Abstract

A micro Raman probe (MRP) with a 600μm diameter, which we previously reported as the narrowest achieved to date, was further improved by introducing high-quality optical filters and a collecting lens at the tip. We fabricated the MRP with a high collection efficiency, a wider collection wavelength, and a high signal-to-noise ratio. We compared two types of probes: one with a lens-tipped end and one with a flat tip. We experimentally tested the performance of these MRPs to evaluate the detection properties defined by parameters such as the optical purity against inherent Raman background noise due to optical fibers, the sensitivity, and the viewing area. Finally, we demonstrated their effectiveness in mea surements of standard Raman samples and applied them to measurements of plastic and human skin samples in situ.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Lewis and P. R. Griffiths, “Raman spectrometry with fiber-optic sampling,” Appl. Spectrosc. 50, 12A-30A (1996).
    [CrossRef]
  2. U. Utzinger and R. Richard-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J Biomed. Opt. 8, 121-147(2003).
    [CrossRef] [PubMed]
  3. R. L. McCreery, M. Fleischmann, and P. Hendra, “Fiber optic probe for remote Raman spectrometry,” Anal. Chem. 55, 146-148 (1983).
    [CrossRef]
  4. E. N. Lewis, V. F. Kalasinsky, and I. W. Levin, “Near-infrared Fourier transform Raman spectroscopy using fiber-optic assemblies,” Anal. Chem. 60, 2658-2661 (1988).
    [CrossRef] [PubMed]
  5. D. D. Archibald, L. T. Len, and D. E. Honigs, “Raman spectroscopy over optical fibers with the use of a near-IR FT spectrometer,” Appl. Spectrosc. 42, 1558-1563 (1988).
    [CrossRef]
  6. M. L. Myrick, S. M. Angel, and R. Desiderio, “Comparison of some fiber optic configurations for measurement of luminescence and Raman scattering,” Appl. Opt. 29, 1333-1344(1990).
    [CrossRef] [PubMed]
  7. M. Myrick and S. Angel, “Elimination of background in fiber-optic Raman measurements,” Appl. Spectrosc. 44, 565-570(1990).
    [CrossRef]
  8. A. J. Berger, I. Itzkan, and M. S. Feld, “Feasibility of measuring blood glucose concentration by near-infrared Raman spectroscopy,” Spectrochim. Acta, Part A 53, 287-292 (1997).
    [CrossRef]
  9. K. Tanaka, M. T. T. Pacheco, J. F. Brennan, III, I. Itzkan, A. J. Berger, R. R. Dasari, and M. S. Feld, “Compound parabolic concentrator probe for efficient light collection in spectroscopy of biological tissue,” Appl. Opt. 35, 758-763(1996).
    [CrossRef] [PubMed]
  10. A. Mahadevan-Jansen, M. F. Mitchell, N. Ramanujam, U. Utzinger, and R. Richards-Kortum, “Development of a fiber optic probe to measure NIR Raman spectra of cervical tissue in vivo,” Photochem. Photobiol. 68, 427-431 (1998).
    [CrossRef] [PubMed]
  11. A. Mahadevan-Jansen, M. F. Mitchell, N. Ramanujam, A. Malpica, S. Thomsen, U. Utzinger, and R. Richards-Kortum, “Near-infrared Raman spectroscopy for in vitro detection of cervical precancers,” Photochem. Photobiol. 68, 123-132 (1998).
    [CrossRef] [PubMed]
  12. Z. Huang, H. Zeng, I. Hamzavi, D. I. McLean, and H. Lui, “Rapid near-infrared Raman spectroscopy system for real-time in vivo skin measurements,” Opt. Lett. 26, 1782-1784 (2001).
    [CrossRef]
  13. S. Christesen, B. Maciver, L. Procell, D. Sorrick, M. Carrabba, and J. Bello, “Nonintrusive analysis of chemical agent identification sets using a portable fiber-optic Raman spectrometer,” Appl. Spectrosc. 53, 850-855 (1999).
    [CrossRef]
  14. S. D. Schwab and R. L. McCreery, “Versatile, efficient Raman sampling with fiber optics,” Anal. Chem. 56, 2199-2204(1984).
    [CrossRef]
  15. K. P. J. Williams, “Remote sampling using a fiber-optic probe in Fourier transform Raman spectroscopy,” J. Raman Spectrosc. 21, 147-151 (1990).
    [CrossRef]
  16. M. G. Shim, B. C. Wilson, E. Marple, and M. Wach, “Study of fiber-optic probes for in vivo medical Raman spectroscopy,” Appl. Spectrosc. 53, 619-627 (1999).
    [CrossRef]
  17. M. G. Shim, L.-M. W. K. Song, N. E. Marcon, and B. C. Wilson, “In vivo near-infrared Raman spectroscopy: demonstration of feasibility during clinical gastrointestinal endoscopy,” Photochem. Photobiol. 72, 146-150 (2000).
    [PubMed]
  18. H. P. Buschman, E. T. Marple, M. L. Wach, B. Bennett, T. C. Bakker Schut, H. A. Bruining, A. V. Bruschke, A. van der Laarse, and G. J. Puppels, “In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy,” Anal. Chem. 72, 3771-3775 (2000).
    [CrossRef] [PubMed]
  19. J. T. Motz, M. Hunter, L. H. Galindo, J. A. Gardecki, J. R. Kramer, R. R. Dasari, and M. S. Feld, “Optical fiber probe for biomedical Raman spectroscopy,” Appl. Opt. 43, 542-554(2004).
    [CrossRef] [PubMed]
  20. Y. Komachi, H. Sato, and H. Tashiro, “Raman probe using a single hollow waveguide,” Opt. Lett. 30, 2942-2944 (2005).
    [CrossRef] [PubMed]
  21. S. O. Konorov, C. J. Addison, H. G. Schulze, R. F. B. Turner, and M. W. Blades, “Hollow-core photonic crystal fiber-optic probes for Raman spectroscopy,” Opt. Let. 31, 1911-1913 (2006).
    [CrossRef]
  22. R. Manoharan, J. J. Baraga, M. S. Feld, and R. P. Rava, “Quantitative histochemical analysis of human artery using Raman spectroscopy,” J. Photochem. Photobiol. B 16, 211-233(1992).
    [CrossRef] [PubMed]
  23. D. C. B. Reed, Z. C. Feng, K. T. Yue, and T. S. Gansler, “Raman spectroscopic characterization of human breast tissues: implications for breast cancer diagnosis,” Appl. Spectrosc. 47, 787-791 (1993).
    [CrossRef]
  24. C. J. Frank, R. L. McCreery, and D. C. B. Reed, “Raman spectroscopy of normal and diseased human breast tissues,” Anal. Chem. 67, 777-783 (1995).
    [CrossRef] [PubMed]
  25. J. Ma and Y.-S. Li, “Fiber Raman background study and its application in setting up optical fiber Raman probes,” Appl. Opt. 35, 2527-2533 (1996).
    [CrossRef] [PubMed]
  26. T. F. Cooney, H. T. Skinner, and S. M. Angel, “Comparative study of some fiber-optic remote Raman probe designs. Part I: model for liquids and transparent solids,” Appl. Spectrosc. 50, 836-848 (1996).
    [CrossRef]
  27. M. G. Shim and B. C. Wilson, “Development of an in vivoRaman spectroscopic system for diagnostic applications,” J. Raman Spectrosc. 28, 131-142 (1997).
    [CrossRef]
  28. A. Mahadevan-Jansen and E. Richards-Kortum, “Raman spectroscopy for the detection of cancers and precancers,” J Biomed. Opt. 1, 31-70 (1996).
    [CrossRef]
  29. S. Brown, F. P. Milanovich, and K. Kyle, “Design of a cone-penetrometer-compatible probe and housing: the LLNL Raman probe,” Rev. Sci. Instrum. 70, 3735-3743 (1999).
    [CrossRef]
  30. M. Wach, B. Bennett, T. C. Bakker Schut, H. A. Bruining, A. V. Bruschke, A. van der Laarse, and G. J. Puppels, “In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy,” Anal. Chem. 72, 3771-3775 (2000).
    [CrossRef] [PubMed]
  31. C. J. de Lima, S. Sathaiah, L. Silveira, Jr., R. A. Zângaro, and M. T. T. Pacheco, “Development of catheters with low fiber background signals for Raman spectroscopic diagnosis applications,” Artificial Organs 24, 231-234 (2000).
    [CrossRef] [PubMed]
  32. U. Utzinger, D. L. Heintzelman, A. Mahadevan-Jansen, A. Malpica, M. Follen, and R. Richards-Kortum, “Near-infrared Raman spectroscopy for in vivo detection of cervical precancers,” Appl. Spectrosc. 55, 955-959 (2001).
    [CrossRef]
  33. S. Kaminaka, T. Ito, H. Yamazaki, E. Kohda, and H. Hamaguchi, “Near-infrared multichannel Raman spectroscopy toward real-time in vivo cancer diagnosis,” J. Raman Spectrosc. 33, 498-502 (2002).
    [CrossRef]
  34. L.-P. Choo-Smith, H. G. M. Edwards, H. P. Endtz, J. M. Kros, F. Heule, H. Barr, J. S. Robinson, Jr., H. A. Bruining, and G. J. Puppels, “Medical applications of Raman spectroscopy: from proof of principle to clinical implementation,” Biopolymers 67, 1-9 (2002).
    [CrossRef] [PubMed]
  35. C. J. Barbosa, F. H. Vaillancourt, L. D. Eltis, M. W. Blades, and R. F. B. Turner, “The power distribution advantage of fiber-optic coupled ultraviolet resonance Raman spectroscopy for bioanalytical and biomedical applications,” J. Raman Spectrosc. 33, 503-510 (2002).
    [CrossRef]
  36. P. J. Caspers, G. W. Lucassen, and G. J. Puppels, “Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin,” Biophys. J. 85, 572-580 (2003).
    [CrossRef] [PubMed]
  37. S. Sigurdsson, P. A. Philipsen, L. K. Hansen, J. Larsen, M. Gniadecka, and H. C. Wulf, “Detection of skin cancer by classification of Raman spectra,” IEEE Trans. Biomed. Eng. 51, 1784-1793 (2004).
    [CrossRef] [PubMed]
  38. S. Achenbach, F. Moselewski, D. Ropers, M. Ferencik, U. Hoffmannm, B. MacNeill, K. Pohle, U. Baum, K. Anders, I. K. Jang, W. G. Daniel, and T. J. Brady, “Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced submillimeter multidetector spiral computed tomography a segment-based comparison with intravascular ultrasound,” Circulation 109, 14-17 (2004).
    [CrossRef]
  39. C. J. de Lima, S. Sathaiah, M. T. T. Pacheco, R. A. Zângaro, and R. Manoharan, “Side-viewing fiberoptic catheter for biospectroscopy application,” Lasers Med. Sci. 19, 15-20(2004).
    [PubMed]
  40. A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102, 12371-12376 (2005).
    [CrossRef] [PubMed]
  41. J. T. Motz, S. J. Gandhi, O. R. Scepanovic, A. S. Haka, J. R. Kramer, R. R. Dasari, and M. S. Feld, “Real-time Raman system for in vivo disease diagnosis,” J Biomed. Opt. 10, 031113 (2005).
    [CrossRef] [PubMed]
  42. X. Yan, R. Dong, L. Zhang, and Z. Zhang, “Raman spectra of single cell from gastrointestinal cancer patients,” World J. Gastroenterol. 11, 3290-3292 (2005).
    [PubMed]
  43. S. Koljenovic, T. C. Bakker Schut, R. Wolthuis, A. J. P. E. Vincent, G. Hendriks-Hagevi, L. Santos, J. M. Kros, and G. J. Puppels, “Raman spectroscopic characterization of porcine brain tissue using a single fiber-optic probe,” Anal. Chem. 79, 557-564 (2007).
    [CrossRef] [PubMed]
  44. M. A. Short, S. Lam, A. McWilliams, J. Zhao, H. Lui, and H. Zeng, “Development and preliminary results of an endoscopic Raman probe for potential in vivo diagnosis of lung cancers,” Opt. Lett. 33, 711-713 (2008).
    [CrossRef] [PubMed]
  45. Y. Komachi, H. Sato, K. Aizawa, and H. Tashiro, “Micro-optical fiber probe for use in an intravascular Raman endoscope,” Appl. Opt. 44, 4722-4732 (2005).
    [CrossRef] [PubMed]
  46. Y. Komachi, H. Sato, and H. Tashiro, “Intravascular Raman spectroscopic catheter for molecular diagnosis of atherosclerotic coronary disease,” Appl. Opt. 45, 7938-7943 (2006).
    [CrossRef] [PubMed]
  47. Y. Hattori, Y. Komachi, T. Asakura, T. Shimosegawa, G. Kanai, H. Tashiro, and H. Sato, “In vivo Raman study of the living rat esophagus and stomach using a micro-Raman probe under an endoscope,” Appl. Spectrosc. 61, 579-584(2007).
    [CrossRef] [PubMed]
  48. R. L. McCreery, Raman Spectroscopy for Chemical Analysis (Wiley, 2000), pp. 36-37.
  49. J. F. Brennan, Y. Wang, R. R. Dasari, and M. S. Feld, “Near-infrared Raman spectrometer systems for human tissue studies,” Appl. Spectrosc. 51, 201-208 (1997).
    [CrossRef]

