Appl. Phys. Lett. 83, 2683-2685 (2003).
[CrossRef]

Grimes, C. A.

C. A. Grimes, E. C. Dickey, C. Mungle, K. G. Ong, and D. Qian, “Effect of purification of the electrical conductivity and complex permittivity of multiwall carbon nanotubes,” J. Appl. Phys. 90, 4134-4137 (2001).
[CrossRef]

C. A. Grimes, C. Mungle, and D. Kouzoudis, “The 500 MHz to 5.50 GHz complex permittivity spectra of single-wall carbon nanotube-loaded polymer composites,” Chem. Phys. Lett. 319, 460-464 (2000).
[CrossRef]

Gusakov, A. V.

G. Y. Slepyan, S. A. Maksimenko, A. Lakhtakia, O. M. Yevtushenko, and A. V. Gusakov, “Electronic and electromagnetic properties of nanotubes,” Phys. Rev. B 57, 9485-9497(1998).
[CrossRef]

Han, J.

Han, Z.

Hasslacher, B.

T. J. Imholt, C. A. Dyke, B. Hasslacher, J. M. Perez, D. W. Price, J. A. Roberts, J. B. Scott, A. Wadhawan, Z. Ye, and J. M. Tour, “Nanotubes in microwave fields: light emission, intense heat, out-gassing and reconstruction,” Chem. Mater. 15, 3969-3970 (2003).
[CrossRef]

He, S.

Higginbotham, A. L.

A. L. Higginbotham, P. G. Moloney, M. C. Waid, J. G. Duque, C. Kittrell, H. K. Schmidt, J. J. Stephenson, S. Arepalli, L. L. Yowell, and J. M. Tour, “Carbon nanotube composite curing through absorption of microwave radiation,” Compos. Sci. Technol. 68, 3087-3092 (2008).
[CrossRef]

Holland, W.

F. Naab, M. Dhoubhadel, W. Holland, J. Duggan, J. Roberts, and F. McDaniel, Proceedings of the 10th International Conference on Particle Induced X-ray Emission and Analytical Applications (Wiley, 2005).

Iijima, S.

S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354, 56-58 (1991).
[CrossRef]

Ikeda, R.

K. Toi, R. Ikeda, M. Takeuchi, T. Ito, C. Suzuki, G. Matsunaga, T. Shoji, and S. Okamura, “Experimental simulation of high temperature plasma transport using almost dimensionally similar cold plasmas in the compact helical system,” J. Plasma Fusion Res. 6, 516-518 (2004).

Imholt, T.

J. A. Roberts, T. Imholt, Z. Ye, C. A. Dyke, D. W. Price, and J. M. Tour, “Electromagnetic wave properties of polymer blends of single wall carbon nanotubes using a resonant microwave cavity as a probe,” J. Appl. Phys. 95, 4352-4356 (2004).
[CrossRef]

Imholt, T. J.

T. J. Imholt, C. A. Dyke, B. Hasslacher, J. M. Perez, D. W. Price, J. A. Roberts, J. B. Scott, A. Wadhawan, Z. Ye, and J. M. Tour, “Nanotubes in microwave fields: light emission, intense heat, out-gassing and reconstruction,” Chem. Mater. 15, 3969-3970 (2003).
[CrossRef]

Ito, T.

K. Toi, R. Ikeda, M. Takeuchi, T. Ito, C. Suzuki, G. Matsunaga, T. Shoji, and S. Okamura, “Experimental simulation of high temperature plasma transport using almost dimensionally similar cold plasmas in the compact helical system,” J. Plasma Fusion Res. 6, 516-518 (2004).

Kho, E.

K. Akhtar, J. E. Scharer, S. M. Tysk, and E. Kho, “Plasma interferometry at high pressures,” Rev. Sci. Instrum. 74, 996-1001 (2003).
[CrossRef]

Khosravi, H.

A. Moradi and H. Khosravi, “Plasmon dispersion in metallic carbon nanotubes in the presence of low-frequency electromagnetic radiation,” Phys. Lett. A 371, 1-6 (2007).
[CrossRef]

A. Moradi and H. Khosravi, “Collective excitations in single-walled carbon nanotubes,” Phys. Rev. B 76, 113411 (2007).
[CrossRef]

Kittrell, C.

