Abstract

We compare the results of measurements of the nonlinearity of high-power optical fiber powermeters (OFPMs) by two national metrology institutes (NMIs): the National Institute of Standards and Technology (NIST-USA) and the National Metrology Institute of Japan/National Institute of Advanced Industrial Science and Technology (NMIJ/AIST-Japan) at a wavelength of 1480nm. The nonlinearity and range discontinuity of a commercial OFPM were measured from 1mW to 500mW by use of a superposition method (both laboratories) and from 1mW to 250mW by use of a comparison method (NMIJ only). Measurement results showed largest differences of less than 1.6 parts in 103, which is within the combined expanded (k=2) uncertainty for both laboratories.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Envall, A. Andersson, J. C. Petersen, and P. Kärhä, “Realization of the scale of high fiber optic power at three national standards laboratories,” Appl. Opt. 44, 5013-5017 (2005).
    [CrossRef] [PubMed]
  2. I. Vayshenker, R. Swafford, and S. Yang, “High-power nonlinearity of optical fiber powermeters,” Natl. Inst. Stand. Technol. Spec. Publ. 1024 (NIST, 2004), pp. 145-148.
  3. I. Vayshenker, S. Yang, and R. Swafford, “High-power nonlinearity of optical fiber powermeters for pump lasers at 980 and 1480 nm,” Natl. Inst. Stand. Technol. Spec. Publ. 1055 (NIST, 2006), pp. 22-25.
  4. A. Jones-Bey, “Calibration method addresses high-power nonlinearities,” Laser Focus World , 33-35 (September 2006).
  5. I. Vayshenker, R. Swafford, and S. Yang, “Nonlinearity of high-power optical fiber powermeters at 1480 nm,” Appl. Opt. 45, 1098-1101 (2006).
    [CrossRef] [PubMed]
  6. S. Mukai, K. Amemiya, M. Endo, I. Vayshenker, X. Li, and S. Yang, “Bilateral optical fiber powermeter linearity comparison between NMIJ and NIST,” in Digest of Conference on Precision Electromagnetic Measurements (CPEM 2008, 2008), pp. 178-179.
    [CrossRef]
  7. International Standard, IEC 61315, Calibration of Fibre Optic Powermeters, ed. 2.0 (International Electrotechnical Commission, 2005).
  8. I. Vayshenker, S. Yang, X. Li, T. R. Scott, and C. L. Cromer, “Optical fiber power meter nonlinearity calibrations at NIST,” NIST Special Publ. 250-56 (NIST, 2000).
  9. S. Yang, I. Vayshenker, X. Li, and T. R. Scott, “Optical detector nonlinearity: a comparison of five methods,” presented at the Conference on Precision Electromagnetic Measurements, Boulder, Colorado, USA, 27 June-1 July, 1994.
  10. S. Yang, I. Vayshenker, X. Li, M. Zander, and T. R. Scott, “Optical detector nonlinearity: Simulation,” Natl. Inst. Stand. Technol. Tech. Note 1376 (NIST, 1995).
  11. I. Vayshenker, S. Yang, X. Li, and T. R. Scott, “Automated measurement of nonlinearity of optical fiber powermeters,” Proc. SPIE 2550, 12-19 (1995).
    [CrossRef]
  12. I. Vayshenker, S. Yang, X. Li, and T. R. Scott, “Nonlinearity of optical powermeters,” Natl. Inst. Stand. Technol. Spec. Publ. 905 (1996), pp. 101-104.
  13. S. Mukai, K. Amemiya, and M. Endo, “High-precision linearity standard for high-power optical-fiber powermeters,” in Digest of Conference on Precision Electromagnetic Measurements (CPEM 2008, 2008), pp. 288-289.
    [CrossRef]
  14. ISO, Guide to the Expression of Uncertainty in Measurement (International Organization for Standardization, 1993).
  15. B. N. Taylor and C. E. Kuyatt, “Guidelines for evaluating and expressing the uncertainty of NIST measurement results,” Natl. Inst. Stand. Technol. Tech. Note 1297 (1993).
  16. L. P. Boivin, “Automated absolute and relative spectral linearity measurements on photovoltaic detectors,” Metrologia 30, 355-360 (1993).
    [CrossRef]

2006 (1)

2005 (1)

1995 (1)

I. Vayshenker, S. Yang, X. Li, and T. R. Scott, “Automated measurement of nonlinearity of optical fiber powermeters,” Proc. SPIE 2550, 12-19 (1995).
[CrossRef]

1993 (1)

L. P. Boivin, “Automated absolute and relative spectral linearity measurements on photovoltaic detectors,” Metrologia 30, 355-360 (1993).
[CrossRef]

Amemiya, K.