2008

2007

Y. Hattori, Y. Komachi, T. Asakura, T. Shimosegawa, G. Kanai, H. Tashiro, and H. Sato, “In vivo Raman study of the living rat esophagus and stomach using a micro-Raman probe under an endoscope,” Appl. Spectrosc. 61, 579-584(2007).
[CrossRef] [PubMed]

S. Koljenovic, T. C. Bakker Schut, R. Wolthuis, A. J. P. E. Vincent, G. Hendriks-Hagevi, L. Santos, J. M. Kros, and G. J. Puppels, “Raman spectroscopic characterization of porcine brain tissue using a single fiber-optic probe,” Anal. Chem. 79, 557-564 (2007).
[CrossRef] [PubMed]

2006

Y. Komachi, H. Sato, and H. Tashiro, “Intravascular Raman spectroscopic catheter for molecular diagnosis of atherosclerotic coronary disease,” Appl. Opt. 45, 7938-7943 (2006).
[CrossRef] [PubMed]

S. O. Konorov, C. J. Addison, H. G. Schulze, R. F. B. Turner, and M. W. Blades, “Hollow-core photonic crystal fiber-optic probes for Raman spectroscopy,” Opt. Let. 31, 1911-1913 (2006).
[CrossRef]

2005

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102, 12371-12376 (2005).
[CrossRef] [PubMed]

J. T. Motz, S. J. Gandhi, O. R. Scepanovic, A. S. Haka, J. R. Kramer, R. R. Dasari, and M. S. Feld, “Real-time Raman system for in vivo disease diagnosis,” J Biomed. Opt. 10, 031113 (2005).
[CrossRef] [PubMed]

X. Yan, R. Dong, L. Zhang, and Z. Zhang, “Raman spectra of single cell from gastrointestinal cancer patients,” World J. Gastroenterol. 11, 3290-3292 (2005).
[PubMed]

Y. Komachi, H. Sato, K. Aizawa, and H. Tashiro, “Micro-optical fiber probe for use in an intravascular Raman endoscope,” Appl. Opt. 44, 4722-4732 (2005).
[CrossRef] [PubMed]

Y. Komachi, H. Sato, and H. Tashiro, “Raman probe using a single hollow waveguide,” Opt. Lett. 30, 2942-2944 (2005).
[CrossRef] [PubMed]

2004

J. T. Motz, M. Hunter, L. H. Galindo, J. A. Gardecki, J. R. Kramer, R. R. Dasari, and M. S. Feld, “Optical fiber probe for biomedical Raman spectroscopy,” Appl. Opt. 43, 542-554(2004).
[CrossRef] [PubMed]