A. L. Higginbotham, P. G. Moloney, M. C. Waid, J. G. Duque, C. Kittrell, H. K. Schmidt, J. J. Stephenson, S. Arepalli, L. L. Yowell, and J. M. Tour, “Carbon nanotube composite curing through absorption of microwave radiation,” Compos. Sci. Technol. 68, 3087-3092 (2008).
[CrossRef]

Kouzoudis, D.

C. A. Grimes, C. Mungle, and D. Kouzoudis, “The 500 MHz to 5.50 GHz complex permittivity spectra of single-wall carbon nanotube-loaded polymer composites,” Chem. Phys. Lett. 319, 460-464 (2000).
[CrossRef]

Lakhtakia, A.

J. Han, A. Lakhtakia, and C.-W. Qiu, “Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tunability,” Opt. Express 16, 14390-14396 (2008).
[CrossRef] [PubMed]

M. V. Shuba, S. A. Maksimenko, and A. Lakhtakia, “Electromagnetic wave propagation in an almost circular bundle of closely packed metallic carbon nanotubes,” Phys. Rev. B 76, 155407 (2007).
[CrossRef]

G. Y. Slepyan, S. A. Maksimenko, A. Lakhtakia, O. M. Yevtushenko, and A. V. Gusakov, “Electronic and electromagnetic properties of nanotubes,” Phys. Rev. B 57, 9485-9497(1998).
[CrossRef]

Liu, L.

Maksimenko, S. A.

M. V. Shuba, S. A. Maksimenko, and A. Lakhtakia, “Electromagnetic wave propagation in an almost circular bundle of closely packed metallic carbon nanotubes,” Phys. Rev. B 76, 155407 (2007).
[CrossRef]

G. Y. Slepyan, S. A. Maksimenko, A. Lakhtakia, O. M. Yevtushenko, and A. V. Gusakov, “Electronic and electromagnetic properties of nanotubes,” Phys. Rev. B 57, 9485-9497(1998).
[CrossRef]

Matsunaga, G.

K. Toi, R. Ikeda, M. Takeuchi, T. Ito, C. Suzuki, G. Matsunaga, T. Shoji, and S. Okamura, “Experimental simulation of high temperature plasma transport using almost dimensionally similar cold plasmas in the compact helical system,” J. Plasma Fusion Res. 6, 516-518 (2004).

McDaniel, F.

F. Naab, M. Dhoubhadel, W. Holland, J. Duggan, J. Roberts, and F. McDaniel, Proceedings of the 10th International Conference on Particle Induced X-ray Emission and Analytical Applications (Wiley, 2005).

Miyamoto, K.

K. Miyamoto, Plasma Physics and Controlled Nuclear Fusion (Springer-Verlag, 2005).

Moloney, P. G.

A. L. Higginbotham, P. G. Moloney, M. C. Waid, J. G. Duque, C. Kittrell, H. K. Schmidt, J. J. Stephenson, S. Arepalli, L. L. Yowell, and J. M. Tour, “Carbon nanotube composite curing through absorption of microwave radiation,” Compos. Sci. Technol. 68, 3087-3092 (2008).
[CrossRef]

Moradi, A.

A. Moradi, “Guided dispersion characteristics of metallic single-walled carbon nanotubes in the presence of dielectric media,” Opt. Commun. 283, 160-163 (2010).
[CrossRef]

A. Moradi, “Microwave absorption of magnetized hydrogen plasma in carbon nanotubes,” Phys. Plasmas 16, 113501(2009).
[CrossRef]

A. Moradi, “Electron-hole plasma excitations in single-walled carbon nanotubes,” Phys. Lett. A 372, 5614-5616 (2008).
[CrossRef]

A. Moradi and H. Khosravi, “Plasmon dispersion in metallic carbon nanotubes in the presence of low-frequency electromagnetic radiation,” Phys. Lett. A 371, 1-6 (2007).
[CrossRef]

A. Moradi and H. Khosravi, “Collective excitations in single-walled carbon nanotubes,” Phys. Rev. B 76, 113411 (2007).
[CrossRef]

Mungle, C.