S. Mukai, K. Amemiya, and M. Endo, “High-precision linearity standard for high-power optical-fiber powermeters,” in Digest of Conference on Precision Electromagnetic Measurements (CPEM 2008, 2008), pp. 288-289.
[CrossRef]

S. Mukai, K. Amemiya, M. Endo, I. Vayshenker, X. Li, and S. Yang, “Bilateral optical fiber powermeter linearity comparison between NMIJ and NIST,” in Digest of Conference on Precision Electromagnetic Measurements (CPEM 2008, 2008), pp. 178-179.
[CrossRef]

Andersson, A.

Boivin, L. P.

L. P. Boivin, “Automated absolute and relative spectral linearity measurements on photovoltaic detectors,” Metrologia 30, 355-360 (1993).
[CrossRef]

Cromer, C. L.

I. Vayshenker, S. Yang, X. Li, T. R. Scott, and C. L. Cromer, “Optical fiber power meter nonlinearity calibrations at NIST,” NIST Special Publ. 250-56 (NIST, 2000).

Endo, M.

S. Mukai, K. Amemiya, M. Endo, I. Vayshenker, X. Li, and S. Yang, “Bilateral optical fiber powermeter linearity comparison between NMIJ and NIST,” in Digest of Conference on Precision Electromagnetic Measurements (CPEM 2008, 2008), pp. 178-179.
[CrossRef]

S. Mukai, K. Amemiya, and M. Endo, “High-precision linearity standard for high-power optical-fiber powermeters,” in Digest of Conference on Precision Electromagnetic Measurements (CPEM 2008, 2008), pp. 288-289.
[CrossRef]

Envall, J.

Jones-Bey, A.

A. Jones-Bey, “Calibration method addresses high-power nonlinearities,” Laser Focus World , 33-35 (September 2006).

Kärhä, P.

Kuyatt, C. E.

B. N. Taylor and C. E. Kuyatt, “Guidelines for evaluating and expressing the uncertainty of NIST measurement results,” Natl. Inst. Stand. Technol. Tech. Note 1297 (1993).

Li, X.

I. Vayshenker, S. Yang, X. Li, and T. R. Scott, “Automated measurement of nonlinearity of optical fiber powermeters,” Proc. SPIE 2550, 12-19 (1995).
[CrossRef]

S. Mukai, K. Amemiya, M. Endo, I. Vayshenker, X. Li, and S. Yang, “Bilateral optical fiber powermeter linearity comparison between NMIJ and NIST,” in Digest of Conference on Precision Electromagnetic Measurements (CPEM 2008, 2008), pp. 178-179.
[CrossRef]

S. Yang, I. Vayshenker, X. Li, M. Zander, and T. R. Scott, “Optical detector nonlinearity: Simulation,” Natl. Inst. Stand. Technol. Tech. Note 1376 (NIST, 1995).

I. Vayshenker, S. Yang, X. Li, T. R. Scott, and C. L. Cromer, “Optical fiber power meter nonlinearity calibrations at NIST,” NIST Special Publ. 250-56 (NIST, 2000).

I. Vayshenker, S. Yang, X. Li, and T. R. Scott, “Nonlinearity of optical powermeters,” Natl. Inst. Stand. Technol. Spec. Publ. 905 (1996), pp. 101-104.

S. Yang, I. Vayshenker, X. Li, and T. R. Scott, “Optical detector nonlinearity: a comparison of five methods,” presented at the Conference on Precision Electromagnetic Measurements, Boulder, Colorado, USA, 27 June-1 July, 1994.

Mukai, S.

