Abstract

We report quantitative experimental results regarding concentration fluctuations based on a small-angle light-scattering setup. A shadowgraph technique was used to record concentration fluctuations in a free-diffusion cell filled with colloids. Our experimental setup includes an objective attached to the CCD camera to increase the field of view. We performed two separate experiments, one with 20nm gold and the other with 200nm silica colloids, and extracted both the structure factors and the correlation time during the early stages of concentration fluctuations. The temporal evolution of fluctuations was also qualitatively investigated using recursive plots and spatial-temporal sections of fluctuating images. We found that the correlation time versus wavenumber for gold nanocolloids is concave shaped, whereas, for silica colloids, it is convex shaped. The difference in correlation time behavior is not only due to the size of the particle, but also to possible plasmonic interactions in gold colloids.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, and D. S. Cannell, “Use of dynamic schlieren interferometry to study fluctuations during free diffusion,” Appl. Opt. 45, 2166-2173 (2006).
    [CrossRef]
  2. B. M. Law, P. N. Segre, R. W. Gammon, and J. V. Sengers, “Light-scattering measurements of entropy and viscous fluctuations in a liquid far from thermal equilibrium,” Phys. Rev. A 41, 816-824 (1990).
    [CrossRef]
  3. M. Wu, G. Ahlers, and D. S. Cannell, “Thermally induced fluctuations below the onset of Rayleigh-Bénard convection,” Phys. Rev. Lett. 75, 1743-1746 (1995).
    [CrossRef]
  4. P. N. Segre, R. Schmitz, and J. V. Sengers, “Fluctuations in inhomogeneous and nonequilibrium fluids under the influence of gravity,” Phys. At. Nucl. 195, 31-52 (1993).
    [CrossRef]
  5. P. N. Segre, R. W. Gammon, and J. V. Sengers, “Light-scattering measurements of nonequilibrium fluctuations in a liquid mixture,” Phys. Rev. E 47, 1026-1034 (1993).
    [CrossRef]
  6. T. R. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman, “Light scattering by a fluid in a nonequilibrium steady state,” Phys. Rev. A 26, 995-1014 (1982).
    [CrossRef]
  7. D. Ronis and I. Procaccia, “Nonlinear resonant coupling between shear and heat fluctuations in fluids far from equilibrium,” Phys. Rev. A 26, 1812-1815 (1982).
    [CrossRef]
  8. V. N. Manoharan, M. T. Elsesser, and D. J. Pine, “Dense packing and symmetry in small clusters of microspheres,” Science 301, 483-487 (2003).
    [CrossRef]
  9. A. Yethiraj and A. van Blaaderen, “A colloidal model system with an interaction tunable from hard sphere to soft and dipolar,” Nature 421, 513-517 (2003).
    [CrossRef]
  10. A. van Blaaderen, “Materials science: colloids get complex,” Nature 439, 545-546 (2006).
    [CrossRef]
  11. B. V. Derjaguin and L. Landau, “Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solution of electrolytes,” Acta Physicochim URSS 14, 633-662 (1941)
  12. S. Asakura and F. Oosawa, “Interaction between particles suspended in solutions of macromolecules,” J. Polym. Sci. 33, 183-192 (1958).
    [CrossRef]
  13. C. N. Likos, “Effective interactions in soft condensed matter physics,” Phys. Rep. 348, 267-439 (2001).
    [CrossRef]
  14. L. Cipelletti and L. Ramos, “Slow dynamics in glassy soft matter,” J. Phys. Condens. Matter 17, R253-R285 (2005).
    [CrossRef]
  15. P. N. Pusey, “Colloidal suspensions,” in Liquids, Freezing, and the Glass Transition, J.P.Hansen, D.Levesque, and J.Zinn-Justin, eds. (Elsevier, 1991) pp. 763-941.
  16. I. M. De Schepper, E. G. D. Cohen, H. N. W. Lekkerkerker, and P. N. Pusey, “Long time diffusion in charged colloidal solutions,” J. Phys. Condens. Matter 1, 6503-6506 (1989).
    [CrossRef]
  17. W. Hartl, H. Versmold, U. Wittig, and P. Linse, “Structure and dynamics of polymer colloid suspensions from dynamic light scattering and Brownian dynamics simulation,” J. Chem. Phys. 97, 7797-7804 (1992).
    [CrossRef]
  18. B. Cichocki and B. U. Felderhof, “Slow dynamics of linear relaxation systems,” Physica A (Amsterdam) 211, 165-192(1994).
    [CrossRef]
  19. J. M. O. de Zarate, J. A. Fornes, and J. V. Sengers, “Long-wavelength nonequilibrium concentration fluctuations induced by the Soret effect,” Phys. Rev. E 74, 046305 (2006).
    [CrossRef]
  20. R. Cerbino, S. Mazzoni, A. Vailati, and M. Giglio, “Scaling behavior for the onset of convection in a colloidal suspension,” Phys. Rev. Lett. 94, 064501 (2005).
    [CrossRef]
  21. D. Brogioli, A. Vailati, and M. Giglio, “Universal behavior of nonequilibrium fluctuations in free diffusion processes,” Phys. Rev. E 61, R1-R4 (2000).
    [CrossRef]
  22. A. Vailati and M. Giglio, “Giant fluctuations in a free diffusion process,” Nature 390, 262-265 (1997).
    [CrossRef]
  23. A. Weitz, “Diffusion in a different direction,” Nature 390, 233-235 (1997).
    [CrossRef]
  24. A. Vailati and M. Giglio, “Nonequilibrium fluctuations in time-dependent diffusion processes,” Phys. Rev. E 58, 4361-4371(1998).
    [CrossRef]
  25. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon, 1959).
  26. S. Mazzoni, R. Cerbino, A. Vailati, and M. Giglio, “Fluctuations in diffusion processes in microgravity,” Ann. N.Y. Acad. Sci. 1077, 351-364 (2006).
    [CrossRef]
  27. P. N. Segre and J. V. Sengers, “Nonequilibrium fluctuations in liquid mixtures under the influence of gravity,” Phys. At. Nucl. 198, 46-77 (1993).
    [CrossRef]
  28. P. Y. Wong and P. Wiltzius, “Dynamic light scattering with a CCD camera,” Rev. Sci. Instrum. 64, 2547-2549 (1993).
    [CrossRef]
  29. F. Ferri, “Use of a charge coupled device camera for low-angle elastic light scattering,” Rev. Sci. Instrum. 68, 2265-2274(1997).
    [CrossRef]
  30. L. Cipelletti and D. A. Weitz, “Ultralow-angle dynamic light scattering with a charge coupled device camera based multispeckle, multitau correlator,” Rev. Sci. Instrum. 70, 3214-3221 (1999).
    [CrossRef]
  31. D. Brogioli, F. Croccolo, V. Cassina, D. Salerno, and F. Mantegazza, “Nano-particle characterization by using exposure time dependent spectrum and scattering in the near field methods: how to get fast dynamics with low-speed CCD camera,” Opt. Express 16, 20272 (2008).
    [CrossRef]
  32. F. Croccolo, Ph.D. dissertation (University of Milano, 2005).
  33. F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, and D. S. Cannell, “Effect of gravity on the dynamics of nonequilibrium fluctuations in a free diffusion experiment,” Ann. N.Y. Acad. Sci. 1077, 365-379 (2006).
    [CrossRef]
  34. B. J. Berne and R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology and Physics (Wiley, 1976).
  35. F. Scheffold and R. Cerbino, “New trends in light scattering,” in Current Opinion in Colloid & Interface Science (Elsevier, 2007), pp. 50-57.
  36. G. S. Settles, Schlieren and Shadowgraph Techniques; Visualizing Phenomena in Transparent Media (Springer-Verlag, 2001).
  37. M. V. Berry, The Diffraction of Light by Ultrasound(Academic, 1966).
  38. S. P. Trainoff and D. S. Cannell, “Physical optics treatment of the shadowgraph,” Phys. Fluids 14, 1340-1363(2002).
    [CrossRef]
  39. D. Brogioli, A. Vailati, and M. Giglio, “A schlieren method for ultralow-angle light scattering measurements,” Europhys. Lett. 63, 220-225 (2003).
    [CrossRef]
  40. M. Giglio, M. Carpineti, and A. Vailati, “Space intensity correlations in the near field of the scattered light: a direct measurement of the density correlation function g(r),” Phys. Rev. Lett. 85, 1416-1419 (2000).
    [CrossRef]
  41. M. Giglio, D. Brogioli, M. A. C. Potenza, and A. Vailati, “Near field scattering,” Phys. Chem. Chem. Phys. 6, 1547-1550(2004).
    [CrossRef]
  42. E. Hecht, Optics (Addison-Wesley, 2001).
  43. A. Vailati and M. Giglio, “q divergence of nonequilibrium fluctuations and its gravity-induced frustration in a temperature stressed liquid mixture,” Phys. Rev. Lett. 77, 1484-1487 (1996).
    [CrossRef]
  44. E. O. Schulz-DuBois and I. Rehberg, “Structure function in lieu of correlation function,” Appl. Phys. 24, 323-329(1981).
  45. A. Oprisan, Ph.D. dissertation (University of New Orleans2006).
  46. A. Oprisan, S. A. Oprisan, J. HegsethY. Garrabos, C. Lecoutre-Chabot, and D. Beysens, “Universality in early-stage growth of phase-separating domains near the critical point,” Phys. Rev. E 77, 051118 (2008).
    [CrossRef]
  47. A. Oprisan, J. Hegseth, S. A. Oprisan, C. Lecoutre, Y. Garrabos, and D. Beysens, “Methods for finding the position of critical point using image analysis techniques,” presented at the 17th Symposium on Thermophysical Properties (Boulder, Colorado, 21-26 June 2009).
  48. A. J. Takacs, G. Nikolaenko, and D. S. Cannell, “Dynamics of long-wavelength fluctuations in a fluid layer heated from above,” Phys. Rev. Lett. 100, 234502 (2008).
    [CrossRef]
  49. Z. Gryczynski, J. Lukomska, J. R. Lakowicz, E. G. Matveeva, and I. Gryczynski, “Depolarized light scattering from silver nanoparticles,” Chem. Phys. Lett. 421, 189-192(2006).
    [CrossRef]
  50. D. Roll, J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Metallic colloid wavelength-ratiometric scattering sensors,” Anal. Chem. 75, 3440-3445 (2003).
    [CrossRef]
  51. E. Boisselier and D. Astruc, “Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity,” Chem. Soc. Rev. 38, 1759-1782 (2009).
    [CrossRef]
  52. G. F. Paciotti, L. Myer, D. G. D Weinreich, N. Pavel, R. E. McLaughlin, and L. Tamarkin, “Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery,” Drug Delivery 11, 169-183 (2004).
    [CrossRef]