C. A. Grimes, E. C. Dickey, C. Mungle, K. G. Ong, and D. Qian, “Effect of purification of the electrical conductivity and complex permittivity of multiwall carbon nanotubes,” J. Appl. Phys. 90, 4134-4137 (2001).
[CrossRef]

C. A. Grimes, C. Mungle, and D. Kouzoudis, “The 500 MHz to 5.50 GHz complex permittivity spectra of single-wall carbon nanotube-loaded polymer composites,” Chem. Phys. Lett. 319, 460-464 (2000).
[CrossRef]

Naab, F.

F. Naab, M. Dhoubhadel, W. Holland, J. Duggan, J. Roberts, and F. McDaniel, Proceedings of the 10th International Conference on Particle Induced X-ray Emission and Analytical Applications (Wiley, 2005).

Ning, Y.

Z. Peng, J. Peng, Y. Peng, Y. Ou, and Y. Ning, “Investigation of the microwave absorbing mechanisms of HiPco carbon nanotubes,” Physica E (Amsterdam) 40, 2400-2405 (2008).
[CrossRef]

Z. Peng, J. Peng, Y. Peng, Y. Ou, and Y. Ning, “Complex permittivity and microwave absorption properties of carbon nanotubes/polymer composite: a numerical study,” Phys. Lett. A 372, 3714-3718 (2008).
[CrossRef]

Okamura, S.

K. Toi, R. Ikeda, M. Takeuchi, T. Ito, C. Suzuki, G. Matsunaga, T. Shoji, and S. Okamura, “Experimental simulation of high temperature plasma transport using almost dimensionally similar cold plasmas in the compact helical system,” J. Plasma Fusion Res. 6, 516-518 (2004).

Ong, K. G.

C. A. Grimes, E. C. Dickey, C. Mungle, K. G. Ong, and D. Qian, “Effect of purification of the electrical conductivity and complex permittivity of multiwall carbon nanotubes,” J. Appl. Phys. 90, 4134-4137 (2001).
[CrossRef]

Ou, Y.

Z. Peng, J. Peng, Y. Peng, Y. Ou, and Y. Ning, “Investigation of the microwave absorbing mechanisms of HiPco carbon nanotubes,” Physica E (Amsterdam) 40, 2400-2405 (2008).
[CrossRef]

Z. Peng, J. Peng, Y. Peng, Y. Ou, and Y. Ning, “Complex permittivity and microwave absorption properties of carbon nanotubes/polymer composite: a numerical study,” Phys. Lett. A 372, 3714-3718 (2008).
[CrossRef]

Z. Peng, J. Peng, and Y. Ou, “Microwave absorbing properties of hydrogen plasma in single wall carbon nanotubes,” Phys. Lett. A 359, 56-60 (2006).
[CrossRef]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189-193 (2006).
[CrossRef] [PubMed]

Peng, J.

Z. Peng, J. Peng, Y. Peng, Y. Ou, and Y. Ning, “Investigation of the microwave absorbing mechanisms of HiPco carbon nanotubes,” Physica E (Amsterdam) 40, 2400-2405 (2008).
[CrossRef]

Z. Peng, J. Peng, Y. Peng, Y. Ou, and Y. Ning, “Complex permittivity and microwave absorption properties of carbon nanotubes/polymer composite: a numerical study,” Phys. Lett. A 372, 3714-3718 (2008).
[CrossRef]

Z. Peng, J. Peng, and Y. Ou, “Microwave absorbing properties of hydrogen plasma in single wall carbon nanotubes,” Phys. Lett. A 359, 56-60 (2006).
[CrossRef]

Peng, Y.

Z. Peng, J. Peng, Y. Peng, Y. Ou, and Y. Ning, “Complex permittivity and microwave absorption properties of carbon nanotubes/polymer composite: a numerical study,” Phys. Lett. A 372, 3714-3718 (2008).
[CrossRef]

Z. Peng, J. Peng, Y. Peng, Y. Ou, and Y. Ning, “Investigation of the microwave absorbing mechanisms of HiPco carbon nanotubes,” Physica E (Amsterdam) 40, 2400-2405 (2008).
[CrossRef]

Peng, Z.

