Abstract

We present and characterize a sequential angular compounding method for reducing speckle contrast in optical coherence tomography images of paint layers. The results are compared with postprocessing methods, and we show that the compounding technique can improve the speckle contrast ratio in B-scans by better than a factor of 2 in exchange for a negligible loss of resolution. As a result, image aesthetics are improved, thin layers become more distinct, and edge-detection algorithms work more efficiently. The effect of varying the angular scan size and number of averages is investigated, and it is found that a degree of statistical correlation between speckle patterns exists, even for relatively large changes in angle of incidence. Angular compounding is also performed on three-dimensional data sets and compared with a method whereby en face slices are averaged over depth.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003).
    [CrossRef]
  3. H. Liang, M. Cid, R. Cucu, G. Dobre, A. Podoleanu, J. Pedro, and D. Saunders, “En-face optical coherence tomography--a novel application of non-invasive imaging to art conservation,” Opt. Express 13, 6133-6144 (2005).
    [CrossRef] [PubMed]
  4. P. Targowski, M. Gora, and M. Wojtkowski, “Optical coherence tomography for artwork diagnostics,” Laser Chem. 2006, 1-11(2006).
  5. D. C. Adler, J. Stenger, I. Gorczynska, H. Lie, T. Hensick, R. Spronk, S. Wolohojian, N. Khandekar, J. Y. Jiang, and S. Barry, “Comparison of three-dimensional optical coherence tomography and high resolution photography for art conservation studies,” Opt. Express 15, 15972-15986 (2007).
    [CrossRef] [PubMed]
  6. M. Spring, H. Liang, B. Peric, D. Saunders, and A. Podoleanu, “Optical coherence tomography--a tool for high resolution non-invasive 3D-imaging of the subsurface structure of paintings,” ICOM Committee For Conservation Newsletter 2008-4, 633-640 (2008).
  7. M. Gora, P. Targowski, A. Rycyk, and J. Marczak, “Varnish ablation control by optical coherence tomography,” Laser Chem. 2006, 1-7 (2006).
    [CrossRef]
  8. E. Kwiatkowska, J. Marczak, R. Ostrowski, W. Skrzeczanowski, M. Sylwestrzak, M. Iwanicka, and P. Targowski, “Absolute LIBS stratigraphy with optical coherence tomography,” Proc. SPIE 7391, 73910F (2009).
    [CrossRef]
  9. P. Targowski, M. Gora, T. Bajraszewski, M. Szkulmowski, B. Rouba, T. Lekawa-Wyslouch, and L. Tyminska-Widmer, “Optical coherence tomography for tracking canvas deformation,” Laser Chem. 2006, 1-8 (2006).
    [CrossRef]
  10. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4, 95 (1999).
    [CrossRef]
  11. M. Bashkansky and J. Reintjes, “Statistics and reduction of speckle in optical coherence tomography,” Opt. Lett. 25, 545-547 (2000).
    [CrossRef]
  12. B. Karamata, K. Hassler, M. Laubscher, and T. Lasser, “Speckle statistics in optical coherence tomography,” J. Opt. Soc. Am. A 22, 593-596 (2005).
    [CrossRef]
  13. P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D 38, 2519-2535 (2005).
    [CrossRef]
  14. A. Labeyrie, “Attainment of diffraction limited resolution in large telescopes by Fourier analyzing speckle patterns in star images,” in Selected Papers on Interferometry (SPIE, 1991), Vol. MS-28, pp. 427-429.
  15. T. R. Hillman, S. G. Adie, V. Seemann, J. J. Armstrong, S. L. Jacques, and D. D. Sampson, “Correlation of static speckle with sample properties in optical coherence tomography,” Opt. Lett. 31, 190-192 (2006).
    [CrossRef] [PubMed]
  16. M. Pircher, E. Götzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8, 565 (2003).
    [CrossRef] [PubMed]
  17. A. E. Desjardins, B. J. Vakoc, W. Y. Oh, S. M. Motaghiannezam, G. J. Tearney, and B. E. Bouma, “Angle-resolved optical coherence tomography with sequential angular selectivity for speckle reduction,” Opt. Express 15, 6200-6209 (2007).
    [CrossRef] [PubMed]
  18. A. E. Desjardins, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Speckle reduction in OCT using massively-parallel detection and frequency-domain ranging,” Opt. Express 14, 4736-4745(2006).
    [CrossRef] [PubMed]
  19. J. Rogowska and M. E. Brezinski, “Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images,” Phys. Med. Biol. 47, 641-656 (2002).
    [CrossRef] [PubMed]
  20. J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, “Optical coherence tomography speckle reduction by a partially spatially coherent source,” J. Biomed. Opt. 10, 064034 (2005).
    [CrossRef]
  21. B. Sander, M. Larsen, L. Thrane, J. L. Hougaard, and T. M. Jorgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” Br. J. Ophthalmol. 89, 207-212 (2005).
    [CrossRef] [PubMed]
  22. J. M. Schmitt, “Array detection for speckle reduction in optical coherence microscopy,” Phys. Med. Biol. 42, 1427-1440 (1997).
    [CrossRef] [PubMed]
  23. H. Wang and A. M. Rollins, “Speckle reduction in optical coherence tomography using angular compounding by B-scan Doppler-shift encoding,” J. Biomed. Opt. 14, 030512 (2009).
    [CrossRef] [PubMed]
  24. R. K. Wang and Z. Ma, “A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography,” Phys. Med. Biol. 51, 3231-3240(2006).
    [CrossRef] [PubMed]
  25. C. Dorrer, N. Belabas, J. P. Likforman, and M. Joffre, “Spectral resolution and sampling issues in Fourier-transform spectral interferometry,” J. Opt. Soc. Am. B 17, 1795-1802 (2000).
    [CrossRef]
  26. P. Thevenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process. 7, 27-41 (1998).
    [CrossRef]
  27. H. Liang, B. Peric, M. Spring, D. Saunders, M. Hughes, and A. Podoleanu, “Non-invasive imaging of subsurface paint layers with optical coherence tomography,” presented at Conservation Science 2007, Milan, Italy, 10-11 May 2007.