S. Sigurdsson, P. A. Philipsen, L. K. Hansen, J. Larsen, M. Gniadecka, and H. C. Wulf, “Detection of skin cancer by classification of Raman spectra,” IEEE Trans. Biomed. Eng. 51, 1784-1793 (2004).
[CrossRef] [PubMed]

S. Achenbach, F. Moselewski, D. Ropers, M. Ferencik, U. Hoffmannm, B. MacNeill, K. Pohle, U. Baum, K. Anders, I. K. Jang, W. G. Daniel, and T. J. Brady, “Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced submillimeter multidetector spiral computed tomography a segment-based comparison with intravascular ultrasound,” Circulation 109, 14-17 (2004).
[CrossRef]

C. J. de Lima, S. Sathaiah, M. T. T. Pacheco, R. A. Zângaro, and R. Manoharan, “Side-viewing fiberoptic catheter for biospectroscopy application,” Lasers Med. Sci. 19, 15-20(2004).
[PubMed]

2003

P. J. Caspers, G. W. Lucassen, and G. J. Puppels, “Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin,” Biophys. J. 85, 572-580 (2003).
[CrossRef] [PubMed]

U. Utzinger and R. Richard-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J Biomed. Opt. 8, 121-147(2003).
[CrossRef] [PubMed]

2002

S. Kaminaka, T. Ito, H. Yamazaki, E. Kohda, and H. Hamaguchi, “Near-infrared multichannel Raman spectroscopy toward real-time in vivo cancer diagnosis,” J. Raman Spectrosc. 33, 498-502 (2002).
[CrossRef]

L.-P. Choo-Smith, H. G. M. Edwards, H. P. Endtz, J. M. Kros, F. Heule, H. Barr, J. S. Robinson, Jr., H. A. Bruining, and G. J. Puppels, “Medical applications of Raman spectroscopy: from proof of principle to clinical implementation,” Biopolymers 67, 1-9 (2002).
[CrossRef] [PubMed]

C. J. Barbosa, F. H. Vaillancourt, L. D. Eltis, M. W. Blades, and R. F. B. Turner, “The power distribution advantage of fiber-optic coupled ultraviolet resonance Raman spectroscopy for bioanalytical and biomedical applications,” J. Raman Spectrosc. 33, 503-510 (2002).
[CrossRef]

2001

2000

M. G. Shim, L.-M. W. K. Song, N. E. Marcon, and B. C. Wilson, “In vivo near-infrared Raman spectroscopy: demonstration of feasibility during clinical gastrointestinal endoscopy,” Photochem. Photobiol. 72, 146-150 (2000).
[PubMed]

H. P. Buschman, E. T. Marple, M. L. Wach, B. Bennett, T. C. Bakker Schut, H. A. Bruining, A. V. Bruschke, A. van der Laarse, and G. J. Puppels, “In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy,” Anal. Chem. 72, 3771-3775 (2000).
[CrossRef] [PubMed]

M. Wach, B. Bennett, T. C. Bakker Schut, H. A. Bruining, A. V. Bruschke, A. van der Laarse, and G. J. Puppels, “In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy,” Anal. Chem. 72, 3771-3775 (2000).
[CrossRef] [PubMed]

C. J. de Lima, S. Sathaiah, L. Silveira, Jr., R. A. Zângaro, and M. T. T. Pacheco, “Development of catheters with low fiber background signals for Raman spectroscopic diagnosis applications,” Artificial Organs 24, 231-234 (2000).
[CrossRef] [PubMed]

1999

1998

A. Mahadevan-Jansen, M. F. Mitchell, N. Ramanujam, U. Utzinger, and R. Richards-Kortum, “Development of a fiber optic probe to measure NIR Raman spectra of cervical tissue in vivo,” Photochem. Photobiol. 68, 427-431 (1998).
[CrossRef] [PubMed]

A. Mahadevan-Jansen, M. F. Mitchell, N. Ramanujam, A. Malpica, S. Thomsen, U. Utzinger, and R. Richards-Kortum, “Near-infrared Raman spectroscopy for in vitro detection of cervical precancers,” Photochem. Photobiol. 68, 123-132 (1998).
[CrossRef] [PubMed]

1997

A. J. Berger, I. Itzkan, and M. S. Feld, “Feasibility of measuring blood glucose concentration by near-infrared Raman spectroscopy,” Spectrochim. Acta, Part A 53, 287-292 (1997).
[CrossRef]

M. G. Shim and B. C. Wilson, “Development of an in vivoRaman spectroscopic system for diagnostic applications,” J. Raman Spectrosc. 28, 131-142 (1997).
[CrossRef]

J. F. Brennan, Y. Wang, R. R. Dasari, and M. S. Feld, “Near-infrared Raman spectrometer systems for human tissue studies,” Appl. Spectrosc. 51, 201-208 (1997).
[CrossRef]

1996

1995

C. J. Frank, R. L. McCreery, and D. C. B. Reed, “Raman spectroscopy of normal and diseased human breast tissues,” Anal. Chem. 67, 777-783 (1995).
[CrossRef] [PubMed]

1993

1992

R. Manoharan, J. J. Baraga, M. S. Feld, and R. P. Rava, “Quantitative histochemical analysis of human artery using Raman spectroscopy,” J. Photochem. Photobiol. B 16, 211-233(1992).
[CrossRef] [PubMed]

1990

1988

E. N. Lewis, V. F. Kalasinsky, and I. W. Levin, “Near-infrared Fourier transform Raman spectroscopy using fiber-optic assemblies,” Anal. Chem. 60, 2658-2661 (1988).
[CrossRef] [PubMed]

D. D. Archibald, L. T. Len, and D. E. Honigs, “Raman spectroscopy over optical fibers with the use of a near-IR FT spectrometer,” Appl. Spectrosc. 42, 1558-1563 (1988).
[CrossRef]

1984

S. D. Schwab and R. L. McCreery, “Versatile, efficient Raman sampling with fiber optics,” Anal. Chem. 56, 2199-2204(1984).
[CrossRef]

1983

R. L. McCreery, M. Fleischmann, and P. Hendra, “Fiber optic probe for remote Raman spectrometry,” Anal. Chem. 55, 146-148 (1983).
[CrossRef]

Achenbach, S.

S. Achenbach, F. Moselewski, D. Ropers, M. Ferencik, U. Hoffmannm, B. MacNeill, K. Pohle, U. Baum, K. Anders, I. K. Jang, W. G. Daniel, and T. J. Brady, “Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced submillimeter multidetector spiral computed tomography a segment-based comparison with intravascular ultrasound,” Circulation 109, 14-17 (2004).
[CrossRef]

Addison, C. J.

S. O. Konorov, C. J. Addison, H. G. Schulze, R. F. B. Turner, and M. W. Blades, “Hollow-core photonic crystal fiber-optic probes for Raman spectroscopy,” Opt. Let. 31, 1911-1913 (2006).
[CrossRef]

Aizawa, K.

Anders, K.

S. Achenbach, F. Moselewski, D. Ropers, M. Ferencik, U. Hoffmannm, B. MacNeill, K. Pohle, U. Baum, K. Anders, I. K. Jang, W. G. Daniel, and T. J. Brady, “Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced submillimeter multidetector spiral computed tomography a segment-based comparison with intravascular ultrasound,” Circulation 109, 14-17 (2004).
[CrossRef]

Angel, S.

Angel, S. M.

Archibald, D. D.

Asakura, T.

Bakker Schut, T. C.

S. Koljenovic, T. C. Bakker Schut, R. Wolthuis, A. J. P. E. Vincent, G. Hendriks-Hagevi, L. Santos, J. M. Kros, and G. J. Puppels, “Raman spectroscopic characterization of porcine brain tissue using a single fiber-optic probe,” Anal. Chem. 79, 557-564 (2007).
[CrossRef] [PubMed]

M. Wach, B. Bennett, T. C. Bakker Schut, H. A. Bruining, A. V. Bruschke, A. van der Laarse, and G. J. Puppels, “In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy,” Anal. Chem. 72, 3771-3775 (2000).
[CrossRef] [PubMed]

H. P. Buschman, E. T. Marple, M. L. Wach, B. Bennett, T. C. Bakker Schut, H. A. Bruining, A. V. Bruschke, A. van der Laarse, and G. J. Puppels, “In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy,” Anal. Chem. 72, 3771-3775 (2000).
[CrossRef] [PubMed]

Baraga, J. J.