2009 (1)

E. Boisselier and D. Astruc, “Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity,” Chem. Soc. Rev. 38, 1759-1782 (2009).
[CrossRef]

2008 (3)

D. Brogioli, F. Croccolo, V. Cassina, D. Salerno, and F. Mantegazza, “Nano-particle characterization by using exposure time dependent spectrum and scattering in the near field methods: how to get fast dynamics with low-speed CCD camera,” Opt. Express 16, 20272 (2008).
[CrossRef]

A. Oprisan, S. A. Oprisan, J. HegsethY. Garrabos, C. Lecoutre-Chabot, and D. Beysens, “Universality in early-stage growth of phase-separating domains near the critical point,” Phys. Rev. E 77, 051118 (2008).
[CrossRef]

A. J. Takacs, G. Nikolaenko, and D. S. Cannell, “Dynamics of long-wavelength fluctuations in a fluid layer heated from above,” Phys. Rev. Lett. 100, 234502 (2008).
[CrossRef]

2006 (6)

Z. Gryczynski, J. Lukomska, J. R. Lakowicz, E. G. Matveeva, and I. Gryczynski, “Depolarized light scattering from silver nanoparticles,” Chem. Phys. Lett. 421, 189-192(2006).
[CrossRef]

F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, and D. S. Cannell, “Effect of gravity on the dynamics of nonequilibrium fluctuations in a free diffusion experiment,” Ann. N.Y. Acad. Sci. 1077, 365-379 (2006).
[CrossRef]

S. Mazzoni, R. Cerbino, A. Vailati, and M. Giglio, “Fluctuations in diffusion processes in microgravity,” Ann. N.Y. Acad. Sci. 1077, 351-364 (2006).
[CrossRef]

A. van Blaaderen, “Materials science: colloids get complex,” Nature 439, 545-546 (2006).
[CrossRef]

J. M. O. de Zarate, J. A. Fornes, and J. V. Sengers, “Long-wavelength nonequilibrium concentration fluctuations induced by the Soret effect,” Phys. Rev. E 74, 046305 (2006).
[CrossRef]

F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, and D. S. Cannell, “Use of dynamic schlieren interferometry to study fluctuations during free diffusion,” Appl. Opt. 45, 2166-2173 (2006).
[CrossRef]

2005 (2)

R. Cerbino, S. Mazzoni, A. Vailati, and M. Giglio, “Scaling behavior for the onset of convection in a colloidal suspension,” Phys. Rev. Lett. 94, 064501 (2005).
[CrossRef]

L. Cipelletti and L. Ramos, “Slow dynamics in glassy soft matter,” J. Phys. Condens. Matter 17, R253-R285 (2005).
[CrossRef]

2004 (2)

G. F. Paciotti, L. Myer, D. G. D Weinreich, N. Pavel, R. E. McLaughlin, and L. Tamarkin, “Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery,” Drug Delivery 11, 169-183 (2004).
[CrossRef]

M. Giglio, D. Brogioli, M. A. C. Potenza, and A. Vailati, “Near field scattering,” Phys. Chem. Chem. Phys. 6, 1547-1550(2004).
[CrossRef]

2003 (4)

V. N. Manoharan, M. T. Elsesser, and D. J. Pine, “Dense packing and symmetry in small clusters of microspheres,” Science 301, 483-487 (2003).
[CrossRef]

A. Yethiraj and A. van Blaaderen, “A colloidal model system with an interaction tunable from hard sphere to soft and dipolar,” Nature 421, 513-517 (2003).
[CrossRef]

D. Brogioli, A. Vailati, and M. Giglio, “A schlieren method for ultralow-angle light scattering measurements,” Europhys. Lett. 63, 220-225 (2003).
[CrossRef]

D. Roll, J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Metallic colloid wavelength-ratiometric scattering sensors,” Anal. Chem. 75, 3440-3445 (2003).
[CrossRef]

2002 (1)

S. P. Trainoff and D. S. Cannell, “Physical optics treatment of the shadowgraph,” Phys. Fluids 14, 1340-1363(2002).
[CrossRef]

2001 (1)

C. N. Likos, “Effective interactions in soft condensed matter physics,” Phys. Rep. 348, 267-439 (2001).
[CrossRef]

2000 (2)

M. Giglio, M. Carpineti, and A. Vailati, “Space intensity correlations in the near field of the scattered light: a direct measurement of the density correlation function g(r),” Phys. Rev. Lett. 85, 1416-1419 (2000).
[CrossRef]

D. Brogioli, A. Vailati, and M. Giglio, “Universal behavior of nonequilibrium fluctuations in free diffusion processes,” Phys. Rev. E 61, R1-R4 (2000).
[CrossRef]

1999 (1)

L. Cipelletti and D. A. Weitz, “Ultralow-angle dynamic light scattering with a charge coupled device camera based multispeckle, multitau correlator,” Rev. Sci. Instrum. 70, 3214-3221 (1999).
[CrossRef]