2009 (2)

E. Kwiatkowska, J. Marczak, R. Ostrowski, W. Skrzeczanowski, M. Sylwestrzak, M. Iwanicka, and P. Targowski, “Absolute LIBS stratigraphy with optical coherence tomography,” Proc. SPIE 7391, 73910F (2009).
[CrossRef]

H. Wang and A. M. Rollins, “Speckle reduction in optical coherence tomography using angular compounding by B-scan Doppler-shift encoding,” J. Biomed. Opt. 14, 030512 (2009).
[CrossRef] [PubMed]

2008 (1)

M. Spring, H. Liang, B. Peric, D. Saunders, and A. Podoleanu, “Optical coherence tomography--a tool for high resolution non-invasive 3D-imaging of the subsurface structure of paintings,” ICOM Committee For Conservation Newsletter 2008-4, 633-640 (2008).

2007 (2)

2006 (6)

A. E. Desjardins, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Speckle reduction in OCT using massively-parallel detection and frequency-domain ranging,” Opt. Express 14, 4736-4745(2006).
[CrossRef] [PubMed]

T. R. Hillman, S. G. Adie, V. Seemann, J. J. Armstrong, S. L. Jacques, and D. D. Sampson, “Correlation of static speckle with sample properties in optical coherence tomography,” Opt. Lett. 31, 190-192 (2006).
[CrossRef] [PubMed]

M. Gora, P. Targowski, A. Rycyk, and J. Marczak, “Varnish ablation control by optical coherence tomography,” Laser Chem. 2006, 1-7 (2006).
[CrossRef]

P. Targowski, M. Gora, T. Bajraszewski, M. Szkulmowski, B. Rouba, T. Lekawa-Wyslouch, and L. Tyminska-Widmer, “Optical coherence tomography for tracking canvas deformation,” Laser Chem. 2006, 1-8 (2006).
[CrossRef]

P. Targowski, M. Gora, and M. Wojtkowski, “Optical coherence tomography for artwork diagnostics,” Laser Chem. 2006, 1-11(2006).