R. Manoharan, J. J. Baraga, M. S. Feld, and R. P. Rava, “Quantitative histochemical analysis of human artery using Raman spectroscopy,” J. Photochem. Photobiol. B 16, 211-233(1992).
[CrossRef] [PubMed]

Barbosa, C. J.

C. J. Barbosa, F. H. Vaillancourt, L. D. Eltis, M. W. Blades, and R. F. B. Turner, “The power distribution advantage of fiber-optic coupled ultraviolet resonance Raman spectroscopy for bioanalytical and biomedical applications,” J. Raman Spectrosc. 33, 503-510 (2002).
[CrossRef]

Barr, H.

L.-P. Choo-Smith, H. G. M. Edwards, H. P. Endtz, J. M. Kros, F. Heule, H. Barr, J. S. Robinson, Jr., H. A. Bruining, and G. J. Puppels, “Medical applications of Raman spectroscopy: from proof of principle to clinical implementation,” Biopolymers 67, 1-9 (2002).
[CrossRef] [PubMed]

Baum, U.

S. Achenbach, F. Moselewski, D. Ropers, M. Ferencik, U. Hoffmannm, B. MacNeill, K. Pohle, U. Baum, K. Anders, I. K. Jang, W. G. Daniel, and T. J. Brady, “Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced submillimeter multidetector spiral computed tomography a segment-based comparison with intravascular ultrasound,” Circulation 109, 14-17 (2004).
[CrossRef]

Bello, J.

Bennett, B.

M. Wach, B. Bennett, T. C. Bakker Schut, H. A. Bruining, A. V. Bruschke, A. van der Laarse, and G. J. Puppels, “In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy,” Anal. Chem. 72, 3771-3775 (2000).
[CrossRef] [PubMed]

H. P. Buschman, E. T. Marple, M. L. Wach, B. Bennett, T. C. Bakker Schut, H. A. Bruining, A. V. Bruschke, A. van der Laarse, and G. J. Puppels, “In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy,” Anal. Chem. 72, 3771-3775 (2000).
[CrossRef] [PubMed]

Berger, A. J.

Blades, M. W.

S. O. Konorov, C. J. Addison, H. G. Schulze, R. F. B. Turner, and M. W. Blades, “Hollow-core photonic crystal fiber-optic probes for Raman spectroscopy,” Opt. Let. 31, 1911-1913 (2006).
[CrossRef]

C. J. Barbosa, F. H. Vaillancourt, L. D. Eltis, M. W. Blades, and R. F. B. Turner, “The power distribution advantage of fiber-optic coupled ultraviolet resonance Raman spectroscopy for bioanalytical and biomedical applications,” J. Raman Spectrosc. 33, 503-510 (2002).
[CrossRef]

Brady, T. J.

S. Achenbach, F. Moselewski, D. Ropers, M. Ferencik, U. Hoffmannm, B. MacNeill, K. Pohle, U. Baum, K. Anders, I. K. Jang, W. G. Daniel, and T. J. Brady, “Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced submillimeter multidetector spiral computed tomography a segment-based comparison with intravascular ultrasound,” Circulation 109, 14-17 (2004).
[CrossRef]

Brennan, J. F.

Brown, S.

S. Brown, F. P. Milanovich, and K. Kyle, “Design of a cone-penetrometer-compatible probe and housing: the LLNL Raman probe,” Rev. Sci. Instrum. 70, 3735-3743 (1999).
[CrossRef]

Bruining, H. A.

L.-P. Choo-Smith, H. G. M. Edwards, H. P. Endtz, J. M. Kros, F. Heule, H. Barr, J. S. Robinson, Jr., H. A. Bruining, and G. J. Puppels, “Medical applications of Raman spectroscopy: from proof of principle to clinical implementation,” Biopolymers 67, 1-9 (2002).
[CrossRef] [PubMed]

M. Wach, B. Bennett, T. C. Bakker Schut, H. A. Bruining, A. V. Bruschke, A. van der Laarse, and G. J. Puppels, “In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy,” Anal. Chem. 72, 3771-3775 (2000).
[CrossRef] [PubMed]

H. P. Buschman, E. T. Marple, M. L. Wach, B. Bennett, T. C. Bakker Schut, H. A. Bruining, A. V. Bruschke, A. van der Laarse, and G. J. Puppels, “In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy,” Anal. Chem. 72, 3771-3775 (2000).
[CrossRef] [PubMed]

Bruschke, A. V.

H. P. Buschman, E. T. Marple, M. L. Wach, B. Bennett, T. C. Bakker Schut, H. A. Bruining, A. V. Bruschke, A. van der Laarse, and G. J. Puppels, “In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy,” Anal. Chem. 72, 3771-3775 (2000).
[CrossRef] [PubMed]

M. Wach, B. Bennett, T. C. Bakker Schut, H. A. Bruining, A. V. Bruschke, A. van der Laarse, and G. J. Puppels, “In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy,” Anal. Chem. 72, 3771-3775 (2000).
[CrossRef] [PubMed]

Buschman, H. P.

H. P. Buschman, E. T. Marple, M. L. Wach, B. Bennett, T. C. Bakker Schut, H. A. Bruining, A. V. Bruschke, A. van der Laarse, and G. J. Puppels, “In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy,” Anal. Chem. 72, 3771-3775 (2000).
[CrossRef] [PubMed]

Carrabba, M.

Caspers, P. J.

P. J. Caspers, G. W. Lucassen, and G. J. Puppels, “Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin,” Biophys. J. 85, 572-580 (2003).
[CrossRef] [PubMed]

Choo-Smith, L.-P.

L.-P. Choo-Smith, H. G. M. Edwards, H. P. Endtz, J. M. Kros, F. Heule, H. Barr, J. S. Robinson, Jr., H. A. Bruining, and G. J. Puppels, “Medical applications of Raman spectroscopy: from proof of principle to clinical implementation,” Biopolymers 67, 1-9 (2002).
[CrossRef] [PubMed]

Christesen, S.

Cooney, T. F.

Crowe, J.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102, 12371-12376 (2005).
[CrossRef] [PubMed]

Daniel, W. G.

S. Achenbach, F. Moselewski, D. Ropers, M. Ferencik, U. Hoffmannm, B. MacNeill, K. Pohle, U. Baum, K. Anders, I. K. Jang, W. G. Daniel, and T. J. Brady, “Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced submillimeter multidetector spiral computed tomography a segment-based comparison with intravascular ultrasound,” Circulation 109, 14-17 (2004).
[CrossRef]

Dasari, R. R.

de Lima, C. J.

C. J. de Lima, S. Sathaiah, M. T. T. Pacheco, R. A. Zângaro, and R. Manoharan, “Side-viewing fiberoptic catheter for biospectroscopy application,” Lasers Med. Sci. 19, 15-20(2004).
[PubMed]

C. J. de Lima, S. Sathaiah, L. Silveira, Jr., R. A. Zângaro, and M. T. T. Pacheco, “Development of catheters with low fiber background signals for Raman spectroscopic diagnosis applications,” Artificial Organs 24, 231-234 (2000).
[CrossRef] [PubMed]

Desiderio, R.

Dong, R.

X. Yan, R. Dong, L. Zhang, and Z. Zhang, “Raman spectra of single cell from gastrointestinal cancer patients,” World J. Gastroenterol. 11, 3290-3292 (2005).
[PubMed]

Edwards, H. G. M.

L.-P. Choo-Smith, H. G. M. Edwards, H. P. Endtz, J. M. Kros, F. Heule, H. Barr, J. S. Robinson, Jr., H. A. Bruining, and G. J. Puppels, “Medical applications of Raman spectroscopy: from proof of principle to clinical implementation,” Biopolymers 67, 1-9 (2002).
[CrossRef] [PubMed]

Eltis, L. D.

