Abstract

We present local profile measurements of inner mirrorlike and external front-end polycarbonate surfaces at the same spot of assembled optical storage devices, a CD and a DVD, performed with a heterodyne scanning interferometer that uses Gaussian beams. We show that the heterodyne interferometer can reproduce the profiles of both surfaces with accurate precision. We describe a procedure for calibrating the instrument based on the measurement of reflecting calibrated gratings. To show the advantages that the heterodyne interferometer represents as a valuable tool for the characterization of optical disks, we include a comparison of experimental results obtained with a confocal microscope under similar working conditions.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Wilson and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1983).
  2. C. Sheppard, “The spatial frequency cut-off in three-dimensional imaging,” Optik (Jena) 72, 131-133 (1986).
  3. D. K. Hamilton and T. Wilson, “Surface profile measurement using the confocal microscope,” J. Appl. Phys. 53, 5320-5322(1982).
    [CrossRef]
  4. D. K. Hamilton and T. Wilson, “Three-dimensional surface measurement using the confocal scanning microscope,” Appl. Phys. B 27, 211-213 (1982).
    [CrossRef]
  5. I. J. Cox, C. J. R. Sheppard, and T. Wilson, “Improvement in resolution by nearly confocal microscopy,” Appl. Opt. 21, 778-781 (1982).
    [CrossRef] [PubMed]
  6. J. F. Aguilar, M. Lera, and C. J. R. Sheppard, “Imaging of spheres and surface profiling by confocal microscopy,” Appl. Opt. 39, 4621-4628 (2000).
    [CrossRef]
  7. M. Kempe and W. Rudolph, “Scanning microscopy through thick layers based on linear correlation,” Opt. Lett. 19, 1919-1921 (1994).
    [CrossRef] [PubMed]
  8. M. Kempe, “Analysis of heterodyne and confocal microscopy for illumination with broad-bandwidth light,” J. Mod. Opt. 43, 2189-2204 (1996).
    [CrossRef]
  9. T. Kakuta, S. Shinji, T. Ishida, T. Ozawa, and H. Doushita, “Optical information recording medium,” U.S. Patent 20030031954A1 (2003).
  10. L. Kenneth, “Coated thermoplastic film substrate,” U.S. patent 6,855,415 (15 February 2005).
  11. J. M. Flores, M. Cywiak, M. Servín, and L. P. Juárez P., “Heterodyne two beam Gaussian microscope interferometer,” Opt. Express 15, 8346-8359 (2007).
    [CrossRef] [PubMed]
  12. M. Cywiak, J. F. Aguilar, and B. Barrientos, “Low-numerical-aperture Gaussian beam confocal system for profiling optically smooth surfaces,” Opt. Eng. 44, 13604(2005).
    [CrossRef]

2007

2005

M. Cywiak, J. F. Aguilar, and B. Barrientos, “Low-numerical-aperture Gaussian beam confocal system for profiling optically smooth surfaces,” Opt. Eng. 44, 13604(2005).
[CrossRef]

2000

1996

M. Kempe, “Analysis of heterodyne and confocal microscopy for illumination with broad-bandwidth light,” J. Mod. Opt. 43, 2189-2204 (1996).
[CrossRef]

1994

1986

C. Sheppard, “The spatial frequency cut-off in three-dimensional imaging,” Optik (Jena) 72, 131-133 (1986).

1982

D. K. Hamilton and T. Wilson, “Surface profile measurement using the confocal microscope,” J. Appl. Phys. 53, 5320-5322(1982).
[CrossRef]

D. K. Hamilton and T. Wilson, “Three-dimensional surface measurement using the confocal scanning microscope,” Appl. Phys. B 27, 211-213 (1982).
[CrossRef]

I. J. Cox, C. J. R. Sheppard, and T. Wilson, “Improvement in resolution by nearly confocal microscopy,” Appl. Opt. 21, 778-781 (1982).
[CrossRef] [PubMed]

Aguilar, J. F.

M. Cywiak, J. F. Aguilar, and B. Barrientos, “Low-numerical-aperture Gaussian beam confocal system for profiling optically smooth surfaces,” Opt. Eng. 44, 13604(2005).
[CrossRef]

J. F. Aguilar, M. Lera, and C. J. R. Sheppard, “Imaging of spheres and surface profiling by confocal microscopy,” Appl. Opt. 39, 4621-4628 (2000).
[CrossRef]

Barrientos, B.

M. Cywiak, J. F. Aguilar, and B. Barrientos, “Low-numerical-aperture Gaussian beam confocal system for profiling optically smooth surfaces,” Opt. Eng. 44, 13604(2005).
[CrossRef]

Cox, I. J.

Cywiak, M.

J. M. Flores, M. Cywiak, M. Servín, and L. P. Juárez P., “Heterodyne two beam Gaussian microscope interferometer,” Opt. Express 15, 8346-8359 (2007).
[CrossRef] [PubMed]

M. Cywiak, J. F. Aguilar, and B. Barrientos, “Low-numerical-aperture Gaussian beam confocal system for profiling optically smooth surfaces,” Opt. Eng. 44, 13604(2005).
[CrossRef]

Doushita, H.

T. Kakuta, S. Shinji, T. Ishida, T. Ozawa, and H. Doushita, “Optical information recording medium,” U.S. Patent 20030031954A1 (2003).

Flores, J. M.

Hamilton, D. K.