R. K. Wang and Z. Ma, “A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography,” Phys. Med. Biol. 51, 3231-3240(2006).
[CrossRef] [PubMed]

2005 (5)

J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, “Optical coherence tomography speckle reduction by a partially spatially coherent source,” J. Biomed. Opt. 10, 064034 (2005).
[CrossRef]

B. Sander, M. Larsen, L. Thrane, J. L. Hougaard, and T. M. Jorgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” Br. J. Ophthalmol. 89, 207-212 (2005).
[CrossRef] [PubMed]

H. Liang, M. Cid, R. Cucu, G. Dobre, A. Podoleanu, J. Pedro, and D. Saunders, “En-face optical coherence tomography--a novel application of non-invasive imaging to art conservation,” Opt. Express 13, 6133-6144 (2005).
[CrossRef] [PubMed]

B. Karamata, K. Hassler, M. Laubscher, and T. Lasser, “Speckle statistics in optical coherence tomography,” J. Opt. Soc. Am. A 22, 593-596 (2005).
[CrossRef]

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D 38, 2519-2535 (2005).
[CrossRef]

2003 (2)

M. Pircher, E. Götzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8, 565 (2003).
[CrossRef] [PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

2002 (1)

J. Rogowska and M. E. Brezinski, “Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images,” Phys. Med. Biol. 47, 641-656 (2002).
[CrossRef] [PubMed]

2000 (2)

1999 (1)

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4, 95 (1999).
[CrossRef]

1998 (1)

P. Thevenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process. 7, 27-41 (1998).
[CrossRef]

1997 (1)

J. M. Schmitt, “Array detection for speckle reduction in optical coherence microscopy,” Phys. Med. Biol. 42, 1427-1440 (1997).
[CrossRef] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Adie, S. G.

Adler, D. C.

Armstrong, J. J.

Bajraszewski, T.

P. Targowski, M. Gora, T. Bajraszewski, M. Szkulmowski, B. Rouba, T. Lekawa-Wyslouch, and L. Tyminska-Widmer, “Optical coherence tomography for tracking canvas deformation,” Laser Chem. 2006, 1-8 (2006).
[CrossRef]

Barry, S.

Bashkansky, M.

Belabas, N.

Bouma, B. E.

Brezinski, M. E.

J. Rogowska and M. E. Brezinski, “Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images,” Phys. Med. Biol. 47, 641-656 (2002).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Cid, M.

Cucu, R.

Desjardins, A. E.

Dobre, G.

Dorrer, C.

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

M. Pircher, E. Götzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8, 565 (2003).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Gora, M.

P. Targowski, M. Gora, and M. Wojtkowski, “Optical coherence tomography for artwork diagnostics,” Laser Chem. 2006, 1-11(2006).

M. Gora, P. Targowski, A. Rycyk, and J. Marczak, “Varnish ablation control by optical coherence tomography,” Laser Chem. 2006, 1-7 (2006).
[CrossRef]

P. Targowski, M. Gora, T. Bajraszewski, M. Szkulmowski, B. Rouba, T. Lekawa-Wyslouch, and L. Tyminska-Widmer, “Optical coherence tomography for tracking canvas deformation,” Laser Chem. 2006, 1-8 (2006).
[CrossRef]

Gorczynska, I.

Götzinger, E.

M. Pircher, E. Götzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8, 565 (2003).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hassler, K.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hensick, T.

Hillman, T. R.

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

M. Pircher, E. Götzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8, 565 (2003).
[CrossRef] [PubMed]

Hougaard, J. L.

B. Sander, M. Larsen, L. Thrane, J. L. Hougaard, and T. M. Jorgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” Br. J. Ophthalmol. 89, 207-212 (2005).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hughes, M.

H. Liang, B. Peric, M. Spring, D. Saunders, M. Hughes, and A. Podoleanu, “Non-invasive imaging of subsurface paint layers with optical coherence tomography,” presented at Conservation Science 2007, Milan, Italy, 10-11 May 2007.

Iwanicka, M.

E. Kwiatkowska, J. Marczak, R. Ostrowski, W. Skrzeczanowski, M. Sylwestrzak, M. Iwanicka, and P. Targowski, “Absolute LIBS stratigraphy with optical coherence tomography,” Proc. SPIE 7391, 73910F (2009).
[CrossRef]

Jacques, S. L.