C. J. Barbosa, F. H. Vaillancourt, L. D. Eltis, M. W. Blades, and R. F. B. Turner, “The power distribution advantage of fiber-optic coupled ultraviolet resonance Raman spectroscopy for bioanalytical and biomedical applications,” J. Raman Spectrosc. 33, 503-510 (2002).
[CrossRef]

Endtz, H. P.

L.-P. Choo-Smith, H. G. M. Edwards, H. P. Endtz, J. M. Kros, F. Heule, H. Barr, J. S. Robinson, Jr., H. A. Bruining, and G. J. Puppels, “Medical applications of Raman spectroscopy: from proof of principle to clinical implementation,” Biopolymers 67, 1-9 (2002).
[CrossRef] [PubMed]

Feld, M. S.

J. T. Motz, S. J. Gandhi, O. R. Scepanovic, A. S. Haka, J. R. Kramer, R. R. Dasari, and M. S. Feld, “Real-time Raman system for in vivo disease diagnosis,” J Biomed. Opt. 10, 031113 (2005).
[CrossRef] [PubMed]

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102, 12371-12376 (2005).
[CrossRef] [PubMed]

J. T. Motz, M. Hunter, L. H. Galindo, J. A. Gardecki, J. R. Kramer, R. R. Dasari, and M. S. Feld, “Optical fiber probe for biomedical Raman spectroscopy,” Appl. Opt. 43, 542-554(2004).
[CrossRef] [PubMed]

A. J. Berger, I. Itzkan, and M. S. Feld, “Feasibility of measuring blood glucose concentration by near-infrared Raman spectroscopy,” Spectrochim. Acta, Part A 53, 287-292 (1997).
[CrossRef]

J. F. Brennan, Y. Wang, R. R. Dasari, and M. S. Feld, “Near-infrared Raman spectrometer systems for human tissue studies,” Appl. Spectrosc. 51, 201-208 (1997).
[CrossRef]

K. Tanaka, M. T. T. Pacheco, J. F. Brennan, III, I. Itzkan, A. J. Berger, R. R. Dasari, and M. S. Feld, “Compound parabolic concentrator probe for efficient light collection in spectroscopy of biological tissue,” Appl. Opt. 35, 758-763(1996).
[CrossRef] [PubMed]

R. Manoharan, J. J. Baraga, M. S. Feld, and R. P. Rava, “Quantitative histochemical analysis of human artery using Raman spectroscopy,” J. Photochem. Photobiol. B 16, 211-233(1992).
[CrossRef] [PubMed]

Feng, Z. C.

Ferencik, M.

S. Achenbach, F. Moselewski, D. Ropers, M. Ferencik, U. Hoffmannm, B. MacNeill, K. Pohle, U. Baum, K. Anders, I. K. Jang, W. G. Daniel, and T. J. Brady, “Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced submillimeter multidetector spiral computed tomography a segment-based comparison with intravascular ultrasound,” Circulation 109, 14-17 (2004).
[CrossRef]

Fitzmaurice, M.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102, 12371-12376 (2005).
[CrossRef] [PubMed]

Fleischmann, M.

R. L. McCreery, M. Fleischmann, and P. Hendra, “Fiber optic probe for remote Raman spectrometry,” Anal. Chem. 55, 146-148 (1983).
[CrossRef]

Follen, M.

Frank, C. J.

C. J. Frank, R. L. McCreery, and D. C. B. Reed, “Raman spectroscopy of normal and diseased human breast tissues,” Anal. Chem. 67, 777-783 (1995).
[CrossRef] [PubMed]

Galindo, L. H.

Gandhi, S. J.

J. T. Motz, S. J. Gandhi, O. R. Scepanovic, A. S. Haka, J. R. Kramer, R. R. Dasari, and M. S. Feld, “Real-time Raman system for in vivo disease diagnosis,” J Biomed. Opt. 10, 031113 (2005).
[CrossRef] [PubMed]

Gansler, T. S.

Gardecki, J. A.

Gniadecka, M.

S. Sigurdsson, P. A. Philipsen, L. K. Hansen, J. Larsen, M. Gniadecka, and H. C. Wulf, “Detection of skin cancer by classification of Raman spectra,” IEEE Trans. Biomed. Eng. 51, 1784-1793 (2004).
[CrossRef] [PubMed]

Griffiths, P. R.

Haka, A. S.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102, 12371-12376 (2005).
[CrossRef] [PubMed]

J. T. Motz, S. J. Gandhi, O. R. Scepanovic, A. S. Haka, J. R. Kramer, R. R. Dasari, and M. S. Feld, “Real-time Raman system for in vivo disease diagnosis,” J Biomed. Opt. 10, 031113 (2005).
[CrossRef] [PubMed]

Hamaguchi, H.

S. Kaminaka, T. Ito, H. Yamazaki, E. Kohda, and H. Hamaguchi, “Near-infrared multichannel Raman spectroscopy toward real-time in vivo cancer diagnosis,” J. Raman Spectrosc. 33, 498-502 (2002).
[CrossRef]

Hamzavi, I.

Hansen, L. K.

S. Sigurdsson, P. A. Philipsen, L. K. Hansen, J. Larsen, M. Gniadecka, and H. C. Wulf, “Detection of skin cancer by classification of Raman spectra,” IEEE Trans. Biomed. Eng. 51, 1784-1793 (2004).
[CrossRef] [PubMed]

Hattori, Y.

Heintzelman, D. L.

Hendra, P.

R. L. McCreery, M. Fleischmann, and P. Hendra, “Fiber optic probe for remote Raman spectrometry,” Anal. Chem. 55, 146-148 (1983).
[CrossRef]

Hendriks-Hagevi, G.

S. Koljenovic, T. C. Bakker Schut, R. Wolthuis, A. J. P. E. Vincent, G. Hendriks-Hagevi, L. Santos, J. M. Kros, and G. J. Puppels, “Raman spectroscopic characterization of porcine brain tissue using a single fiber-optic probe,” Anal. Chem. 79, 557-564 (2007).
[CrossRef] [PubMed]

Heule, F.

L.-P. Choo-Smith, H. G. M. Edwards, H. P. Endtz, J. M. Kros, F. Heule, H. Barr, J. S. Robinson, Jr., H. A. Bruining, and G. J. Puppels, “Medical applications of Raman spectroscopy: from proof of principle to clinical implementation,” Biopolymers 67, 1-9 (2002).
[CrossRef] [PubMed]

Hoffmannm, U.

S. Achenbach, F. Moselewski, D. Ropers, M. Ferencik, U. Hoffmannm, B. MacNeill, K. Pohle, U. Baum, K. Anders, I. K. Jang, W. G. Daniel, and T. J. Brady, “Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced submillimeter multidetector spiral computed tomography a segment-based comparison with intravascular ultrasound,” Circulation 109, 14-17 (2004).
[CrossRef]

Honigs, D. E.

Huang, Z.

Hunter, M.

Ito, T.

S. Kaminaka, T. Ito, H. Yamazaki, E. Kohda, and H. Hamaguchi, “Near-infrared multichannel Raman spectroscopy toward real-time in vivo cancer diagnosis,” J. Raman Spectrosc. 33, 498-502 (2002).
[CrossRef]

Itzkan, I.

Jang, I. K.

S. Achenbach, F. Moselewski, D. Ropers, M. Ferencik, U. Hoffmannm, B. MacNeill, K. Pohle, U. Baum, K. Anders, I. K. Jang, W. G. Daniel, and T. J. Brady, “Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced submillimeter multidetector spiral computed tomography a segment-based comparison with intravascular ultrasound,” Circulation 109, 14-17 (2004).
[CrossRef]

Kalasinsky, V. F.

E. N. Lewis, V. F. Kalasinsky, and I. W. Levin, “Near-infrared Fourier transform Raman spectroscopy using fiber-optic assemblies,” Anal. Chem. 60, 2658-2661 (1988).
[CrossRef] [PubMed]

Kaminaka, S.

S. Kaminaka, T. Ito, H. Yamazaki, E. Kohda, and H. Hamaguchi, “Near-infrared multichannel Raman spectroscopy toward real-time in vivo cancer diagnosis,” J. Raman Spectrosc. 33, 498-502 (2002).
[CrossRef]

Kanai, G.