Z. Peng, J. Peng, Y. Peng, Y. Ou, and Y. Ning, “Investigation of the microwave absorbing mechanisms of HiPco carbon nanotubes,” Physica E (Amsterdam) 40, 2400-2405 (2008).
[CrossRef]

Z. Peng, J. Peng, Y. Peng, Y. Ou, and Y. Ning, “Complex permittivity and microwave absorption properties of carbon nanotubes/polymer composite: a numerical study,” Phys. Lett. A 372, 3714-3718 (2008).
[CrossRef]

Z. Peng, J. Peng, and Y. Ou, “Microwave absorbing properties of hydrogen plasma in single wall carbon nanotubes,” Phys. Lett. A 359, 56-60 (2006).
[CrossRef]

Perez, J. M.

A. Wadhawan, D. Garret, and J. M. Perez, “Nanoparticle-assisted microwave absorption by single-wall carbon nanotubes,” Appl. Phys. Lett. 83, 2683-2685 (2003).
[CrossRef]

T. J. Imholt, C. A. Dyke, B. Hasslacher, J. M. Perez, D. W. Price, J. A. Roberts, J. B. Scott, A. Wadhawan, Z. Ye, and J. M. Tour, “Nanotubes in microwave fields: light emission, intense heat, out-gassing and reconstruction,” Chem. Mater. 15, 3969-3970 (2003).
[CrossRef]

Price, D. W.

J. A. Roberts, T. Imholt, Z. Ye, C. A. Dyke, D. W. Price, and J. M. Tour, “Electromagnetic wave properties of polymer blends of single wall carbon nanotubes using a resonant microwave cavity as a probe,” J. Appl. Phys. 95, 4352-4356 (2004).
[CrossRef]

T. J. Imholt, C. A. Dyke, B. Hasslacher, J. M. Perez, D. W. Price, J. A. Roberts, J. B. Scott, A. Wadhawan, Z. Ye, and J. M. Tour, “Nanotubes in microwave fields: light emission, intense heat, out-gassing and reconstruction,” Chem. Mater. 15, 3969-3970 (2003).
[CrossRef]

Qian, D.

C. A. Grimes, E. C. Dickey, C. Mungle, K. G. Ong, and D. Qian, “Effect of purification of the electrical conductivity and complex permittivity of multiwall carbon nanotubes,” J. Appl. Phys. 90, 4134-4137 (2001).
[CrossRef]

Qiu, C.-W.

Roberts, J.

F. Naab, M. Dhoubhadel, W. Holland, J. Duggan, J. Roberts, and F. McDaniel, Proceedings of the 10th International Conference on Particle Induced X-ray Emission and Analytical Applications (Wiley, 2005).

Roberts, J. A.

J. A. Roberts, T. Imholt, Z. Ye, C. A. Dyke, D. W. Price, and J. M. Tour, “Electromagnetic wave properties of polymer blends of single wall carbon nanotubes using a resonant microwave cavity as a probe,” J. Appl. Phys. 95, 4352-4356 (2004).
[CrossRef]

T. J. Imholt, C. A. Dyke, B. Hasslacher, J. M. Perez, D. W. Price, J. A. Roberts, J. B. Scott, A. Wadhawan, Z. Ye, and J. M. Tour, “Nanotubes in microwave fields: light emission, intense heat, out-gassing and reconstruction,” Chem. Mater. 15, 3969-3970 (2003).
[CrossRef]

Scharer, J. E.

K. Akhtar, J. E. Scharer, S. M. Tysk, and E. Kho, “Plasma interferometry at high pressures,” Rev. Sci. Instrum. 74, 996-1001 (2003).
[CrossRef]

Schmidt, H. K.

A. L. Higginbotham, P. G. Moloney, M. C. Waid, J. G. Duque, C. Kittrell, H. K. Schmidt, J. J. Stephenson, S. Arepalli, L. L. Yowell, and J. M. Tour, “Carbon nanotube composite curing through absorption of microwave radiation,” Compos. Sci. Technol. 68, 3087-3092 (2008).
[CrossRef]

Scott, J. B.