Jiang, J. Y.

Joffre, M.

Jorgensen, T. M.

B. Sander, M. Larsen, L. Thrane, J. L. Hougaard, and T. M. Jorgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” Br. J. Ophthalmol. 89, 207-212 (2005).
[CrossRef] [PubMed]

Karamata, B.

Khandekar, N.

Kim, E.

J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, “Optical coherence tomography speckle reduction by a partially spatially coherent source,” J. Biomed. Opt. 10, 064034 (2005).
[CrossRef]

Kim, J.

J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, “Optical coherence tomography speckle reduction by a partially spatially coherent source,” J. Biomed. Opt. 10, 064034 (2005).
[CrossRef]

Kwiatkowska, E.

E. Kwiatkowska, J. Marczak, R. Ostrowski, W. Skrzeczanowski, M. Sylwestrzak, M. Iwanicka, and P. Targowski, “Absolute LIBS stratigraphy with optical coherence tomography,” Proc. SPIE 7391, 73910F (2009).
[CrossRef]

Labeyrie, A.

A. Labeyrie, “Attainment of diffraction limited resolution in large telescopes by Fourier analyzing speckle patterns in star images,” in Selected Papers on Interferometry (SPIE, 1991), Vol. MS-28, pp. 427-429.

Larsen, M.

B. Sander, M. Larsen, L. Thrane, J. L. Hougaard, and T. M. Jorgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” Br. J. Ophthalmol. 89, 207-212 (2005).
[CrossRef] [PubMed]

Lasser, T.

B. Karamata, K. Hassler, M. Laubscher, and T. Lasser, “Speckle statistics in optical coherence tomography,” J. Opt. Soc. Am. A 22, 593-596 (2005).
[CrossRef]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Laubscher, M.

Leitgeb, R.

M. Pircher, E. Götzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8, 565 (2003).
[CrossRef] [PubMed]

Lekawa-Wyslouch, T.

P. Targowski, M. Gora, T. Bajraszewski, M. Szkulmowski, B. Rouba, T. Lekawa-Wyslouch, and L. Tyminska-Widmer, “Optical coherence tomography for tracking canvas deformation,” Laser Chem. 2006, 1-8 (2006).
[CrossRef]

Liang, H.

M. Spring, H. Liang, B. Peric, D. Saunders, and A. Podoleanu, “Optical coherence tomography--a tool for high resolution non-invasive 3D-imaging of the subsurface structure of paintings,” ICOM Committee For Conservation Newsletter 2008-4, 633-640 (2008).

H. Liang, M. Cid, R. Cucu, G. Dobre, A. Podoleanu, J. Pedro, and D. Saunders, “En-face optical coherence tomography--a novel application of non-invasive imaging to art conservation,” Opt. Express 13, 6133-6144 (2005).
[CrossRef] [PubMed]

H. Liang, B. Peric, M. Spring, D. Saunders, M. Hughes, and A. Podoleanu, “Non-invasive imaging of subsurface paint layers with optical coherence tomography,” presented at Conservation Science 2007, Milan, Italy, 10-11 May 2007.

Lie, H.

Likforman, J. P.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Ma, Z.

R. K. Wang and Z. Ma, “A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography,” Phys. Med. Biol. 51, 3231-3240(2006).
[CrossRef] [PubMed]

Marczak, J.

E. Kwiatkowska, J. Marczak, R. Ostrowski, W. Skrzeczanowski, M. Sylwestrzak, M. Iwanicka, and P. Targowski, “Absolute LIBS stratigraphy with optical coherence tomography,” Proc. SPIE 7391, 73910F (2009).
[CrossRef]

M. Gora, P. Targowski, A. Rycyk, and J. Marczak, “Varnish ablation control by optical coherence tomography,” Laser Chem. 2006, 1-7 (2006).
[CrossRef]

Miller, D. T.

J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, “Optical coherence tomography speckle reduction by a partially spatially coherent source,” J. Biomed. Opt. 10, 064034 (2005).
[CrossRef]

Milner, T. E.