1998 (1)

A. Vailati and M. Giglio, “Nonequilibrium fluctuations in time-dependent diffusion processes,” Phys. Rev. E 58, 4361-4371(1998).
[CrossRef]

1997 (3)

F. Ferri, “Use of a charge coupled device camera for low-angle elastic light scattering,” Rev. Sci. Instrum. 68, 2265-2274(1997).
[CrossRef]

A. Vailati and M. Giglio, “Giant fluctuations in a free diffusion process,” Nature 390, 262-265 (1997).
[CrossRef]

A. Weitz, “Diffusion in a different direction,” Nature 390, 233-235 (1997).
[CrossRef]

1996 (1)

A. Vailati and M. Giglio, “q divergence of nonequilibrium fluctuations and its gravity-induced frustration in a temperature stressed liquid mixture,” Phys. Rev. Lett. 77, 1484-1487 (1996).
[CrossRef]

1995 (1)

M. Wu, G. Ahlers, and D. S. Cannell, “Thermally induced fluctuations below the onset of Rayleigh-Bénard convection,” Phys. Rev. Lett. 75, 1743-1746 (1995).
[CrossRef]

1994 (1)

B. Cichocki and B. U. Felderhof, “Slow dynamics of linear relaxation systems,” Physica A (Amsterdam) 211, 165-192(1994).
[CrossRef]

1993 (4)

P. N. Segre and J. V. Sengers, “Nonequilibrium fluctuations in liquid mixtures under the influence of gravity,” Phys. At. Nucl. 198, 46-77 (1993).
[CrossRef]

P. Y. Wong and P. Wiltzius, “Dynamic light scattering with a CCD camera,” Rev. Sci. Instrum. 64, 2547-2549 (1993).
[CrossRef]

P. N. Segre, R. Schmitz, and J. V. Sengers, “Fluctuations in inhomogeneous and nonequilibrium fluids under the influence of gravity,” Phys. At. Nucl. 195, 31-52 (1993).
[CrossRef]

P. N. Segre, R. W. Gammon, and J. V. Sengers, “Light-scattering measurements of nonequilibrium fluctuations in a liquid mixture,” Phys. Rev. E 47, 1026-1034 (1993).
[CrossRef]

1992 (1)

W. Hartl, H. Versmold, U. Wittig, and P. Linse, “Structure and dynamics of polymer colloid suspensions from dynamic light scattering and Brownian dynamics simulation,” J. Chem. Phys. 97, 7797-7804 (1992).
[CrossRef]

1990 (1)

B. M. Law, P. N. Segre, R. W. Gammon, and J. V. Sengers, “Light-scattering measurements of entropy and viscous fluctuations in a liquid far from thermal equilibrium,” Phys. Rev. A 41, 816-824 (1990).
[CrossRef]

1989 (1)

I. M. De Schepper, E. G. D. Cohen, H. N. W. Lekkerkerker, and P. N. Pusey, “Long time diffusion in charged colloidal solutions,” J. Phys. Condens. Matter 1, 6503-6506 (1989).
[CrossRef]

1982 (2)

T. R. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman, “Light scattering by a fluid in a nonequilibrium steady state,” Phys. Rev. A 26, 995-1014 (1982).
[CrossRef]

D. Ronis and I. Procaccia, “Nonlinear resonant coupling between shear and heat fluctuations in fluids far from equilibrium,” Phys. Rev. A 26, 1812-1815 (1982).
[CrossRef]

1981 (1)

E. O. Schulz-DuBois and I. Rehberg, “Structure function in lieu of correlation function,” Appl. Phys. 24, 323-329(1981).

1958 (1)

S. Asakura and F. Oosawa, “Interaction between particles suspended in solutions of macromolecules,” J. Polym. Sci. 33, 183-192 (1958).
[CrossRef]

1941 (1)

B. V. Derjaguin and L. Landau, “Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solution of electrolytes,” Acta Physicochim URSS 14, 633-662 (1941)

Ahlers, G.

M. Wu, G. Ahlers, and D. S. Cannell, “Thermally induced fluctuations below the onset of Rayleigh-Bénard convection,” Phys. Rev. Lett. 75, 1743-1746 (1995).
[CrossRef]

Asakura, S.

S. Asakura and F. Oosawa, “Interaction between particles suspended in solutions of macromolecules,” J. Polym. Sci. 33, 183-192 (1958).
[CrossRef]

Astruc, D.

E. Boisselier and D. Astruc, “Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity,” Chem. Soc. Rev. 38, 1759-1782 (2009).
[CrossRef]

Berne, B. J.

B. J. Berne and R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology and Physics (Wiley, 1976).

Berry, M. V.

M. V. Berry, The Diffraction of Light by Ultrasound(Academic, 1966).

Beysens, D.

A. Oprisan, S. A. Oprisan, J. HegsethY. Garrabos, C. Lecoutre-Chabot, and D. Beysens, “Universality in early-stage growth of phase-separating domains near the critical point,” Phys. Rev. E 77, 051118 (2008).
[CrossRef]

A. Oprisan, J. Hegseth, S. A. Oprisan, C. Lecoutre, Y. Garrabos, and D. Beysens, “Methods for finding the position of critical point using image analysis techniques,” presented at the 17th Symposium on Thermophysical Properties (Boulder, Colorado, 21-26 June 2009).

Boisselier, E.

E. Boisselier and D. Astruc, “Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity,” Chem. Soc. Rev. 38, 1759-1782 (2009).
[CrossRef]

Brogioli, D.

D. Brogioli, F. Croccolo, V. Cassina, D. Salerno, and F. Mantegazza, “Nano-particle characterization by using exposure time dependent spectrum and scattering in the near field methods: how to get fast dynamics with low-speed CCD camera,” Opt. Express 16, 20272 (2008).
[CrossRef]

F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, and D. S. Cannell, “Effect of gravity on the dynamics of nonequilibrium fluctuations in a free diffusion experiment,” Ann. N.Y. Acad. Sci. 1077, 365-379 (2006).
[CrossRef]

F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, and D. S. Cannell, “Use of dynamic schlieren interferometry to study fluctuations during free diffusion,” Appl. Opt. 45, 2166-2173 (2006).
[CrossRef]

M. Giglio, D. Brogioli, M. A. C. Potenza, and A. Vailati, “Near field scattering,” Phys. Chem. Chem. Phys. 6, 1547-1550(2004).
[CrossRef]

D. Brogioli, A. Vailati, and M. Giglio, “A schlieren method for ultralow-angle light scattering measurements,” Europhys. Lett. 63, 220-225 (2003).
[CrossRef]

D. Brogioli, A. Vailati, and M. Giglio, “Universal behavior of nonequilibrium fluctuations in free diffusion processes,” Phys. Rev. E 61, R1-R4 (2000).
[CrossRef]

Cannell, D. S.

A. J. Takacs, G. Nikolaenko, and D. S. Cannell, “Dynamics of long-wavelength fluctuations in a fluid layer heated from above,” Phys. Rev. Lett. 100, 234502 (2008).
[CrossRef]

F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, and D. S. Cannell, “Effect of gravity on the dynamics of nonequilibrium fluctuations in a free diffusion experiment,” Ann. N.Y. Acad. Sci. 1077, 365-379 (2006).
[CrossRef]

F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, and D. S. Cannell, “Use of dynamic schlieren interferometry to study fluctuations during free diffusion,” Appl. Opt. 45, 2166-2173 (2006).
[CrossRef]

S. P. Trainoff and D. S. Cannell, “Physical optics treatment of the shadowgraph,” Phys. Fluids 14, 1340-1363(2002).
[CrossRef]

M. Wu, G. Ahlers, and D. S. Cannell, “Thermally induced fluctuations below the onset of Rayleigh-Bénard convection,” Phys. Rev. Lett. 75, 1743-1746 (1995).
[CrossRef]

Carpineti, M.