D. K. Hamilton and T. Wilson, “Three-dimensional surface measurement using the confocal scanning microscope,” Appl. Phys. B 27, 211-213 (1982).
[CrossRef]

D. K. Hamilton and T. Wilson, “Surface profile measurement using the confocal microscope,” J. Appl. Phys. 53, 5320-5322(1982).
[CrossRef]

Ishida, T.

T. Kakuta, S. Shinji, T. Ishida, T. Ozawa, and H. Doushita, “Optical information recording medium,” U.S. Patent 20030031954A1 (2003).

Juárez P., L. P.

Kakuta, T.

T. Kakuta, S. Shinji, T. Ishida, T. Ozawa, and H. Doushita, “Optical information recording medium,” U.S. Patent 20030031954A1 (2003).

Kempe, M.

M. Kempe, “Analysis of heterodyne and confocal microscopy for illumination with broad-bandwidth light,” J. Mod. Opt. 43, 2189-2204 (1996).
[CrossRef]

M. Kempe and W. Rudolph, “Scanning microscopy through thick layers based on linear correlation,” Opt. Lett. 19, 1919-1921 (1994).
[CrossRef] [PubMed]

Kenneth, L.

L. Kenneth, “Coated thermoplastic film substrate,” U.S. patent 6,855,415 (15 February 2005).

Lera, M.

Ozawa, T.

T. Kakuta, S. Shinji, T. Ishida, T. Ozawa, and H. Doushita, “Optical information recording medium,” U.S. Patent 20030031954A1 (2003).

Rudolph, W.

Servín, M.

Sheppard, C.

C. Sheppard, “The spatial frequency cut-off in three-dimensional imaging,” Optik (Jena) 72, 131-133 (1986).

Sheppard, C. J. R.

Shinji, S.

T. Kakuta, S. Shinji, T. Ishida, T. Ozawa, and H. Doushita, “Optical information recording medium,” U.S. Patent 20030031954A1 (2003).

Wilson, T.

D. K. Hamilton and T. Wilson, “Surface profile measurement using the confocal microscope,” J. Appl. Phys. 53, 5320-5322(1982).
[CrossRef]

I. J. Cox, C. J. R. Sheppard, and T. Wilson, “Improvement in resolution by nearly confocal microscopy,” Appl. Opt. 21, 778-781 (1982).
[CrossRef] [PubMed]

D. K. Hamilton and T. Wilson, “Three-dimensional surface measurement using the confocal scanning microscope,” Appl. Phys. B 27, 211-213 (1982).
[CrossRef]

T. Wilson and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1983).

Appl. Opt.

Appl. Phys. B

D. K. Hamilton and T. Wilson, “Three-dimensional surface measurement using the confocal scanning microscope,” Appl. Phys. B 27, 211-213 (1982).
[CrossRef]

J. Appl. Phys.

D. K. Hamilton and T. Wilson, “Surface profile measurement using the confocal microscope,” J. Appl. Phys. 53, 5320-5322(1982).
[CrossRef]

J. Mod. Opt.

M. Kempe, “Analysis of heterodyne and confocal microscopy for illumination with broad-bandwidth light,” J. Mod. Opt. 43, 2189-2204 (1996).
[CrossRef]

Opt. Eng.

M. Cywiak, J. F. Aguilar, and B. Barrientos, “Low-numerical-aperture Gaussian beam confocal system for profiling optically smooth surfaces,” Opt. Eng. 44, 13604(2005).
[CrossRef]

Opt. Express

Opt. Lett.

Optik (Jena)

C. Sheppard, “The spatial frequency cut-off in three-dimensional imaging,” Optik (Jena) 72, 131-133 (1986).

Other

T. Wilson and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1983).

T. Kakuta, S. Shinji, T. Ishida, T. Ozawa, and H. Doushita, “Optical information recording medium,” U.S. Patent 20030031954A1 (2003).

L. Kenneth, “Coated thermoplastic film substrate,” U.S. patent 6,855,415 (15 February 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Spatially filtered confocal microscope and (b) heterodyne microscope. BS1 and BS2, 50:50 beam splitters; L1, focusing lens. The distance between the focal plane and the plane of the surface under test has been exaggerated.

Fig. 2
Fig. 2

Normalized collected power for both microscopes: solid curve, the heterodyne interferometer; dotted curve, the confocal microscope. The operating point is selected around the value z p = 1 μm , within the range marked by the short segments on the graph; this range corresponds to vertical amplitude variations of less than 200 nm . We used a 2 mm focusing lens, an illuminating Gaussian beam with an intensity semiwidth ( 1 / e 2 ) of 0.6 mm , and a 1 μm pinhole.

Fig. 3
Fig. 3

Measurements of a 600 lines/nm reflective grating taken with (a) a spatially filtered confocal microscope and (b) a heterodyne microscope.

Fig. 4
Fig. 4

Measurements of a 1200 lines/nm reflective grating taken with (a) a spatially filtered confocal microscope and (b) a heterodyne microscope.

Fig. 5
Fig. 5

CD optical data storage measurements taken with (a) a spatially filtered confocal microscope and (b) a heterodyne microscope.

Fig. 6
Fig. 6

DVD optical data storage measurements taken with (a) a spatially filtered confocal microscope and (b) a heterodyne microscope.

Fig. 7
Fig. 7

Profiles of the (a) CD polycarbonate layer and (b) DVD polycarbonate layer; the standard deviation was approximately 0.11 nm .

Metrics