T. J. Imholt, C. A. Dyke, B. Hasslacher, J. M. Perez, D. W. Price, J. A. Roberts, J. B. Scott, A. Wadhawan, Z. Ye, and J. M. Tour, “Nanotubes in microwave fields: light emission, intense heat, out-gassing and reconstruction,” Chem. Mater. 15, 3969-3970 (2003).
[CrossRef]

Shoji, T.

K. Toi, R. Ikeda, M. Takeuchi, T. Ito, C. Suzuki, G. Matsunaga, T. Shoji, and S. Okamura, “Experimental simulation of high temperature plasma transport using almost dimensionally similar cold plasmas in the compact helical system,” J. Plasma Fusion Res. 6, 516-518 (2004).

Shuba, M. V.

M. V. Shuba, S. A. Maksimenko, and A. Lakhtakia, “Electromagnetic wave propagation in an almost circular bundle of closely packed metallic carbon nanotubes,” Phys. Rev. B 76, 155407 (2007).
[CrossRef]

Slepyan, G. Y.

G. Y. Slepyan, S. A. Maksimenko, A. Lakhtakia, O. M. Yevtushenko, and A. V. Gusakov, “Electronic and electromagnetic properties of nanotubes,” Phys. Rev. B 57, 9485-9497(1998).
[CrossRef]

Stephenson, J. J.

A. L. Higginbotham, P. G. Moloney, M. C. Waid, J. G. Duque, C. Kittrell, H. K. Schmidt, J. J. Stephenson, S. Arepalli, L. L. Yowell, and J. M. Tour, “Carbon nanotube composite curing through absorption of microwave radiation,” Compos. Sci. Technol. 68, 3087-3092 (2008).
[CrossRef]

Suzuki, C.

K. Toi, R. Ikeda, M. Takeuchi, T. Ito, C. Suzuki, G. Matsunaga, T. Shoji, and S. Okamura, “Experimental simulation of high temperature plasma transport using almost dimensionally similar cold plasmas in the compact helical system,” J. Plasma Fusion Res. 6, 516-518 (2004).

Takeuchi, M.

K. Toi, R. Ikeda, M. Takeuchi, T. Ito, C. Suzuki, G. Matsunaga, T. Shoji, and S. Okamura, “Experimental simulation of high temperature plasma transport using almost dimensionally similar cold plasmas in the compact helical system,” J. Plasma Fusion Res. 6, 516-518 (2004).

Toi, K.

K. Toi, R. Ikeda, M. Takeuchi, T. Ito, C. Suzuki, G. Matsunaga, T. Shoji, and S. Okamura, “Experimental simulation of high temperature plasma transport using almost dimensionally similar cold plasmas in the compact helical system,” J. Plasma Fusion Res. 6, 516-518 (2004).

Tour, J. M.

A. L. Higginbotham, P. G. Moloney, M. C. Waid, J. G. Duque, C. Kittrell, H. K. Schmidt, J. J. Stephenson, S. Arepalli, L. L. Yowell, and J. M. Tour, “Carbon nanotube composite curing through absorption of microwave radiation,” Compos. Sci. Technol. 68, 3087-3092 (2008).
[CrossRef]

J. A. Roberts, T. Imholt, Z. Ye, C. A. Dyke, D. W. Price, and J. M. Tour, “Electromagnetic wave properties of polymer blends of single wall carbon nanotubes using a resonant microwave cavity as a probe,” J. Appl. Phys. 95, 4352-4356 (2004).
[CrossRef]

T. J. Imholt, C. A. Dyke, B. Hasslacher, J. M. Perez, D. W. Price, J. A. Roberts, J. B. Scott, A. Wadhawan, Z. Ye, and J. M. Tour, “Nanotubes in microwave fields: light emission, intense heat, out-gassing and reconstruction,” Chem. Mater. 15, 3969-3970 (2003).
[CrossRef]

Tysk, S. M.

K. Akhtar, J. E. Scharer, S. M. Tysk, and E. Kho, “Plasma interferometry at high pressures,” Rev. Sci. Instrum. 74, 996-1001 (2003).
[CrossRef]

Wadhawan, A.