J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, “Optical coherence tomography speckle reduction by a partially spatially coherent source,” J. Biomed. Opt. 10, 064034 (2005).
[CrossRef]

Motaghiannezam, S. M.

Oh, J.

J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, “Optical coherence tomography speckle reduction by a partially spatially coherent source,” J. Biomed. Opt. 10, 064034 (2005).
[CrossRef]

Oh, S.

J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, “Optical coherence tomography speckle reduction by a partially spatially coherent source,” J. Biomed. Opt. 10, 064034 (2005).
[CrossRef]

Oh, W. Y.

Ostrowski, R.

E. Kwiatkowska, J. Marczak, R. Ostrowski, W. Skrzeczanowski, M. Sylwestrzak, M. Iwanicka, and P. Targowski, “Absolute LIBS stratigraphy with optical coherence tomography,” Proc. SPIE 7391, 73910F (2009).
[CrossRef]

Pedro, J.

Peric, B.

M. Spring, H. Liang, B. Peric, D. Saunders, and A. Podoleanu, “Optical coherence tomography--a tool for high resolution non-invasive 3D-imaging of the subsurface structure of paintings,” ICOM Committee For Conservation Newsletter 2008-4, 633-640 (2008).

H. Liang, B. Peric, M. Spring, D. Saunders, M. Hughes, and A. Podoleanu, “Non-invasive imaging of subsurface paint layers with optical coherence tomography,” presented at Conservation Science 2007, Milan, Italy, 10-11 May 2007.

Pircher, M.

M. Pircher, E. Götzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8, 565 (2003).
[CrossRef] [PubMed]

Podoleanu, A.

M. Spring, H. Liang, B. Peric, D. Saunders, and A. Podoleanu, “Optical coherence tomography--a tool for high resolution non-invasive 3D-imaging of the subsurface structure of paintings,” ICOM Committee For Conservation Newsletter 2008-4, 633-640 (2008).

H. Liang, M. Cid, R. Cucu, G. Dobre, A. Podoleanu, J. Pedro, and D. Saunders, “En-face optical coherence tomography--a novel application of non-invasive imaging to art conservation,” Opt. Express 13, 6133-6144 (2005).
[CrossRef] [PubMed]

H. Liang, B. Peric, M. Spring, D. Saunders, M. Hughes, and A. Podoleanu, “Non-invasive imaging of subsurface paint layers with optical coherence tomography,” presented at Conservation Science 2007, Milan, Italy, 10-11 May 2007.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Reintjes, J.

Rogowska, J.

J. Rogowska and M. E. Brezinski, “Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images,” Phys. Med. Biol. 47, 641-656 (2002).
[CrossRef] [PubMed]

Rollins, A. M.

H. Wang and A. M. Rollins, “Speckle reduction in optical coherence tomography using angular compounding by B-scan Doppler-shift encoding,” J. Biomed. Opt. 14, 030512 (2009).
[CrossRef] [PubMed]

Rouba, B.

P. Targowski, M. Gora, T. Bajraszewski, M. Szkulmowski, B. Rouba, T. Lekawa-Wyslouch, and L. Tyminska-Widmer, “Optical coherence tomography for tracking canvas deformation,” Laser Chem. 2006, 1-8 (2006).
[CrossRef]

Ruttimann, U. E.

P. Thevenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process. 7, 27-41 (1998).
[CrossRef]

Rycyk, A.

M. Gora, P. Targowski, A. Rycyk, and J. Marczak, “Varnish ablation control by optical coherence tomography,” Laser Chem. 2006, 1-7 (2006).
[CrossRef]

Sampson, D. D.

Sander, B.

B. Sander, M. Larsen, L. Thrane, J. L. Hougaard, and T. M. Jorgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” Br. J. Ophthalmol. 89, 207-212 (2005).
[CrossRef] [PubMed]

Saunders, D.

M. Spring, H. Liang, B. Peric, D. Saunders, and A. Podoleanu, “Optical coherence tomography--a tool for high resolution non-invasive 3D-imaging of the subsurface structure of paintings,” ICOM Committee For Conservation Newsletter 2008-4, 633-640 (2008).