Kohda, E.

S. Kaminaka, T. Ito, H. Yamazaki, E. Kohda, and H. Hamaguchi, “Near-infrared multichannel Raman spectroscopy toward real-time in vivo cancer diagnosis,” J. Raman Spectrosc. 33, 498-502 (2002).
[CrossRef]

Koljenovic, S.

S. Koljenovic, T. C. Bakker Schut, R. Wolthuis, A. J. P. E. Vincent, G. Hendriks-Hagevi, L. Santos, J. M. Kros, and G. J. Puppels, “Raman spectroscopic characterization of porcine brain tissue using a single fiber-optic probe,” Anal. Chem. 79, 557-564 (2007).
[CrossRef] [PubMed]

Komachi, Y.

Konorov, S. O.

S. O. Konorov, C. J. Addison, H. G. Schulze, R. F. B. Turner, and M. W. Blades, “Hollow-core photonic crystal fiber-optic probes for Raman spectroscopy,” Opt. Let. 31, 1911-1913 (2006).
[CrossRef]

Kramer, J. R.

J. T. Motz, S. J. Gandhi, O. R. Scepanovic, A. S. Haka, J. R. Kramer, R. R. Dasari, and M. S. Feld, “Real-time Raman system for in vivo disease diagnosis,” J Biomed. Opt. 10, 031113 (2005).
[CrossRef] [PubMed]

J. T. Motz, M. Hunter, L. H. Galindo, J. A. Gardecki, J. R. Kramer, R. R. Dasari, and M. S. Feld, “Optical fiber probe for biomedical Raman spectroscopy,” Appl. Opt. 43, 542-554(2004).
[CrossRef] [PubMed]

Kros, J. M.

S. Koljenovic, T. C. Bakker Schut, R. Wolthuis, A. J. P. E. Vincent, G. Hendriks-Hagevi, L. Santos, J. M. Kros, and G. J. Puppels, “Raman spectroscopic characterization of porcine brain tissue using a single fiber-optic probe,” Anal. Chem. 79, 557-564 (2007).
[CrossRef] [PubMed]

L.-P. Choo-Smith, H. G. M. Edwards, H. P. Endtz, J. M. Kros, F. Heule, H. Barr, J. S. Robinson, Jr., H. A. Bruining, and G. J. Puppels, “Medical applications of Raman spectroscopy: from proof of principle to clinical implementation,” Biopolymers 67, 1-9 (2002).
[CrossRef] [PubMed]

Kyle, K.

S. Brown, F. P. Milanovich, and K. Kyle, “Design of a cone-penetrometer-compatible probe and housing: the LLNL Raman probe,” Rev. Sci. Instrum. 70, 3735-3743 (1999).
[CrossRef]

Lam, S.

Larsen, J.

S. Sigurdsson, P. A. Philipsen, L. K. Hansen, J. Larsen, M. Gniadecka, and H. C. Wulf, “Detection of skin cancer by classification of Raman spectra,” IEEE Trans. Biomed. Eng. 51, 1784-1793 (2004).
[CrossRef] [PubMed]

Len, L. T.

Levin, I. W.

E. N. Lewis, V. F. Kalasinsky, and I. W. Levin, “Near-infrared Fourier transform Raman spectroscopy using fiber-optic assemblies,” Anal. Chem. 60, 2658-2661 (1988).
[CrossRef] [PubMed]

Lewis, E. N.

E. N. Lewis, V. F. Kalasinsky, and I. W. Levin, “Near-infrared Fourier transform Raman spectroscopy using fiber-optic assemblies,” Anal. Chem. 60, 2658-2661 (1988).
[CrossRef] [PubMed]

Lewis, R.

Li, Y.-S.

Lucassen, G. W.

P. J. Caspers, G. W. Lucassen, and G. J. Puppels, “Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin,” Biophys. J. 85, 572-580 (2003).
[CrossRef] [PubMed]

Lui, H.

Ma, J.

Maciver, B.

MacNeill, B.

S. Achenbach, F. Moselewski, D. Ropers, M. Ferencik, U. Hoffmannm, B. MacNeill, K. Pohle, U. Baum, K. Anders, I. K. Jang, W. G. Daniel, and T. J. Brady, “Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced submillimeter multidetector spiral computed tomography a segment-based comparison with intravascular ultrasound,” Circulation 109, 14-17 (2004).
[CrossRef]

Mahadevan-Jansen, A.

U. Utzinger, D. L. Heintzelman, A. Mahadevan-Jansen, A. Malpica, M. Follen, and R. Richards-Kortum, “Near-infrared Raman spectroscopy for in vivo detection of cervical precancers,” Appl. Spectrosc. 55, 955-959 (2001).
[CrossRef]

A. Mahadevan-Jansen, M. F. Mitchell, N. Ramanujam, A. Malpica, S. Thomsen, U. Utzinger, and R. Richards-Kortum, “Near-infrared Raman spectroscopy for in vitro detection of cervical precancers,” Photochem. Photobiol. 68, 123-132 (1998).
[CrossRef] [PubMed]

A. Mahadevan-Jansen, M. F. Mitchell, N. Ramanujam, U. Utzinger, and R. Richards-Kortum, “Development of a fiber optic probe to measure NIR Raman spectra of cervical tissue in vivo,” Photochem. Photobiol. 68, 427-431 (1998).
[CrossRef] [PubMed]

A. Mahadevan-Jansen and E. Richards-Kortum, “Raman spectroscopy for the detection of cancers and precancers,” J Biomed. Opt. 1, 31-70 (1996).
[CrossRef]

Malpica, A.

U. Utzinger, D. L. Heintzelman, A. Mahadevan-Jansen, A. Malpica, M. Follen, and R. Richards-Kortum, “Near-infrared Raman spectroscopy for in vivo detection of cervical precancers,” Appl. Spectrosc. 55, 955-959 (2001).
[CrossRef]

A. Mahadevan-Jansen, M. F. Mitchell, N. Ramanujam, A. Malpica, S. Thomsen, U. Utzinger, and R. Richards-Kortum, “Near-infrared Raman spectroscopy for in vitro detection of cervical precancers,” Photochem. Photobiol. 68, 123-132 (1998).
[CrossRef] [PubMed]

Manoharan, R.

C. J. de Lima, S. Sathaiah, M. T. T. Pacheco, R. A. Zângaro, and R. Manoharan, “Side-viewing fiberoptic catheter for biospectroscopy application,” Lasers Med. Sci. 19, 15-20(2004).
[PubMed]

R. Manoharan, J. J. Baraga, M. S. Feld, and R. P. Rava, “Quantitative histochemical analysis of human artery using Raman spectroscopy,” J. Photochem. Photobiol. B 16, 211-233(1992).
[CrossRef] [PubMed]

Marcon, N. E.

M. G. Shim, L.-M. W. K. Song, N. E. Marcon, and B. C. Wilson, “In vivo near-infrared Raman spectroscopy: demonstration of feasibility during clinical gastrointestinal endoscopy,” Photochem. Photobiol. 72, 146-150 (2000).
[PubMed]

Marple, E.

Marple, E. T.

H. P. Buschman, E. T. Marple, M. L. Wach, B. Bennett, T. C. Bakker Schut, H. A. Bruining, A. V. Bruschke, A. van der Laarse, and G. J. Puppels, “In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy,” Anal. Chem. 72, 3771-3775 (2000).
[CrossRef] [PubMed]

McCreery, R. L.

C. J. Frank, R. L. McCreery, and D. C. B. Reed, “Raman spectroscopy of normal and diseased human breast tissues,” Anal. Chem. 67, 777-783 (1995).
[CrossRef] [PubMed]

S. D. Schwab and R. L. McCreery, “Versatile, efficient Raman sampling with fiber optics,” Anal. Chem. 56, 2199-2204(1984).
[CrossRef]

R. L. McCreery, M. Fleischmann, and P. Hendra, “Fiber optic probe for remote Raman spectrometry,” Anal. Chem. 55, 146-148 (1983).
[CrossRef]

R. L. McCreery, Raman Spectroscopy for Chemical Analysis (Wiley, 2000), pp. 36-37.

McLean, D. I.