M. Giglio, M. Carpineti, and A. Vailati, “Space intensity correlations in the near field of the scattered light: a direct measurement of the density correlation function g(r),” Phys. Rev. Lett. 85, 1416-1419 (2000).
[CrossRef]

Cassina, V.

Cerbino, R.

S. Mazzoni, R. Cerbino, A. Vailati, and M. Giglio, “Fluctuations in diffusion processes in microgravity,” Ann. N.Y. Acad. Sci. 1077, 351-364 (2006).
[CrossRef]

R. Cerbino, S. Mazzoni, A. Vailati, and M. Giglio, “Scaling behavior for the onset of convection in a colloidal suspension,” Phys. Rev. Lett. 94, 064501 (2005).
[CrossRef]

F. Scheffold and R. Cerbino, “New trends in light scattering,” in Current Opinion in Colloid & Interface Science (Elsevier, 2007), pp. 50-57.

Cichocki, B.

B. Cichocki and B. U. Felderhof, “Slow dynamics of linear relaxation systems,” Physica A (Amsterdam) 211, 165-192(1994).
[CrossRef]

Cipelletti, L.

L. Cipelletti and L. Ramos, “Slow dynamics in glassy soft matter,” J. Phys. Condens. Matter 17, R253-R285 (2005).
[CrossRef]

L. Cipelletti and D. A. Weitz, “Ultralow-angle dynamic light scattering with a charge coupled device camera based multispeckle, multitau correlator,” Rev. Sci. Instrum. 70, 3214-3221 (1999).
[CrossRef]

Cohen, E. G. D.

I. M. De Schepper, E. G. D. Cohen, H. N. W. Lekkerkerker, and P. N. Pusey, “Long time diffusion in charged colloidal solutions,” J. Phys. Condens. Matter 1, 6503-6506 (1989).
[CrossRef]

T. R. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman, “Light scattering by a fluid in a nonequilibrium steady state,” Phys. Rev. A 26, 995-1014 (1982).
[CrossRef]

Croccolo, F.

De Schepper, I. M.

I. M. De Schepper, E. G. D. Cohen, H. N. W. Lekkerkerker, and P. N. Pusey, “Long time diffusion in charged colloidal solutions,” J. Phys. Condens. Matter 1, 6503-6506 (1989).
[CrossRef]

de Zarate, J. M. O.

J. M. O. de Zarate, J. A. Fornes, and J. V. Sengers, “Long-wavelength nonequilibrium concentration fluctuations induced by the Soret effect,” Phys. Rev. E 74, 046305 (2006).
[CrossRef]

Derjaguin, B. V.

B. V. Derjaguin and L. Landau, “Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solution of electrolytes,” Acta Physicochim URSS 14, 633-662 (1941)

Dorfman, J. R.

T. R. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman, “Light scattering by a fluid in a nonequilibrium steady state,” Phys. Rev. A 26, 995-1014 (1982).
[CrossRef]

Elsesser, M. T.

V. N. Manoharan, M. T. Elsesser, and D. J. Pine, “Dense packing and symmetry in small clusters of microspheres,” Science 301, 483-487 (2003).
[CrossRef]

Felderhof, B. U.

B. Cichocki and B. U. Felderhof, “Slow dynamics of linear relaxation systems,” Physica A (Amsterdam) 211, 165-192(1994).
[CrossRef]

Ferri, F.

F. Ferri, “Use of a charge coupled device camera for low-angle elastic light scattering,” Rev. Sci. Instrum. 68, 2265-2274(1997).
[CrossRef]

Fornes, J. A.

J. M. O. de Zarate, J. A. Fornes, and J. V. Sengers, “Long-wavelength nonequilibrium concentration fluctuations induced by the Soret effect,” Phys. Rev. E 74, 046305 (2006).
[CrossRef]

Gammon, R. W.

P. N. Segre, R. W. Gammon, and J. V. Sengers, “Light-scattering measurements of nonequilibrium fluctuations in a liquid mixture,” Phys. Rev. E 47, 1026-1034 (1993).
[CrossRef]

B. M. Law, P. N. Segre, R. W. Gammon, and J. V. Sengers, “Light-scattering measurements of entropy and viscous fluctuations in a liquid far from thermal equilibrium,” Phys. Rev. A 41, 816-824 (1990).
[CrossRef]

Garrabos, Y.

A. Oprisan, S. A. Oprisan, J. HegsethY. Garrabos, C. Lecoutre-Chabot, and D. Beysens, “Universality in early-stage growth of phase-separating domains near the critical point,” Phys. Rev. E 77, 051118 (2008).
[CrossRef]

A. Oprisan, J. Hegseth, S. A. Oprisan, C. Lecoutre, Y. Garrabos, and D. Beysens, “Methods for finding the position of critical point using image analysis techniques,” presented at the 17th Symposium on Thermophysical Properties (Boulder, Colorado, 21-26 June 2009).

Giglio, M.

F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, and D. S. Cannell, “Use of dynamic schlieren interferometry to study fluctuations during free diffusion,” Appl. Opt. 45, 2166-2173 (2006).
[CrossRef]

S. Mazzoni, R. Cerbino, A. Vailati, and M. Giglio, “Fluctuations in diffusion processes in microgravity,” Ann. N.Y. Acad. Sci. 1077, 351-364 (2006).
[CrossRef]

F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, and D. S. Cannell, “Effect of gravity on the dynamics of nonequilibrium fluctuations in a free diffusion experiment,” Ann. N.Y. Acad. Sci. 1077, 365-379 (2006).
[CrossRef]

R. Cerbino, S. Mazzoni, A. Vailati, and M. Giglio, “Scaling behavior for the onset of convection in a colloidal suspension,” Phys. Rev. Lett. 94, 064501 (2005).
[CrossRef]

M. Giglio, D. Brogioli, M. A. C. Potenza, and A. Vailati, “Near field scattering,” Phys. Chem. Chem. Phys. 6, 1547-1550(2004).
[CrossRef]

D. Brogioli, A. Vailati, and M. Giglio, “A schlieren method for ultralow-angle light scattering measurements,” Europhys. Lett. 63, 220-225 (2003).
[CrossRef]

D. Brogioli, A. Vailati, and M. Giglio, “Universal behavior of nonequilibrium fluctuations in free diffusion processes,” Phys. Rev. E 61, R1-R4 (2000).
[CrossRef]

M. Giglio, M. Carpineti, and A. Vailati, “Space intensity correlations in the near field of the scattered light: a direct measurement of the density correlation function g(r),” Phys. Rev. Lett. 85, 1416-1419 (2000).
[CrossRef]

A. Vailati and M. Giglio, “Nonequilibrium fluctuations in time-dependent diffusion processes,” Phys. Rev. E 58, 4361-4371(1998).
[CrossRef]

A. Vailati and M. Giglio, “Giant fluctuations in a free diffusion process,” Nature 390, 262-265 (1997).
[CrossRef]

A. Vailati and M. Giglio, “q divergence of nonequilibrium fluctuations and its gravity-induced frustration in a temperature stressed liquid mixture,” Phys. Rev. Lett. 77, 1484-1487 (1996).
[CrossRef]

Gryczynski, I.

Z. Gryczynski, J. Lukomska, J. R. Lakowicz, E. G. Matveeva, and I. Gryczynski, “Depolarized light scattering from silver nanoparticles,” Chem. Phys. Lett. 421, 189-192(2006).
[CrossRef]

D. Roll, J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Metallic colloid wavelength-ratiometric scattering sensors,” Anal. Chem. 75, 3440-3445 (2003).
[CrossRef]

Gryczynski, Z.

Z. Gryczynski, J. Lukomska, J. R. Lakowicz, E. G. Matveeva, and I. Gryczynski, “Depolarized light scattering from silver nanoparticles,” Chem. Phys. Lett. 421, 189-192(2006).
[CrossRef]

D. Roll, J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Metallic colloid wavelength-ratiometric scattering sensors,” Anal. Chem. 75, 3440-3445 (2003).
[CrossRef]

Hartl, W.