H. Liang, M. Cid, R. Cucu, G. Dobre, A. Podoleanu, J. Pedro, and D. Saunders, “En-face optical coherence tomography--a novel application of non-invasive imaging to art conservation,” Opt. Express 13, 6133-6144 (2005).
[CrossRef] [PubMed]

H. Liang, B. Peric, M. Spring, D. Saunders, M. Hughes, and A. Podoleanu, “Non-invasive imaging of subsurface paint layers with optical coherence tomography,” presented at Conservation Science 2007, Milan, Italy, 10-11 May 2007.

Schmitt, J. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4, 95 (1999).
[CrossRef]

J. M. Schmitt, “Array detection for speckle reduction in optical coherence microscopy,” Phys. Med. Biol. 42, 1427-1440 (1997).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Seemann, V.

Skrzeczanowski, W.

E. Kwiatkowska, J. Marczak, R. Ostrowski, W. Skrzeczanowski, M. Sylwestrzak, M. Iwanicka, and P. Targowski, “Absolute LIBS stratigraphy with optical coherence tomography,” Proc. SPIE 7391, 73910F (2009).
[CrossRef]

Spring, M.

M. Spring, H. Liang, B. Peric, D. Saunders, and A. Podoleanu, “Optical coherence tomography--a tool for high resolution non-invasive 3D-imaging of the subsurface structure of paintings,” ICOM Committee For Conservation Newsletter 2008-4, 633-640 (2008).

H. Liang, B. Peric, M. Spring, D. Saunders, M. Hughes, and A. Podoleanu, “Non-invasive imaging of subsurface paint layers with optical coherence tomography,” presented at Conservation Science 2007, Milan, Italy, 10-11 May 2007.

Spronk, R.

Stenger, J.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Sylwestrzak, M.

E. Kwiatkowska, J. Marczak, R. Ostrowski, W. Skrzeczanowski, M. Sylwestrzak, M. Iwanicka, and P. Targowski, “Absolute LIBS stratigraphy with optical coherence tomography,” Proc. SPIE 7391, 73910F (2009).
[CrossRef]

Szkulmowski, M.

P. Targowski, M. Gora, T. Bajraszewski, M. Szkulmowski, B. Rouba, T. Lekawa-Wyslouch, and L. Tyminska-Widmer, “Optical coherence tomography for tracking canvas deformation,” Laser Chem. 2006, 1-8 (2006).
[CrossRef]

Targowski, P.

E. Kwiatkowska, J. Marczak, R. Ostrowski, W. Skrzeczanowski, M. Sylwestrzak, M. Iwanicka, and P. Targowski, “Absolute LIBS stratigraphy with optical coherence tomography,” Proc. SPIE 7391, 73910F (2009).
[CrossRef]

P. Targowski, M. Gora, and M. Wojtkowski, “Optical coherence tomography for artwork diagnostics,” Laser Chem. 2006, 1-11(2006).

P. Targowski, M. Gora, T. Bajraszewski, M. Szkulmowski, B. Rouba, T. Lekawa-Wyslouch, and L. Tyminska-Widmer, “Optical coherence tomography for tracking canvas deformation,” Laser Chem. 2006, 1-8 (2006).
[CrossRef]

M. Gora, P. Targowski, A. Rycyk, and J. Marczak, “Varnish ablation control by optical coherence tomography,” Laser Chem. 2006, 1-7 (2006).
[CrossRef]

Tearney, G. J.

Thevenaz, P.

P. Thevenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process. 7, 27-41 (1998).
[CrossRef]

Thrane, L.

B. Sander, M. Larsen, L. Thrane, J. L. Hougaard, and T. M. Jorgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” Br. J. Ophthalmol. 89, 207-212 (2005).
[CrossRef] [PubMed]

Tomlins, P. H.

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D 38, 2519-2535 (2005).
[CrossRef]

Tyminska-Widmer, L.

P. Targowski, M. Gora, T. Bajraszewski, M. Szkulmowski, B. Rouba, T. Lekawa-Wyslouch, and L. Tyminska-Widmer, “Optical coherence tomography for tracking canvas deformation,” Laser Chem. 2006, 1-8 (2006).
[CrossRef]

Unser, M.

P. Thevenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process. 7, 27-41 (1998).
[CrossRef]

Vakoc, B. J.

Wang, H.

H. Wang and A. M. Rollins, “Speckle reduction in optical coherence tomography using angular compounding by B-scan Doppler-shift encoding,” J. Biomed. Opt. 14, 030512 (2009).
[CrossRef] [PubMed]

Wang, R. K.

R. K. Wang and Z. Ma, “A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography,” Phys. Med. Biol. 51, 3231-3240(2006).
[CrossRef] [PubMed]

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D 38, 2519-2535 (2005).
[CrossRef]

Wojtkowski, M.

P. Targowski, M. Gora, and M. Wojtkowski, “Optical coherence tomography for artwork diagnostics,” Laser Chem. 2006, 1-11(2006).

Wolohojian, S.

Xiang, S. H.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4, 95 (1999).
[CrossRef]

Yung, K. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4, 95 (1999).
[CrossRef]

Br. J. Ophthalmol. (1)

B. Sander, M. Larsen, L. Thrane, J. L. Hougaard, and T. M. Jorgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” Br. J. Ophthalmol. 89, 207-212 (2005).
[CrossRef] [PubMed]

ICOM Committee For Conservation Newsletter (1)

M. Spring, H. Liang, B. Peric, D. Saunders, and A. Podoleanu, “Optical coherence tomography--a tool for high resolution non-invasive 3D-imaging of the subsurface structure of paintings,” ICOM Committee For Conservation Newsletter 2008-4, 633-640 (2008).

IEEE Trans. Image Process. (1)

P. Thevenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process. 7, 27-41 (1998).
[CrossRef]

J. Biomed. Opt. (4)

H. Wang and A. M. Rollins, “Speckle reduction in optical coherence tomography using angular compounding by B-scan Doppler-shift encoding,” J. Biomed. Opt. 14, 030512 (2009).
[CrossRef] [PubMed]

M. Pircher, E. Götzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8, 565 (2003).
[CrossRef] [PubMed]

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4, 95 (1999).
[CrossRef]

J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, “Optical coherence tomography speckle reduction by a partially spatially coherent source,” J. Biomed. Opt. 10, 064034 (2005).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D 38, 2519-2535 (2005).
[CrossRef]

Laser Chem. (3)

P. Targowski, M. Gora, and M. Wojtkowski, “Optical coherence tomography for artwork diagnostics,” Laser Chem. 2006, 1-11(2006).

P. Targowski, M. Gora, T. Bajraszewski, M. Szkulmowski, B. Rouba, T. Lekawa-Wyslouch, and L. Tyminska-Widmer, “Optical coherence tomography for tracking canvas deformation,” Laser Chem. 2006, 1-8 (2006).
[CrossRef]

M. Gora, P. Targowski, A. Rycyk, and J. Marczak, “Varnish ablation control by optical coherence tomography,” Laser Chem. 2006, 1-7 (2006).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Phys. Med. Biol. (3)

J. Rogowska and M. E. Brezinski, “Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images,” Phys. Med. Biol. 47, 641-656 (2002).
[CrossRef] [PubMed]

J. M. Schmitt, “Array detection for speckle reduction in optical coherence microscopy,” Phys. Med. Biol. 42, 1427-1440 (1997).
[CrossRef] [PubMed]

R. K. Wang and Z. Ma, “A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography,” Phys. Med. Biol. 51, 3231-3240(2006).
[CrossRef] [PubMed]

Proc. SPIE (1)

E. Kwiatkowska, J. Marczak, R. Ostrowski, W. Skrzeczanowski, M. Sylwestrzak, M. Iwanicka, and P. Targowski, “Absolute LIBS stratigraphy with optical coherence tomography,” Proc. SPIE 7391, 73910F (2009).
[CrossRef]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Other (2)

A. Labeyrie, “Attainment of diffraction limited resolution in large telescopes by Fourier analyzing speckle patterns in star images,” in Selected Papers on Interferometry (SPIE, 1991), Vol. MS-28, pp. 427-429.