T. J. Imholt, C. A. Dyke, B. Hasslacher, J. M. Perez, D. W. Price, J. A. Roberts, J. B. Scott, A. Wadhawan, Z. Ye, and J. M. Tour, “Nanotubes in microwave fields: light emission, intense heat, out-gassing and reconstruction,” Chem. Mater. 15, 3969-3970 (2003).
[CrossRef]

A. Wadhawan, D. Garret, and J. M. Perez, “Nanoparticle-assisted microwave absorption by single-wall carbon nanotubes,” Appl. Phys. Lett. 83, 2683-2685 (2003).
[CrossRef]

Waid, M. C.

A. L. Higginbotham, P. G. Moloney, M. C. Waid, J. G. Duque, C. Kittrell, H. K. Schmidt, J. J. Stephenson, S. Arepalli, L. L. Yowell, and J. M. Tour, “Carbon nanotube composite curing through absorption of microwave radiation,” Compos. Sci. Technol. 68, 3087-3092 (2008).
[CrossRef]

Ye, Z.

J. A. Roberts, T. Imholt, Z. Ye, C. A. Dyke, D. W. Price, and J. M. Tour, “Electromagnetic wave properties of polymer blends of single wall carbon nanotubes using a resonant microwave cavity as a probe,” J. Appl. Phys. 95, 4352-4356 (2004).
[CrossRef]

T. J. Imholt, C. A. Dyke, B. Hasslacher, J. M. Perez, D. W. Price, J. A. Roberts, J. B. Scott, A. Wadhawan, Z. Ye, and J. M. Tour, “Nanotubes in microwave fields: light emission, intense heat, out-gassing and reconstruction,” Chem. Mater. 15, 3969-3970 (2003).
[CrossRef]

Yevtushenko, O. M.

G. Y. Slepyan, S. A. Maksimenko, A. Lakhtakia, O. M. Yevtushenko, and A. V. Gusakov, “Electronic and electromagnetic properties of nanotubes,” Phys. Rev. B 57, 9485-9497(1998).
[CrossRef]

Yowell, L. L.

A. L. Higginbotham, P. G. Moloney, M. C. Waid, J. G. Duque, C. Kittrell, H. K. Schmidt, J. J. Stephenson, S. Arepalli, L. L. Yowell, and J. M. Tour, “Carbon nanotube composite curing through absorption of microwave radiation,” Compos. Sci. Technol. 68, 3087-3092 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

A. Wadhawan, D. Garret, and J. M. Perez, “Nanoparticle-assisted microwave absorption by single-wall carbon nanotubes,” Appl. Phys. Lett. 83, 2683-2685 (2003).
[CrossRef]

Chem. Mater. (1)

T. J. Imholt, C. A. Dyke, B. Hasslacher, J. M. Perez, D. W. Price, J. A. Roberts, J. B. Scott, A. Wadhawan, Z. Ye, and J. M. Tour, “Nanotubes in microwave fields: light emission, intense heat, out-gassing and reconstruction,” Chem. Mater. 15, 3969-3970 (2003).
[CrossRef]

Chem. Phys. Lett. (1)

C. A. Grimes, C. Mungle, and D. Kouzoudis, “The 500 MHz to 5.50 GHz complex permittivity spectra of single-wall carbon nanotube-loaded polymer composites,” Chem. Phys. Lett. 319, 460-464 (2000).
[CrossRef]

Compos. Sci. Technol. (1)

A. L. Higginbotham, P. G. Moloney, M. C. Waid, J. G. Duque, C. Kittrell, H. K. Schmidt, J. J. Stephenson, S. Arepalli, L. L. Yowell, and J. M. Tour, “Carbon nanotube composite curing through absorption of microwave radiation,” Compos. Sci. Technol. 68, 3087-3092 (2008).
[CrossRef]

J. Appl. Phys. (2)

C. A. Grimes, E. C. Dickey, C. Mungle, K. G. Ong, and D. Qian, “Effect of purification of the electrical conductivity and complex permittivity of multiwall carbon nanotubes,” J. Appl. Phys. 90, 4134-4137 (2001).
[CrossRef]

J. A. Roberts, T. Imholt, Z. Ye, C. A. Dyke, D. W. Price, and J. M. Tour, “Electromagnetic wave properties of polymer blends of single wall carbon nanotubes using a resonant microwave cavity as a probe,” J. Appl. Phys. 95, 4352-4356 (2004).
[CrossRef]

J. Plasma Fusion Res. (1)

K. Toi, R. Ikeda, M. Takeuchi, T. Ito, C. Suzuki, G. Matsunaga, T. Shoji, and S. Okamura, “Experimental simulation of high temperature plasma transport using almost dimensionally similar cold plasmas in the compact helical system,” J. Plasma Fusion Res. 6, 516-518 (2004).