S. Mukai, K. Amemiya, and M. Endo, “High-precision linearity standard for high-power optical-fiber powermeters,” in Digest of Conference on Precision Electromagnetic Measurements (CPEM 2008, 2008), pp. 288-289.
[CrossRef]

S. Mukai, K. Amemiya, M. Endo, I. Vayshenker, X. Li, and S. Yang, “Bilateral optical fiber powermeter linearity comparison between NMIJ and NIST,” in Digest of Conference on Precision Electromagnetic Measurements (CPEM 2008, 2008), pp. 178-179.
[CrossRef]

Petersen, J. C.

Scott, T. R.

I. Vayshenker, S. Yang, X. Li, and T. R. Scott, “Automated measurement of nonlinearity of optical fiber powermeters,” Proc. SPIE 2550, 12-19 (1995).
[CrossRef]

I. Vayshenker, S. Yang, X. Li, T. R. Scott, and C. L. Cromer, “Optical fiber power meter nonlinearity calibrations at NIST,” NIST Special Publ. 250-56 (NIST, 2000).

S. Yang, I. Vayshenker, X. Li, M. Zander, and T. R. Scott, “Optical detector nonlinearity: Simulation,” Natl. Inst. Stand. Technol. Tech. Note 1376 (NIST, 1995).

I. Vayshenker, S. Yang, X. Li, and T. R. Scott, “Nonlinearity of optical powermeters,” Natl. Inst. Stand. Technol. Spec. Publ. 905 (1996), pp. 101-104.

S. Yang, I. Vayshenker, X. Li, and T. R. Scott, “Optical detector nonlinearity: a comparison of five methods,” presented at the Conference on Precision Electromagnetic Measurements, Boulder, Colorado, USA, 27 June-1 July, 1994.

Swafford, R.

I. Vayshenker, R. Swafford, and S. Yang, “Nonlinearity of high-power optical fiber powermeters at 1480 nm,” Appl. Opt. 45, 1098-1101 (2006).
[CrossRef] [PubMed]

I. Vayshenker, S. Yang, and R. Swafford, “High-power nonlinearity of optical fiber powermeters for pump lasers at 980 and 1480 nm,” Natl. Inst. Stand. Technol. Spec. Publ. 1055 (NIST, 2006), pp. 22-25.

I. Vayshenker, R. Swafford, and S. Yang, “High-power nonlinearity of optical fiber powermeters,” Natl. Inst. Stand. Technol. Spec. Publ. 1024 (NIST, 2004), pp. 145-148.

Taylor, B. N.

B. N. Taylor and C. E. Kuyatt, “Guidelines for evaluating and expressing the uncertainty of NIST measurement results,” Natl. Inst. Stand. Technol. Tech. Note 1297 (1993).

Vayshenker, I.

I. Vayshenker, R. Swafford, and S. Yang, “Nonlinearity of high-power optical fiber powermeters at 1480 nm,” Appl. Opt. 45, 1098-1101 (2006).
[CrossRef] [PubMed]

I. Vayshenker, S. Yang, X. Li, and T. R. Scott, “Automated measurement of nonlinearity of optical fiber powermeters,” Proc. SPIE 2550, 12-19 (1995).
[CrossRef]

S. Yang, I. Vayshenker, X. Li, M. Zander, and T. R. Scott, “Optical detector nonlinearity: Simulation,” Natl. Inst. Stand. Technol. Tech. Note 1376 (NIST, 1995).

I. Vayshenker, S. Yang, X. Li, T. R. Scott, and C. L. Cromer, “Optical fiber power meter nonlinearity calibrations at NIST,” NIST Special Publ. 250-56 (NIST, 2000).

S. Mukai, K. Amemiya, M. Endo, I. Vayshenker, X. Li, and S. Yang, “Bilateral optical fiber powermeter linearity comparison between NMIJ and NIST,” in Digest of Conference on Precision Electromagnetic Measurements (CPEM 2008, 2008), pp. 178-179.
[CrossRef]

I. Vayshenker, S. Yang, and R. Swafford, “High-power nonlinearity of optical fiber powermeters for pump lasers at 980 and 1480 nm,” Natl. Inst. Stand. Technol. Spec. Publ. 1055 (NIST, 2006), pp. 22-25.