W. Hartl, H. Versmold, U. Wittig, and P. Linse, “Structure and dynamics of polymer colloid suspensions from dynamic light scattering and Brownian dynamics simulation,” J. Chem. Phys. 97, 7797-7804 (1992).
[CrossRef]

Hecht, E.

E. Hecht, Optics (Addison-Wesley, 2001).

Hegseth, J.

A. Oprisan, S. A. Oprisan, J. HegsethY. Garrabos, C. Lecoutre-Chabot, and D. Beysens, “Universality in early-stage growth of phase-separating domains near the critical point,” Phys. Rev. E 77, 051118 (2008).
[CrossRef]

A. Oprisan, J. Hegseth, S. A. Oprisan, C. Lecoutre, Y. Garrabos, and D. Beysens, “Methods for finding the position of critical point using image analysis techniques,” presented at the 17th Symposium on Thermophysical Properties (Boulder, Colorado, 21-26 June 2009).

Kirkpatrick, T. R.

T. R. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman, “Light scattering by a fluid in a nonequilibrium steady state,” Phys. Rev. A 26, 995-1014 (1982).
[CrossRef]

Lakowicz, J. R.

Z. Gryczynski, J. Lukomska, J. R. Lakowicz, E. G. Matveeva, and I. Gryczynski, “Depolarized light scattering from silver nanoparticles,” Chem. Phys. Lett. 421, 189-192(2006).
[CrossRef]

D. Roll, J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Metallic colloid wavelength-ratiometric scattering sensors,” Anal. Chem. 75, 3440-3445 (2003).
[CrossRef]

Landau, L.

B. V. Derjaguin and L. Landau, “Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solution of electrolytes,” Acta Physicochim URSS 14, 633-662 (1941)

Landau, L. D.

L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon, 1959).

Law, B. M.

B. M. Law, P. N. Segre, R. W. Gammon, and J. V. Sengers, “Light-scattering measurements of entropy and viscous fluctuations in a liquid far from thermal equilibrium,” Phys. Rev. A 41, 816-824 (1990).
[CrossRef]

Lecoutre, C.

A. Oprisan, J. Hegseth, S. A. Oprisan, C. Lecoutre, Y. Garrabos, and D. Beysens, “Methods for finding the position of critical point using image analysis techniques,” presented at the 17th Symposium on Thermophysical Properties (Boulder, Colorado, 21-26 June 2009).

Lecoutre-Chabot, C.

A. Oprisan, S. A. Oprisan, J. HegsethY. Garrabos, C. Lecoutre-Chabot, and D. Beysens, “Universality in early-stage growth of phase-separating domains near the critical point,” Phys. Rev. E 77, 051118 (2008).
[CrossRef]

Lekkerkerker, H. N. W.

I. M. De Schepper, E. G. D. Cohen, H. N. W. Lekkerkerker, and P. N. Pusey, “Long time diffusion in charged colloidal solutions,” J. Phys. Condens. Matter 1, 6503-6506 (1989).
[CrossRef]

Lifshitz, E. M.

L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon, 1959).

Likos, C. N.

C. N. Likos, “Effective interactions in soft condensed matter physics,” Phys. Rep. 348, 267-439 (2001).
[CrossRef]

Linse, P.

W. Hartl, H. Versmold, U. Wittig, and P. Linse, “Structure and dynamics of polymer colloid suspensions from dynamic light scattering and Brownian dynamics simulation,” J. Chem. Phys. 97, 7797-7804 (1992).
[CrossRef]

Lukomska, J.

Z. Gryczynski, J. Lukomska, J. R. Lakowicz, E. G. Matveeva, and I. Gryczynski, “Depolarized light scattering from silver nanoparticles,” Chem. Phys. Lett. 421, 189-192(2006).
[CrossRef]

Malicka, J.

D. Roll, J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Metallic colloid wavelength-ratiometric scattering sensors,” Anal. Chem. 75, 3440-3445 (2003).
[CrossRef]

Manoharan, V. N.

V. N. Manoharan, M. T. Elsesser, and D. J. Pine, “Dense packing and symmetry in small clusters of microspheres,” Science 301, 483-487 (2003).
[CrossRef]

Mantegazza, F.

Matveeva, E. G.

Z. Gryczynski, J. Lukomska, J. R. Lakowicz, E. G. Matveeva, and I. Gryczynski, “Depolarized light scattering from silver nanoparticles,” Chem. Phys. Lett. 421, 189-192(2006).
[CrossRef]

Mazzoni, S.

S. Mazzoni, R. Cerbino, A. Vailati, and M. Giglio, “Fluctuations in diffusion processes in microgravity,” Ann. N.Y. Acad. Sci. 1077, 351-364 (2006).
[CrossRef]

R. Cerbino, S. Mazzoni, A. Vailati, and M. Giglio, “Scaling behavior for the onset of convection in a colloidal suspension,” Phys. Rev. Lett. 94, 064501 (2005).
[CrossRef]

McLaughlin, R. E.

G. F. Paciotti, L. Myer, D. G. D Weinreich, N. Pavel, R. E. McLaughlin, and L. Tamarkin, “Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery,” Drug Delivery 11, 169-183 (2004).
[CrossRef]

Myer, L.

G. F. Paciotti, L. Myer, D. G. D Weinreich, N. Pavel, R. E. McLaughlin, and L. Tamarkin, “Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery,” Drug Delivery 11, 169-183 (2004).
[CrossRef]

Nikolaenko, G.

A. J. Takacs, G. Nikolaenko, and D. S. Cannell, “Dynamics of long-wavelength fluctuations in a fluid layer heated from above,” Phys. Rev. Lett. 100, 234502 (2008).
[CrossRef]

Oosawa, F.

S. Asakura and F. Oosawa, “Interaction between particles suspended in solutions of macromolecules,” J. Polym. Sci. 33, 183-192 (1958).
[CrossRef]

Oprisan, A.

A. Oprisan, S. A. Oprisan, J. HegsethY. Garrabos, C. Lecoutre-Chabot, and D. Beysens, “Universality in early-stage growth of phase-separating domains near the critical point,” Phys. Rev. E 77, 051118 (2008).
[CrossRef]

A. Oprisan, J. Hegseth, S. A. Oprisan, C. Lecoutre, Y. Garrabos, and D. Beysens, “Methods for finding the position of critical point using image analysis techniques,” presented at the 17th Symposium on Thermophysical Properties (Boulder, Colorado, 21-26 June 2009).

A. Oprisan, Ph.D. dissertation (University of New Orleans2006).

Oprisan, S. A.

A. Oprisan, S. A. Oprisan, J. HegsethY. Garrabos, C. Lecoutre-Chabot, and D. Beysens, “Universality in early-stage growth of phase-separating domains near the critical point,” Phys. Rev. E 77, 051118 (2008).
[CrossRef]

A. Oprisan, J. Hegseth, S. A. Oprisan, C. Lecoutre, Y. Garrabos, and D. Beysens, “Methods for finding the position of critical point using image analysis techniques,” presented at the 17th Symposium on Thermophysical Properties (Boulder, Colorado, 21-26 June 2009).

Paciotti, G. F.

G. F. Paciotti, L. Myer, D. G. D Weinreich, N. Pavel, R. E. McLaughlin, and L. Tamarkin, “Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery,” Drug Delivery 11, 169-183 (2004).
[CrossRef]

Pavel, N.

G. F. Paciotti, L. Myer, D. G. D Weinreich, N. Pavel, R. E. McLaughlin, and L. Tamarkin, “Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery,” Drug Delivery 11, 169-183 (2004).
[CrossRef]

Pecora, R.

B. J. Berne and R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology and Physics (Wiley, 1976).

Pine, D. J.