Nature (1)

S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354, 56-58 (1991).
[CrossRef]

Opt. Commun. (1)

A. Moradi, “Guided dispersion characteristics of metallic single-walled carbon nanotubes in the presence of dielectric media,” Opt. Commun. 283, 160-163 (2010).
[CrossRef]

Opt. Express (2)

Phys. Lett. A (4)

A. Moradi and H. Khosravi, “Plasmon dispersion in metallic carbon nanotubes in the presence of low-frequency electromagnetic radiation,” Phys. Lett. A 371, 1-6 (2007).
[CrossRef]

A. Moradi, “Electron-hole plasma excitations in single-walled carbon nanotubes,” Phys. Lett. A 372, 5614-5616 (2008).
[CrossRef]

Z. Peng, J. Peng, Y. Peng, Y. Ou, and Y. Ning, “Complex permittivity and microwave absorption properties of carbon nanotubes/polymer composite: a numerical study,” Phys. Lett. A 372, 3714-3718 (2008).
[CrossRef]

Z. Peng, J. Peng, and Y. Ou, “Microwave absorbing properties of hydrogen plasma in single wall carbon nanotubes,” Phys. Lett. A 359, 56-60 (2006).
[CrossRef]

Phys. Plasmas (1)

A. Moradi, “Microwave absorption of magnetized hydrogen plasma in carbon nanotubes,” Phys. Plasmas 16, 113501(2009).
[CrossRef]

Phys. Rev. B (3)

G. Y. Slepyan, S. A. Maksimenko, A. Lakhtakia, O. M. Yevtushenko, and A. V. Gusakov, “Electronic and electromagnetic properties of nanotubes,” Phys. Rev. B 57, 9485-9497(1998).
[CrossRef]

M. V. Shuba, S. A. Maksimenko, and A. Lakhtakia, “Electromagnetic wave propagation in an almost circular bundle of closely packed metallic carbon nanotubes,” Phys. Rev. B 76, 155407 (2007).
[CrossRef]

A. Moradi and H. Khosravi, “Collective excitations in single-walled carbon nanotubes,” Phys. Rev. B 76, 113411 (2007).
[CrossRef]

Physica E (Amsterdam) (1)

Z. Peng, J. Peng, Y. Peng, Y. Ou, and Y. Ning, “Investigation of the microwave absorbing mechanisms of HiPco carbon nanotubes,” Physica E (Amsterdam) 40, 2400-2405 (2008).
[CrossRef]

Rev. Sci. Instrum. (1)

K. Akhtar, J. E. Scharer, S. M. Tysk, and E. Kho, “Plasma interferometry at high pressures,” Rev. Sci. Instrum. 74, 996-1001 (2003).
[CrossRef]

Science (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189-193 (2006).
[CrossRef] [PubMed]

Other (2)

F. Naab, M. Dhoubhadel, W. Holland, J. Duggan, J. Roberts, and F. McDaniel, Proceedings of the 10th International Conference on Particle Induced X-ray Emission and Analytical Applications (Wiley, 2005).

K. Miyamoto, Plasma Physics and Controlled Nuclear Fusion (Springer-Verlag, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic representation of the hydrogen plasma slab characterized by its thickness d.

Fig. 2
Fig. 2

Dependence of total reflected power of the hydrogen plasma slab on microwave frequency for different values of n e , where ν e = 22 GHz and ν c = 5 GHz .

Fig. 3
Fig. 3

Dependence of total reflected power of the hydrogen plasma slab on microwave frequency for different values of ν e , where n e = 2.181 × 10 17 m 3 and ν c = 5 GHz .