S. Yang, I. Vayshenker, X. Li, and T. R. Scott, “Optical detector nonlinearity: a comparison of five methods,” presented at the Conference on Precision Electromagnetic Measurements, Boulder, Colorado, USA, 27 June-1 July, 1994.

I. Vayshenker, R. Swafford, and S. Yang, “High-power nonlinearity of optical fiber powermeters,” Natl. Inst. Stand. Technol. Spec. Publ. 1024 (NIST, 2004), pp. 145-148.

I. Vayshenker, S. Yang, X. Li, and T. R. Scott, “Nonlinearity of optical powermeters,” Natl. Inst. Stand. Technol. Spec. Publ. 905 (1996), pp. 101-104.

Yang, S.

I. Vayshenker, R. Swafford, and S. Yang, “Nonlinearity of high-power optical fiber powermeters at 1480 nm,” Appl. Opt. 45, 1098-1101 (2006).
[CrossRef] [PubMed]

I. Vayshenker, S. Yang, X. Li, and T. R. Scott, “Automated measurement of nonlinearity of optical fiber powermeters,” Proc. SPIE 2550, 12-19 (1995).
[CrossRef]

S. Mukai, K. Amemiya, M. Endo, I. Vayshenker, X. Li, and S. Yang, “Bilateral optical fiber powermeter linearity comparison between NMIJ and NIST,” in Digest of Conference on Precision Electromagnetic Measurements (CPEM 2008, 2008), pp. 178-179.
[CrossRef]

I. Vayshenker, S. Yang, X. Li, T. R. Scott, and C. L. Cromer, “Optical fiber power meter nonlinearity calibrations at NIST,” NIST Special Publ. 250-56 (NIST, 2000).

S. Yang, I. Vayshenker, X. Li, M. Zander, and T. R. Scott, “Optical detector nonlinearity: Simulation,” Natl. Inst. Stand. Technol. Tech. Note 1376 (NIST, 1995).

I. Vayshenker, S. Yang, and R. Swafford, “High-power nonlinearity of optical fiber powermeters for pump lasers at 980 and 1480 nm,” Natl. Inst. Stand. Technol. Spec. Publ. 1055 (NIST, 2006), pp. 22-25.

I. Vayshenker, S. Yang, X. Li, and T. R. Scott, “Nonlinearity of optical powermeters,” Natl. Inst. Stand. Technol. Spec. Publ. 905 (1996), pp. 101-104.

S. Yang, I. Vayshenker, X. Li, and T. R. Scott, “Optical detector nonlinearity: a comparison of five methods,” presented at the Conference on Precision Electromagnetic Measurements, Boulder, Colorado, USA, 27 June-1 July, 1994.

I. Vayshenker, R. Swafford, and S. Yang, “High-power nonlinearity of optical fiber powermeters,” Natl. Inst. Stand. Technol. Spec. Publ. 1024 (NIST, 2004), pp. 145-148.

Zander, M.

S. Yang, I. Vayshenker, X. Li, M. Zander, and T. R. Scott, “Optical detector nonlinearity: Simulation,” Natl. Inst. Stand. Technol. Tech. Note 1376 (NIST, 1995).

Appl. Opt. (2)

Laser Focus World (1)

A. Jones-Bey, “Calibration method addresses high-power nonlinearities,” Laser Focus World , 33-35 (September 2006).

Metrologia (1)

L. P. Boivin, “Automated absolute and relative spectral linearity measurements on photovoltaic detectors,” Metrologia 30, 355-360 (1993).
[CrossRef]

Proc. SPIE (1)

I. Vayshenker, S. Yang, X. Li, and T. R. Scott, “Automated measurement of nonlinearity of optical fiber powermeters,” Proc. SPIE 2550, 12-19 (1995).
[CrossRef]

Other (11)

I. Vayshenker, S. Yang, X. Li, and T. R. Scott, “Nonlinearity of optical powermeters,” Natl. Inst. Stand. Technol. Spec. Publ. 905 (1996), pp. 101-104.