V. N. Manoharan, M. T. Elsesser, and D. J. Pine, “Dense packing and symmetry in small clusters of microspheres,” Science 301, 483-487 (2003).
[CrossRef]

Potenza, M. A. C.

M. Giglio, D. Brogioli, M. A. C. Potenza, and A. Vailati, “Near field scattering,” Phys. Chem. Chem. Phys. 6, 1547-1550(2004).
[CrossRef]

Procaccia, I.

D. Ronis and I. Procaccia, “Nonlinear resonant coupling between shear and heat fluctuations in fluids far from equilibrium,” Phys. Rev. A 26, 1812-1815 (1982).
[CrossRef]

Pusey, P. N.

I. M. De Schepper, E. G. D. Cohen, H. N. W. Lekkerkerker, and P. N. Pusey, “Long time diffusion in charged colloidal solutions,” J. Phys. Condens. Matter 1, 6503-6506 (1989).
[CrossRef]

P. N. Pusey, “Colloidal suspensions,” in Liquids, Freezing, and the Glass Transition, J.P.Hansen, D.Levesque, and J.Zinn-Justin, eds. (Elsevier, 1991) pp. 763-941.

Ramos, L.

L. Cipelletti and L. Ramos, “Slow dynamics in glassy soft matter,” J. Phys. Condens. Matter 17, R253-R285 (2005).
[CrossRef]

Rehberg, I.

E. O. Schulz-DuBois and I. Rehberg, “Structure function in lieu of correlation function,” Appl. Phys. 24, 323-329(1981).

Roll, D.

D. Roll, J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Metallic colloid wavelength-ratiometric scattering sensors,” Anal. Chem. 75, 3440-3445 (2003).
[CrossRef]

Ronis, D.

D. Ronis and I. Procaccia, “Nonlinear resonant coupling between shear and heat fluctuations in fluids far from equilibrium,” Phys. Rev. A 26, 1812-1815 (1982).
[CrossRef]

Salerno, D.

Scheffold, F.

F. Scheffold and R. Cerbino, “New trends in light scattering,” in Current Opinion in Colloid & Interface Science (Elsevier, 2007), pp. 50-57.

Schmitz, R.

P. N. Segre, R. Schmitz, and J. V. Sengers, “Fluctuations in inhomogeneous and nonequilibrium fluids under the influence of gravity,” Phys. At. Nucl. 195, 31-52 (1993).
[CrossRef]

Schulz-DuBois, E. O.

E. O. Schulz-DuBois and I. Rehberg, “Structure function in lieu of correlation function,” Appl. Phys. 24, 323-329(1981).

Segre, P. N.

P. N. Segre, R. W. Gammon, and J. V. Sengers, “Light-scattering measurements of nonequilibrium fluctuations in a liquid mixture,” Phys. Rev. E 47, 1026-1034 (1993).
[CrossRef]

P. N. Segre, R. Schmitz, and J. V. Sengers, “Fluctuations in inhomogeneous and nonequilibrium fluids under the influence of gravity,” Phys. At. Nucl. 195, 31-52 (1993).
[CrossRef]

P. N. Segre and J. V. Sengers, “Nonequilibrium fluctuations in liquid mixtures under the influence of gravity,” Phys. At. Nucl. 198, 46-77 (1993).
[CrossRef]

B. M. Law, P. N. Segre, R. W. Gammon, and J. V. Sengers, “Light-scattering measurements of entropy and viscous fluctuations in a liquid far from thermal equilibrium,” Phys. Rev. A 41, 816-824 (1990).
[CrossRef]

Sengers, J. V.

J. M. O. de Zarate, J. A. Fornes, and J. V. Sengers, “Long-wavelength nonequilibrium concentration fluctuations induced by the Soret effect,” Phys. Rev. E 74, 046305 (2006).
[CrossRef]

P. N. Segre, R. W. Gammon, and J. V. Sengers, “Light-scattering measurements of nonequilibrium fluctuations in a liquid mixture,” Phys. Rev. E 47, 1026-1034 (1993).
[CrossRef]

P. N. Segre, R. Schmitz, and J. V. Sengers, “Fluctuations in inhomogeneous and nonequilibrium fluids under the influence of gravity,” Phys. At. Nucl. 195, 31-52 (1993).
[CrossRef]

P. N. Segre and J. V. Sengers, “Nonequilibrium fluctuations in liquid mixtures under the influence of gravity,” Phys. At. Nucl. 198, 46-77 (1993).
[CrossRef]

B. M. Law, P. N. Segre, R. W. Gammon, and J. V. Sengers, “Light-scattering measurements of entropy and viscous fluctuations in a liquid far from thermal equilibrium,” Phys. Rev. A 41, 816-824 (1990).
[CrossRef]

Settles, G. S.

G. S. Settles, Schlieren and Shadowgraph Techniques; Visualizing Phenomena in Transparent Media (Springer-Verlag, 2001).

Takacs, A. J.

A. J. Takacs, G. Nikolaenko, and D. S. Cannell, “Dynamics of long-wavelength fluctuations in a fluid layer heated from above,” Phys. Rev. Lett. 100, 234502 (2008).
[CrossRef]

Tamarkin, L.

G. F. Paciotti, L. Myer, D. G. D Weinreich, N. Pavel, R. E. McLaughlin, and L. Tamarkin, “Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery,” Drug Delivery 11, 169-183 (2004).
[CrossRef]

Trainoff, S. P.

S. P. Trainoff and D. S. Cannell, “Physical optics treatment of the shadowgraph,” Phys. Fluids 14, 1340-1363(2002).
[CrossRef]

Vailati, A.

F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, and D. S. Cannell, “Effect of gravity on the dynamics of nonequilibrium fluctuations in a free diffusion experiment,” Ann. N.Y. Acad. Sci. 1077, 365-379 (2006).
[CrossRef]

F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, and D. S. Cannell, “Use of dynamic schlieren interferometry to study fluctuations during free diffusion,” Appl. Opt. 45, 2166-2173 (2006).
[CrossRef]

S. Mazzoni, R. Cerbino, A. Vailati, and M. Giglio, “Fluctuations in diffusion processes in microgravity,” Ann. N.Y. Acad. Sci. 1077, 351-364 (2006).
[CrossRef]

R. Cerbino, S. Mazzoni, A. Vailati, and M. Giglio, “Scaling behavior for the onset of convection in a colloidal suspension,” Phys. Rev. Lett. 94, 064501 (2005).
[CrossRef]

M. Giglio, D. Brogioli, M. A. C. Potenza, and A. Vailati, “Near field scattering,” Phys. Chem. Chem. Phys. 6, 1547-1550(2004).
[CrossRef]

D. Brogioli, A. Vailati, and M. Giglio, “A schlieren method for ultralow-angle light scattering measurements,” Europhys. Lett. 63, 220-225 (2003).
[CrossRef]

D. Brogioli, A. Vailati, and M. Giglio, “Universal behavior of nonequilibrium fluctuations in free diffusion processes,” Phys. Rev. E 61, R1-R4 (2000).
[CrossRef]

M. Giglio, M. Carpineti, and A. Vailati, “Space intensity correlations in the near field of the scattered light: a direct measurement of the density correlation function g(r),” Phys. Rev. Lett. 85, 1416-1419 (2000).
[CrossRef]

A. Vailati and M. Giglio, “Nonequilibrium fluctuations in time-dependent diffusion processes,” Phys. Rev. E 58, 4361-4371(1998).
[CrossRef]

A. Vailati and M. Giglio, “Giant fluctuations in a free diffusion process,” Nature 390, 262-265 (1997).
[CrossRef]

A. Vailati and M. Giglio, “q divergence of nonequilibrium fluctuations and its gravity-induced frustration in a temperature stressed liquid mixture,” Phys. Rev. Lett. 77, 1484-1487 (1996).
[CrossRef]

van Blaaderen, A.