Fig. 4
Fig. 4

Dependence of total reflected power of the hydrogen plasma slab on microwave frequency for different values of ν c , where n e = 2.181 × 10 17 m 3 and ν e = 22 GHz .

Fig. 5
Fig. 5

Dependence of total transmitted power of the hydrogen plasma slab on microwave frequency for different values of n e , where ν e = 22 GHz and ν c = 5 GHz .

Fig. 6
Fig. 6

Dependence of total transmitted power of the hydrogen plasma slab on microwave frequency for different values of ν e , where n e = 2.181 × 10 17 m 3 and ν c = 5 GHz .

Fig. 7
Fig. 7

Dependence of total transmitted power of the hydrogen plasma slab on microwave frequency for different values of ν c , where n e = 2.181 × 10 17 m 3 and ν e = 22 GHz .

Fig. 8
Fig. 8

Dependence of total absorbed power of the hydrogen plasma slab on microwave frequency for different values of n e , where ν e = 22 GHz and ν c = 5 GHz .

Fig. 9
Fig. 9

Dependence of total absorbed power of the hydrogen plasma slab on microwave frequency for different values of ν e , where n e = 2.181 × 10 17 m 3 and ν c = 5 GHz .

Fig. 10
Fig. 10

Dependence of total absorbed power of the hydrogen plasma slab on microwave frequency for different values of ν c , where n e = 2.181 × 10 17 m 3 and ν e = 22 GHz .

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

P ( x ) = P 0 e α x ,
α = 4 π k i λ
R T = R 12 + T 12 R 23 T 21 e 2 α d + T 12 R 23 R 21 R 23 T 21 e 4 α d + T 12 R 23 ( R 21 R 23 ) 2 T 21 e 6 α d + = R 12 + T 12 R 23 T 21 e 2 α d j = 1 ( R 21 R 23 e 2 α d ) j 1 = R 12 + T 12 R 23 T 21 e 2 α d 1 R 21 R 23 e 2 α d ,
T T = T 12 T 23 e α d + T 12 R 23 R 21 T 23 e 3 α d + T 12 ( R 23 R 21 ) 2 T 23 e 5 α d + = T 12 T 23 e α d j = 1 ( R 21 R 23 e 2 α d ) j 1 = T 12 T 23 e α d 1 R 21 R 23 e 2 α d ,
A T = [ 1 R 12 ] [ 1 R 21 R 23 e 2 α d ] T 12 e α d [ T 23 + R 23 T 21 e α d ] 1 R 21 R 23 e 2 α d .
R T = R 12 [ 1 e 2 α d ( 2 R 12 1 ) ] 1 R 12 2 e 2 α d ,
T T = ( 1 R 12 ) 2 e α d 1 R 12 2 e 2 α d ,
A T = [ 1 R 12 ] [ 1 + R 12 e α d ] [ 1 e α d ] 1 R 12 2 e 2 α d .
R T R 12 1 + e 2 α d ,
T T ( 1 2 R 12 ) e α d ,
A T ( 1 e α d ) 1 R 12 ( 1 e α d ) ,
R 12 = | 1 ε ( ω ) 1 + ε ( ω ) | 2 .
ε T = 1 ν p 2 ( ν 2 + i ν e ν ) ( ν 2 + i ν e ν ) 2 ν 2 ν c 2 ,
ε × = ν ν c ν p 2 ( ν 2 + i ν e ν ) 2 ν 2 ν c 2 ,
ε L = 1 ν p 2 ( ν 2 + i ν e ν ) ,
ε ± = ε T ± ε × ,
ε = 1 ν p 2 ( ν ν c ) ν [ ( ν ν c ) 2 + ν e 2 ] i ν p 2 ν e ν [ ( ν ν c ) 2 + ν e 2 ] .
α = 4 π ν c { 1 ν p 2 ν [ ( ν ν c ) 2 + ν e 2 ] [ 2 ( ν ν c ) ν p 2 ν ] } 1 / 4 sin ( ψ / 2 ) ,
ψ = tan 1 [ ν p 2 ν e ν [ ( ν ν c ) 2 + ν e 2 ] ν p 2 ( ν ν c ) ] .

Metrics