McWilliams, A.

Milanovich, F. P.

S. Brown, F. P. Milanovich, and K. Kyle, “Design of a cone-penetrometer-compatible probe and housing: the LLNL Raman probe,” Rev. Sci. Instrum. 70, 3735-3743 (1999).
[CrossRef]

Mitchell, M. F.

A. Mahadevan-Jansen, M. F. Mitchell, N. Ramanujam, U. Utzinger, and R. Richards-Kortum, “Development of a fiber optic probe to measure NIR Raman spectra of cervical tissue in vivo,” Photochem. Photobiol. 68, 427-431 (1998).
[CrossRef] [PubMed]

A. Mahadevan-Jansen, M. F. Mitchell, N. Ramanujam, A. Malpica, S. Thomsen, U. Utzinger, and R. Richards-Kortum, “Near-infrared Raman spectroscopy for in vitro detection of cervical precancers,” Photochem. Photobiol. 68, 123-132 (1998).
[CrossRef] [PubMed]

Moselewski, F.

S. Achenbach, F. Moselewski, D. Ropers, M. Ferencik, U. Hoffmannm, B. MacNeill, K. Pohle, U. Baum, K. Anders, I. K. Jang, W. G. Daniel, and T. J. Brady, “Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced submillimeter multidetector spiral computed tomography a segment-based comparison with intravascular ultrasound,” Circulation 109, 14-17 (2004).
[CrossRef]

Motz, J. T.

J. T. Motz, S. J. Gandhi, O. R. Scepanovic, A. S. Haka, J. R. Kramer, R. R. Dasari, and M. S. Feld, “Real-time Raman system for in vivo disease diagnosis,” J Biomed. Opt. 10, 031113 (2005).
[CrossRef] [PubMed]

J. T. Motz, M. Hunter, L. H. Galindo, J. A. Gardecki, J. R. Kramer, R. R. Dasari, and M. S. Feld, “Optical fiber probe for biomedical Raman spectroscopy,” Appl. Opt. 43, 542-554(2004).
[CrossRef] [PubMed]

Myrick, M.

Myrick, M. L.

Pacheco, M. T. T.

C. J. de Lima, S. Sathaiah, M. T. T. Pacheco, R. A. Zângaro, and R. Manoharan, “Side-viewing fiberoptic catheter for biospectroscopy application,” Lasers Med. Sci. 19, 15-20(2004).
[PubMed]

C. J. de Lima, S. Sathaiah, L. Silveira, Jr., R. A. Zângaro, and M. T. T. Pacheco, “Development of catheters with low fiber background signals for Raman spectroscopic diagnosis applications,” Artificial Organs 24, 231-234 (2000).
[CrossRef] [PubMed]

K. Tanaka, M. T. T. Pacheco, J. F. Brennan, III, I. Itzkan, A. J. Berger, R. R. Dasari, and M. S. Feld, “Compound parabolic concentrator probe for efficient light collection in spectroscopy of biological tissue,” Appl. Opt. 35, 758-763(1996).
[CrossRef] [PubMed]

Philipsen, P. A.

S. Sigurdsson, P. A. Philipsen, L. K. Hansen, J. Larsen, M. Gniadecka, and H. C. Wulf, “Detection of skin cancer by classification of Raman spectra,” IEEE Trans. Biomed. Eng. 51, 1784-1793 (2004).
[CrossRef] [PubMed]

Pohle, K.

S. Achenbach, F. Moselewski, D. Ropers, M. Ferencik, U. Hoffmannm, B. MacNeill, K. Pohle, U. Baum, K. Anders, I. K. Jang, W. G. Daniel, and T. J. Brady, “Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced submillimeter multidetector spiral computed tomography a segment-based comparison with intravascular ultrasound,” Circulation 109, 14-17 (2004).
[CrossRef]

Procell, L.

Puppels, G. J.

S. Koljenovic, T. C. Bakker Schut, R. Wolthuis, A. J. P. E. Vincent, G. Hendriks-Hagevi, L. Santos, J. M. Kros, and G. J. Puppels, “Raman spectroscopic characterization of porcine brain tissue using a single fiber-optic probe,” Anal. Chem. 79, 557-564 (2007).
[CrossRef] [PubMed]

P. J. Caspers, G. W. Lucassen, and G. J. Puppels, “Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin,” Biophys. J. 85, 572-580 (2003).
[CrossRef] [PubMed]

L.-P. Choo-Smith, H. G. M. Edwards, H. P. Endtz, J. M. Kros, F. Heule, H. Barr, J. S. Robinson, Jr., H. A. Bruining, and G. J. Puppels, “Medical applications of Raman spectroscopy: from proof of principle to clinical implementation,” Biopolymers 67, 1-9 (2002).
[CrossRef] [PubMed]

M. Wach, B. Bennett, T. C. Bakker Schut, H. A. Bruining, A. V. Bruschke, A. van der Laarse, and G. J. Puppels, “In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy,” Anal. Chem. 72, 3771-3775 (2000).
[CrossRef] [PubMed]

H. P. Buschman, E. T. Marple, M. L. Wach, B. Bennett, T. C. Bakker Schut, H. A. Bruining, A. V. Bruschke, A. van der Laarse, and G. J. Puppels, “In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy,” Anal. Chem. 72, 3771-3775 (2000).
[CrossRef] [PubMed]

Ramanujam, N.

A. Mahadevan-Jansen, M. F. Mitchell, N. Ramanujam, A. Malpica, S. Thomsen, U. Utzinger, and R. Richards-Kortum, “Near-infrared Raman spectroscopy for in vitro detection of cervical precancers,” Photochem. Photobiol. 68, 123-132 (1998).
[CrossRef] [PubMed]

A. Mahadevan-Jansen, M. F. Mitchell, N. Ramanujam, U. Utzinger, and R. Richards-Kortum, “Development of a fiber optic probe to measure NIR Raman spectra of cervical tissue in vivo,” Photochem. Photobiol. 68, 427-431 (1998).
[CrossRef] [PubMed]

Rava, R. P.

R. Manoharan, J. J. Baraga, M. S. Feld, and R. P. Rava, “Quantitative histochemical analysis of human artery using Raman spectroscopy,” J. Photochem. Photobiol. B 16, 211-233(1992).
[CrossRef] [PubMed]

Reed, D. C. B.

Richard-Kortum, R.

U. Utzinger and R. Richard-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J Biomed. Opt. 8, 121-147(2003).
[CrossRef] [PubMed]

Richards-Kortum, E.

A. Mahadevan-Jansen and E. Richards-Kortum, “Raman spectroscopy for the detection of cancers and precancers,” J Biomed. Opt. 1, 31-70 (1996).
[CrossRef]

Richards-Kortum, R.

U. Utzinger, D. L. Heintzelman, A. Mahadevan-Jansen, A. Malpica, M. Follen, and R. Richards-Kortum, “Near-infrared Raman spectroscopy for in vivo detection of cervical precancers,” Appl. Spectrosc. 55, 955-959 (2001).
[CrossRef]

A. Mahadevan-Jansen, M. F. Mitchell, N. Ramanujam, A. Malpica, S. Thomsen, U. Utzinger, and R. Richards-Kortum, “Near-infrared Raman spectroscopy for in vitro detection of cervical precancers,” Photochem. Photobiol. 68, 123-132 (1998).
[CrossRef] [PubMed]

A. Mahadevan-Jansen, M. F. Mitchell, N. Ramanujam, U. Utzinger, and R. Richards-Kortum, “Development of a fiber optic probe to measure NIR Raman spectra of cervical tissue in vivo,” Photochem. Photobiol. 68, 427-431 (1998).
[CrossRef] [PubMed]

Robinson, J. S.

L.-P. Choo-Smith, H. G. M. Edwards, H. P. Endtz, J. M. Kros, F. Heule, H. Barr, J. S. Robinson, Jr., H. A. Bruining, and G. J. Puppels, “Medical applications of Raman spectroscopy: from proof of principle to clinical implementation,” Biopolymers 67, 1-9 (2002).
[CrossRef] [PubMed]

Ropers, D.