H. Liang, B. Peric, M. Spring, D. Saunders, M. Hughes, and A. Podoleanu, “Non-invasive imaging of subsurface paint layers with optical coherence tomography,” presented at Conservation Science 2007, Milan, Italy, 10-11 May 2007.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic of SS-OCT with angular compounding: SS , s wept source ; DC , f iber directional coupler , L , l ens ( f = 4 cm ); TS , t ranslation stage ; GS , g alvo scanner head , ADC , a nalog to digital converter ; DSP , d igital signal processing (and image display). The change of the angle of incidence by movement of the translation stage is shown in the inset (bottom right).

Fig. 2
Fig. 2

Change of maximum usable depth range with angle of incidence range. For imaging of thin paint layers, very large angle ranges are acceptable.

Fig. 3
Fig. 3

B-scan of yellow ochre in linseed oil, applied on a chalk/glue priming on a Teflon (PTFE) support. Due to the highly scattering nature of the yellow ochre, the priming layer is not discernible. (a) single B-scan, (b)  3 × 3 median filter applied, (c) average of 40 scans with no angular variation, and (d) angle of 40 scans with angle of incidence varied over 14 ° . Scale bar is 1 mm in air in both the lateral and axial directions.

Fig. 4
Fig. 4

Effect of number of averages on improvement in speckle contrast ratio. For each number of averages, the averaged frames were evenly spaced in angle over 14 ° total angular change. The improvement expected by the square root rule in Eq. (4) is shown by the dotted line, suggesting a degree of speckle pattern correlation between the frames.

Fig. 5
Fig. 5

Effect of angular scan size on improvement in speckle contrast ratio. The number of averaged frames was 8 in each case, distributed approximately evenly in angle within the angular scan size.

Fig. 6
Fig. 6

Despeckling of B-scan of Teflon (PTFE) sheet primed with chalk bound in glue, onto which an area of yellow ochre in linseed oil had been applied (right part of image), with an area of smalt in linseed oil adjacent to it (left part of image). The improvement in image quality with increasing number of frames acquired at different angles (equally spaced over 14 ° ) is shown. The number of frames averaged in each case is indicated on the left. The zoomed in region to the right shows the dramatic improvement in boundary sharpness. Scale bar is 1 mm .

Fig. 7
Fig. 7

Cauchy edge detection filter ( low threshold = 0.1 , high threshold = 0.3 , σ = 1 ) applied to image from Fig. 6: (a) filter applied to single scan (top of Fig. 6), (b) filter applied to single scan with 3 × 3 median filter, and (c) filter applied to average of 40 angular scans (bottom image in Fig. 6). The despeckled image (c) generates a vastly improved result.

Fig. 8
Fig. 8

B-scans of thin layer of ultramarine in oil over lead white in oil (a) without and (b) with despeckling. Scale bar is 1 mm .

Fig. 9
Fig. 9

Effect of angular compounding on axial resolution. There is no discernible loss of resolution at either 300 μm depth or 2000 μm depth.

Fig. 10
Fig. 10

Speckle reduction on en face slices extracted from cubes of A-scans generated using SS-OCT: (a) slice from single cube, (b) slice from average of 3 cubes at different angles of incidence, (c)  4 × 4 median filter on single slice, and (d) z-axis average of 25 slices from a single cube. Scale bar is 1 mm .

Fig. 11
Fig. 11

Effect on speckle contrast ratio of increasing the number of averaged en face slices (from Fig. 10) selected evenly from a depth range of 375 μm .

Fig. 12
Fig. 12

Effect on speckle contrast ratio of increasing depth range from which 8 evenly spaced en face slices (from Fig. 10) are selected for averaging.

Fig. 13
Fig. 13

Metal point underdrawing under lead white and azurite layers (left of each image) and lead white only (right of each image): (a) single en face slice and (b) average of 20 slices over 250 μm depth. Scale bar is 1 mm .

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I PD Re E S E R * .
P ( I ) = I σ 2 exp ( I 2 2 σ 2 ) ,
SCR = σ I I I .
SCR AV SCR ORIGINAL = 1 N .
Δ x = 0.61 λ 0 NA ,
Δ d = R tan ( n sin Δ θ i ) R n Δ θ i ,
R max = 1.22 λ 0 n NA Δ θ i ,

Metrics