S. Mukai, K. Amemiya, and M. Endo, “High-precision linearity standard for high-power optical-fiber powermeters,” in Digest of Conference on Precision Electromagnetic Measurements (CPEM 2008, 2008), pp. 288-289.
[CrossRef]

ISO, Guide to the Expression of Uncertainty in Measurement (International Organization for Standardization, 1993).

B. N. Taylor and C. E. Kuyatt, “Guidelines for evaluating and expressing the uncertainty of NIST measurement results,” Natl. Inst. Stand. Technol. Tech. Note 1297 (1993).

S. Mukai, K. Amemiya, M. Endo, I. Vayshenker, X. Li, and S. Yang, “Bilateral optical fiber powermeter linearity comparison between NMIJ and NIST,” in Digest of Conference on Precision Electromagnetic Measurements (CPEM 2008, 2008), pp. 178-179.
[CrossRef]

International Standard, IEC 61315, Calibration of Fibre Optic Powermeters, ed. 2.0 (International Electrotechnical Commission, 2005).

I. Vayshenker, S. Yang, X. Li, T. R. Scott, and C. L. Cromer, “Optical fiber power meter nonlinearity calibrations at NIST,” NIST Special Publ. 250-56 (NIST, 2000).

S. Yang, I. Vayshenker, X. Li, and T. R. Scott, “Optical detector nonlinearity: a comparison of five methods,” presented at the Conference on Precision Electromagnetic Measurements, Boulder, Colorado, USA, 27 June-1 July, 1994.

S. Yang, I. Vayshenker, X. Li, M. Zander, and T. R. Scott, “Optical detector nonlinearity: Simulation,” Natl. Inst. Stand. Technol. Tech. Note 1376 (NIST, 1995).

I. Vayshenker, R. Swafford, and S. Yang, “High-power nonlinearity of optical fiber powermeters,” Natl. Inst. Stand. Technol. Spec. Publ. 1024 (NIST, 2004), pp. 145-148.

I. Vayshenker, S. Yang, and R. Swafford, “High-power nonlinearity of optical fiber powermeters for pump lasers at 980 and 1480 nm,” Natl. Inst. Stand. Technol. Spec. Publ. 1055 (NIST, 2006), pp. 22-25.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

NIST superposition measurement system.

Fig. 2
Fig. 2

NMIJ superposition measurement system.

Fig. 3
Fig. 3

NMIJ comparison measurement system.

Fig. 4
Fig. 4

Measurement results using the superposition method for both laboratories.

Fig. 5
Fig. 5

Measurement results using the NIST superposition and NMIJ comparison methods.

Tables (2)

Tables Icon

Table 1 Nonlinearity Results Using the NIST and NMIJ Superposition Methods

Tables Icon

Table 2 Nonlinearity Results Using the NIST Superposition Method and NMIJ Comparison Methods

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

n l ( P / P 0 ) = r ( P ) r ( P 0 ) 1 ,
CF 1 + 1 = CF 1 × 2 = R ( 2 ) 2 × R ( 1 ) ,
CF 2 + 2 R ( 4 ) 2 × R ( 2 ) .
CF 1 × 4 = R ( 4 ) 4 × R ( 1 ) = CF 1 + 1 × CF 2 + 2 ,
CF 1 + 4 R ( 5 ) R ( 1 ) + R ( 4 ) = R ( 5 ) R ( 1 ) + CF 1 × 4 × 4 × R ( 1 ) = R ( 5 ) R ( 1 ) · 1 1 + 4 CF 1 × 4 .
CF 1 × 5 = R ( 5 ) 5 × R ( 1 ) = CF 1 + 4 × 1 + 4 CF 1 × 4 5 ,
CF 5 + 5 R ( 10 ) 2 × R ( 5 ) .
CF 1 × 10 = R ( 10 ) 10 × R ( 1 ) = R ( 10 ) 2 × R ( 5 ) R ( 5 ) 5 × R ( 1 ) = CF 5 + 5 × CF 1 × 5 .
CF T = 1 N k = 1 N A T ( k ) ( A S ( k ) + A S ( k + 1 ) ) / 2 · CF S ( N = 3 ) ,

Metrics