A. van Blaaderen, “Materials science: colloids get complex,” Nature 439, 545-546 (2006).
[CrossRef]

A. Yethiraj and A. van Blaaderen, “A colloidal model system with an interaction tunable from hard sphere to soft and dipolar,” Nature 421, 513-517 (2003).
[CrossRef]

Versmold, H.

W. Hartl, H. Versmold, U. Wittig, and P. Linse, “Structure and dynamics of polymer colloid suspensions from dynamic light scattering and Brownian dynamics simulation,” J. Chem. Phys. 97, 7797-7804 (1992).
[CrossRef]

Weinreich, D. G. D

G. F. Paciotti, L. Myer, D. G. D Weinreich, N. Pavel, R. E. McLaughlin, and L. Tamarkin, “Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery,” Drug Delivery 11, 169-183 (2004).
[CrossRef]

Weitz, A.

A. Weitz, “Diffusion in a different direction,” Nature 390, 233-235 (1997).
[CrossRef]

Weitz, D. A.

L. Cipelletti and D. A. Weitz, “Ultralow-angle dynamic light scattering with a charge coupled device camera based multispeckle, multitau correlator,” Rev. Sci. Instrum. 70, 3214-3221 (1999).
[CrossRef]

Wiltzius, P.

P. Y. Wong and P. Wiltzius, “Dynamic light scattering with a CCD camera,” Rev. Sci. Instrum. 64, 2547-2549 (1993).
[CrossRef]

Wittig, U.

W. Hartl, H. Versmold, U. Wittig, and P. Linse, “Structure and dynamics of polymer colloid suspensions from dynamic light scattering and Brownian dynamics simulation,” J. Chem. Phys. 97, 7797-7804 (1992).
[CrossRef]

Wong, P. Y.

P. Y. Wong and P. Wiltzius, “Dynamic light scattering with a CCD camera,” Rev. Sci. Instrum. 64, 2547-2549 (1993).
[CrossRef]

Wu, M.

M. Wu, G. Ahlers, and D. S. Cannell, “Thermally induced fluctuations below the onset of Rayleigh-Bénard convection,” Phys. Rev. Lett. 75, 1743-1746 (1995).
[CrossRef]

Yethiraj, A.

A. Yethiraj and A. van Blaaderen, “A colloidal model system with an interaction tunable from hard sphere to soft and dipolar,” Nature 421, 513-517 (2003).
[CrossRef]

Acta Physicochim URSS (1)

B. V. Derjaguin and L. Landau, “Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solution of electrolytes,” Acta Physicochim URSS 14, 633-662 (1941)

Anal. Chem. (1)

D. Roll, J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Metallic colloid wavelength-ratiometric scattering sensors,” Anal. Chem. 75, 3440-3445 (2003).
[CrossRef]

Ann. N.Y. Acad. Sci. (2)

S. Mazzoni, R. Cerbino, A. Vailati, and M. Giglio, “Fluctuations in diffusion processes in microgravity,” Ann. N.Y. Acad. Sci. 1077, 351-364 (2006).
[CrossRef]

F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, and D. S. Cannell, “Effect of gravity on the dynamics of nonequilibrium fluctuations in a free diffusion experiment,” Ann. N.Y. Acad. Sci. 1077, 365-379 (2006).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. (1)

E. O. Schulz-DuBois and I. Rehberg, “Structure function in lieu of correlation function,” Appl. Phys. 24, 323-329(1981).

Chem. Phys. Lett. (1)

Z. Gryczynski, J. Lukomska, J. R. Lakowicz, E. G. Matveeva, and I. Gryczynski, “Depolarized light scattering from silver nanoparticles,” Chem. Phys. Lett. 421, 189-192(2006).
[CrossRef]

Chem. Soc. Rev. (1)

E. Boisselier and D. Astruc, “Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity,” Chem. Soc. Rev. 38, 1759-1782 (2009).
[CrossRef]

Drug Delivery (1)

G. F. Paciotti, L. Myer, D. G. D Weinreich, N. Pavel, R. E. McLaughlin, and L. Tamarkin, “Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery,” Drug Delivery 11, 169-183 (2004).
[CrossRef]

Europhys. Lett. (1)

D. Brogioli, A. Vailati, and M. Giglio, “A schlieren method for ultralow-angle light scattering measurements,” Europhys. Lett. 63, 220-225 (2003).
[CrossRef]

J. Chem. Phys. (1)

W. Hartl, H. Versmold, U. Wittig, and P. Linse, “Structure and dynamics of polymer colloid suspensions from dynamic light scattering and Brownian dynamics simulation,” J. Chem. Phys. 97, 7797-7804 (1992).
[CrossRef]

J. Phys. Condens. Matter (2)

L. Cipelletti and L. Ramos, “Slow dynamics in glassy soft matter,” J. Phys. Condens. Matter 17, R253-R285 (2005).
[CrossRef]

I. M. De Schepper, E. G. D. Cohen, H. N. W. Lekkerkerker, and P. N. Pusey, “Long time diffusion in charged colloidal solutions,” J. Phys. Condens. Matter 1, 6503-6506 (1989).
[CrossRef]

J. Polym. Sci. (1)

S. Asakura and F. Oosawa, “Interaction between particles suspended in solutions of macromolecules,” J. Polym. Sci. 33, 183-192 (1958).
[CrossRef]

Nature (4)

A. Yethiraj and A. van Blaaderen, “A colloidal model system with an interaction tunable from hard sphere to soft and dipolar,” Nature 421, 513-517 (2003).
[CrossRef]

A. van Blaaderen, “Materials science: colloids get complex,” Nature 439, 545-546 (2006).
[CrossRef]

A. Vailati and M. Giglio, “Giant fluctuations in a free diffusion process,” Nature 390, 262-265 (1997).
[CrossRef]

A. Weitz, “Diffusion in a different direction,” Nature 390, 233-235 (1997).
[CrossRef]

Opt. Express (1)

Phys. At. Nucl. (2)

P. N. Segre and J. V. Sengers, “Nonequilibrium fluctuations in liquid mixtures under the influence of gravity,” Phys. At. Nucl. 198, 46-77 (1993).
[CrossRef]

P. N. Segre, R. Schmitz, and J. V. Sengers, “Fluctuations in inhomogeneous and nonequilibrium fluids under the influence of gravity,” Phys. At. Nucl. 195, 31-52 (1993).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

M. Giglio, D. Brogioli, M. A. C. Potenza, and A. Vailati, “Near field scattering,” Phys. Chem. Chem. Phys. 6, 1547-1550(2004).
[CrossRef]

Phys. Fluids (1)

S. P. Trainoff and D. S. Cannell, “Physical optics treatment of the shadowgraph,” Phys. Fluids 14, 1340-1363(2002).
[CrossRef]

Phys. Rep. (1)

C. N. Likos, “Effective interactions in soft condensed matter physics,” Phys. Rep. 348, 267-439 (2001).
[CrossRef]

Phys. Rev. A (3)

B. M. Law, P. N. Segre, R. W. Gammon, and J. V. Sengers, “Light-scattering measurements of entropy and viscous fluctuations in a liquid far from thermal equilibrium,” Phys. Rev. A 41, 816-824 (1990).
[CrossRef]

T. R. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman, “Light scattering by a fluid in a nonequilibrium steady state,” Phys. Rev. A 26, 995-1014 (1982).
[CrossRef]

D. Ronis and I. Procaccia, “Nonlinear resonant coupling between shear and heat fluctuations in fluids far from equilibrium,” Phys. Rev. A 26, 1812-1815 (1982).
[CrossRef]

Phys. Rev. E (5)

P. N. Segre, R. W. Gammon, and J. V. Sengers, “Light-scattering measurements of nonequilibrium fluctuations in a liquid mixture,” Phys. Rev. E 47, 1026-1034 (1993).
[CrossRef]

J. M. O. de Zarate, J. A. Fornes, and J. V. Sengers, “Long-wavelength nonequilibrium concentration fluctuations induced by the Soret effect,” Phys. Rev. E 74, 046305 (2006).
[CrossRef]

A. Vailati and M. Giglio, “Nonequilibrium fluctuations in time-dependent diffusion processes,” Phys. Rev. E 58, 4361-4371(1998).
[CrossRef]

D. Brogioli, A. Vailati, and M. Giglio, “Universal behavior of nonequilibrium fluctuations in free diffusion processes,” Phys. Rev. E 61, R1-R4 (2000).
[CrossRef]

A. Oprisan, S. A. Oprisan, J. HegsethY. Garrabos, C. Lecoutre-Chabot, and D. Beysens, “Universality in early-stage growth of phase-separating domains near the critical point,” Phys. Rev. E 77, 051118 (2008).
[CrossRef]

Phys. Rev. Lett. (5)

A. Vailati and M. Giglio, “q divergence of nonequilibrium fluctuations and its gravity-induced frustration in a temperature stressed liquid mixture,” Phys. Rev. Lett. 77, 1484-1487 (1996).
[CrossRef]

A. J. Takacs, G. Nikolaenko, and D. S. Cannell, “Dynamics of long-wavelength fluctuations in a fluid layer heated from above,” Phys. Rev. Lett. 100, 234502 (2008).
[CrossRef]

M. Giglio, M. Carpineti, and A. Vailati, “Space intensity correlations in the near field of the scattered light: a direct measurement of the density correlation function g(r),” Phys. Rev. Lett. 85, 1416-1419 (2000).
[CrossRef]

R. Cerbino, S. Mazzoni, A. Vailati, and M. Giglio, “Scaling behavior for the onset of convection in a colloidal suspension,” Phys. Rev. Lett. 94, 064501 (2005).
[CrossRef]

M. Wu, G. Ahlers, and D. S. Cannell, “Thermally induced fluctuations below the onset of Rayleigh-Bénard convection,” Phys. Rev. Lett. 75, 1743-1746 (1995).
[CrossRef]

Physica A (Amsterdam) (1)

B. Cichocki and B. U. Felderhof, “Slow dynamics of linear relaxation systems,” Physica A (Amsterdam) 211, 165-192(1994).
[CrossRef]

Rev. Sci. Instrum. (3)

P. Y. Wong and P. Wiltzius, “Dynamic light scattering with a CCD camera,” Rev. Sci. Instrum. 64, 2547-2549 (1993).
[CrossRef]

F. Ferri, “Use of a charge coupled device camera for low-angle elastic light scattering,” Rev. Sci. Instrum. 68, 2265-2274(1997).
[CrossRef]

L. Cipelletti and D. A. Weitz, “Ultralow-angle dynamic light scattering with a charge coupled device camera based multispeckle, multitau correlator,” Rev. Sci. Instrum. 70, 3214-3221 (1999).
[CrossRef]

Science (1)

V. N. Manoharan, M. T. Elsesser, and D. J. Pine, “Dense packing and symmetry in small clusters of microspheres,” Science 301, 483-487 (2003).
[CrossRef]

Other (10)

P. N. Pusey, “Colloidal suspensions,” in Liquids, Freezing, and the Glass Transition, J.P.Hansen, D.Levesque, and J.Zinn-Justin, eds. (Elsevier, 1991) pp. 763-941.

F. Croccolo, Ph.D. dissertation (University of Milano, 2005).

L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon, 1959).

B. J. Berne and R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology and Physics (Wiley, 1976).

F. Scheffold and R. Cerbino, “New trends in light scattering,” in Current Opinion in Colloid & Interface Science (Elsevier, 2007), pp. 50-57.

G. S. Settles, Schlieren and Shadowgraph Techniques; Visualizing Phenomena in Transparent Media (Springer-Verlag, 2001).

M. V. Berry, The Diffraction of Light by Ultrasound(Academic, 1966).

E. Hecht, Optics (Addison-Wesley, 2001).

A. Oprisan, J. Hegseth, S. A. Oprisan, C. Lecoutre, Y. Garrabos, and D. Beysens, “Methods for finding the position of critical point using image analysis techniques,” presented at the 17th Symposium on Thermophysical Properties (Boulder, Colorado, 21-26 June 2009).

A. Oprisan, Ph.D. dissertation (University of New Orleans2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic representation of experimental setup. The sample cell is mounted on a vertical optical bench such that the concentration gradient is antiparallel to the gravitational filed. The inset shows a sample cell containing colloids (lower half) and degassed water (upper half).

Fig. 2
Fig. 2

A. Fluctuation image for silica colloid obtained by subtracting successive normalized images δ i ( x , t ) = i ( x , t + d t ) i ( x , t ) with t = 1000 s and d t = 1 s . B. The corresponding power spectra has azimuthal symmetry.

Fig. 3
Fig. 3

Azimuthal averages of power spectra amplitude S m ( q , t ) for gold (A1) and silica colloids (B1) recorded at t record = 8000 s . The corresponding temporal evolution of the structure functions C m ( q , t , d t ) (A2 and B2, respectively) saturate at large delay times.

Fig. 4
Fig. 4

Structure factors for gold (A) and silica (B) colloids obtained using the dynamic method. The structure factors for gold and silica colloids have similar shapes but different slopes.

Fig. 5
Fig. 5

Slopes of the structure factor for gold (panel A, open squares) and silica (panel A, open circles), and the corresponding slopes for the correlation time for gold and silica colloids (B). The error bars represent the standard error of the average over multiple recording time intervals.

Fig. 6
Fig. 6

Log-log recursive plot of structure factor for gold (A1) and silica (A2) with the corresponding correlation times (B1 and B2). The continuous line is the bisectrix of the recursion plane that indicates the line of no change. Interpolation lines are shown only for the correlation time of gold (B1) since their slopes significantly change from one recursive plot to the next.

Fig. 7
Fig. 7

Temporal sections through successive images reveal persistent fluctuations. All images are 512 pixels wide and the vertical direction represents the time. Each horizontal line represents a 1 pixel slice though the middle of a fluctuation image with sliced images Δ t = 1 s apart for gold (A) and silica (B). A set of 1000 normalized images was considered at t record = 9000 s . The fluctuation images were computed as differences between the normalized image i ( x , t record ) and i ( x , t record + k * Δ t ) , with k = 100 (A1 and B1), 200 (A2 and B2), 300 (A3 and B3), 400 (A4 and B4), 500 (A5 and B5), 600 (A6 and B6), and 700 (A7 and B7).

Fig. 8
Fig. 8

Temporal sections through successive images with a very short delay time for silica colloids at t record = 9000 s . The fluctuation images were computed as differences between the normalized image i ( x , t record ) and i ( x , t record + k * Δ t ) with k = 1 (A1), 10 (A2), 20 (A3), 30 (A4), 40 (A5), 50 (A6), 60 (A7), 70 (A8), 80 (A9), and 90 (A10).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

τ D = h 2 / ( 4 π D ) ,
c max ( t ) = Δ c ( t ) / 4 π D t ,
q c ( t ) = ( β g c ( t ) / ν D ) 1 / 4 ,
q p = ( 4 ν D / ( ν D ) 2 ) 1 / 4 q c .
τ c ( q , t ) = q 2 D ( q 4 + q c 4 ) .
τ c ( q , t ) = q 2 D ( q 4 + q c 4 ) + 2 ν q 2 .
i ( x , t ) = I ( x , t ) / Avg ( I ( x , t ) ) x .
c m ( q , t , d t ) = Avg(| δ i ( q , t , d t ) | 2 ) t .
C m ( q , t , d t ) = 2 { [ S ( q , t ) T ( q ) ] · [ 1 G ( q , t , d t ) ] + B ( q , t , ) } .
G ( q , t , d t ) = exp ( d t / τ ( q , t ) ) .

Metrics