S. Achenbach, F. Moselewski, D. Ropers, M. Ferencik, U. Hoffmannm, B. MacNeill, K. Pohle, U. Baum, K. Anders, I. K. Jang, W. G. Daniel, and T. J. Brady, “Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced submillimeter multidetector spiral computed tomography a segment-based comparison with intravascular ultrasound,” Circulation 109, 14-17 (2004).
[CrossRef]

Santos, L.

S. Koljenovic, T. C. Bakker Schut, R. Wolthuis, A. J. P. E. Vincent, G. Hendriks-Hagevi, L. Santos, J. M. Kros, and G. J. Puppels, “Raman spectroscopic characterization of porcine brain tissue using a single fiber-optic probe,” Anal. Chem. 79, 557-564 (2007).
[CrossRef] [PubMed]

Sathaiah, S.

C. J. de Lima, S. Sathaiah, M. T. T. Pacheco, R. A. Zângaro, and R. Manoharan, “Side-viewing fiberoptic catheter for biospectroscopy application,” Lasers Med. Sci. 19, 15-20(2004).
[PubMed]

C. J. de Lima, S. Sathaiah, L. Silveira, Jr., R. A. Zângaro, and M. T. T. Pacheco, “Development of catheters with low fiber background signals for Raman spectroscopic diagnosis applications,” Artificial Organs 24, 231-234 (2000).
[CrossRef] [PubMed]

Sato, H.

Scepanovic, O. R.

J. T. Motz, S. J. Gandhi, O. R. Scepanovic, A. S. Haka, J. R. Kramer, R. R. Dasari, and M. S. Feld, “Real-time Raman system for in vivo disease diagnosis,” J Biomed. Opt. 10, 031113 (2005).
[CrossRef] [PubMed]

Schulze, H. G.

S. O. Konorov, C. J. Addison, H. G. Schulze, R. F. B. Turner, and M. W. Blades, “Hollow-core photonic crystal fiber-optic probes for Raman spectroscopy,” Opt. Let. 31, 1911-1913 (2006).
[CrossRef]

Schwab, S. D.

S. D. Schwab and R. L. McCreery, “Versatile, efficient Raman sampling with fiber optics,” Anal. Chem. 56, 2199-2204(1984).
[CrossRef]

Shafer-Peltier, K. E.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102, 12371-12376 (2005).
[CrossRef] [PubMed]

Shim, M. G.

M. G. Shim, L.-M. W. K. Song, N. E. Marcon, and B. C. Wilson, “In vivo near-infrared Raman spectroscopy: demonstration of feasibility during clinical gastrointestinal endoscopy,” Photochem. Photobiol. 72, 146-150 (2000).
[PubMed]

M. G. Shim, B. C. Wilson, E. Marple, and M. Wach, “Study of fiber-optic probes for in vivo medical Raman spectroscopy,” Appl. Spectrosc. 53, 619-627 (1999).
[CrossRef]

M. G. Shim and B. C. Wilson, “Development of an in vivoRaman spectroscopic system for diagnostic applications,” J. Raman Spectrosc. 28, 131-142 (1997).
[CrossRef]

Shimosegawa, T.

Short, M. A.

Sigurdsson, S.

S. Sigurdsson, P. A. Philipsen, L. K. Hansen, J. Larsen, M. Gniadecka, and H. C. Wulf, “Detection of skin cancer by classification of Raman spectra,” IEEE Trans. Biomed. Eng. 51, 1784-1793 (2004).
[CrossRef] [PubMed]

Silveira, L.

C. J. de Lima, S. Sathaiah, L. Silveira, Jr., R. A. Zângaro, and M. T. T. Pacheco, “Development of catheters with low fiber background signals for Raman spectroscopic diagnosis applications,” Artificial Organs 24, 231-234 (2000).
[CrossRef] [PubMed]

Skinner, H. T.

Song, L.-M. W. K.

M. G. Shim, L.-M. W. K. Song, N. E. Marcon, and B. C. Wilson, “In vivo near-infrared Raman spectroscopy: demonstration of feasibility during clinical gastrointestinal endoscopy,” Photochem. Photobiol. 72, 146-150 (2000).
[PubMed]

Sorrick, D.

Tanaka, K.

Tashiro, H.

Thomsen, S.

A. Mahadevan-Jansen, M. F. Mitchell, N. Ramanujam, A. Malpica, S. Thomsen, U. Utzinger, and R. Richards-Kortum, “Near-infrared Raman spectroscopy for in vitro detection of cervical precancers,” Photochem. Photobiol. 68, 123-132 (1998).
[CrossRef] [PubMed]

Turner, R. F. B.

S. O. Konorov, C. J. Addison, H. G. Schulze, R. F. B. Turner, and M. W. Blades, “Hollow-core photonic crystal fiber-optic probes for Raman spectroscopy,” Opt. Let. 31, 1911-1913 (2006).
[CrossRef]

C. J. Barbosa, F. H. Vaillancourt, L. D. Eltis, M. W. Blades, and R. F. B. Turner, “The power distribution advantage of fiber-optic coupled ultraviolet resonance Raman spectroscopy for bioanalytical and biomedical applications,” J. Raman Spectrosc. 33, 503-510 (2002).
[CrossRef]

Utzinger, U.

U. Utzinger and R. Richard-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J Biomed. Opt. 8, 121-147(2003).
[CrossRef] [PubMed]

U. Utzinger, D. L. Heintzelman, A. Mahadevan-Jansen, A. Malpica, M. Follen, and R. Richards-Kortum, “Near-infrared Raman spectroscopy for in vivo detection of cervical precancers,” Appl. Spectrosc. 55, 955-959 (2001).
[CrossRef]

A. Mahadevan-Jansen, M. F. Mitchell, N. Ramanujam, A. Malpica, S. Thomsen, U. Utzinger, and R. Richards-Kortum, “Near-infrared Raman spectroscopy for in vitro detection of cervical precancers,” Photochem. Photobiol. 68, 123-132 (1998).
[CrossRef] [PubMed]

A. Mahadevan-Jansen, M. F. Mitchell, N. Ramanujam, U. Utzinger, and R. Richards-Kortum, “Development of a fiber optic probe to measure NIR Raman spectra of cervical tissue in vivo,” Photochem. Photobiol. 68, 427-431 (1998).
[CrossRef] [PubMed]

Vaillancourt, F. H.

C. J. Barbosa, F. H. Vaillancourt, L. D. Eltis, M. W. Blades, and R. F. B. Turner, “The power distribution advantage of fiber-optic coupled ultraviolet resonance Raman spectroscopy for bioanalytical and biomedical applications,” J. Raman Spectrosc. 33, 503-510 (2002).
[CrossRef]

van der Laarse, A.

M. Wach, B. Bennett, T. C. Bakker Schut, H. A. Bruining, A. V. Bruschke, A. van der Laarse, and G. J. Puppels, “In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy,” Anal. Chem. 72, 3771-3775 (2000).
[CrossRef] [PubMed]

H. P. Buschman, E. T. Marple, M. L. Wach, B. Bennett, T. C. Bakker Schut, H. A. Bruining, A. V. Bruschke, A. van der Laarse, and G. J. Puppels, “In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy,” Anal. Chem. 72, 3771-3775 (2000).
[CrossRef] [PubMed]

Vincent, A. J. P. E.

S. Koljenovic, T. C. Bakker Schut, R. Wolthuis, A. J. P. E. Vincent, G. Hendriks-Hagevi, L. Santos, J. M. Kros, and G. J. Puppels, “Raman spectroscopic characterization of porcine brain tissue using a single fiber-optic probe,” Anal. Chem. 79, 557-564 (2007).
[CrossRef] [PubMed]

Wach, M.

M. Wach, B. Bennett, T. C. Bakker Schut, H. A. Bruining, A. V. Bruschke, A. van der Laarse, and G. J. Puppels, “In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy,” Anal. Chem. 72, 3771-3775 (2000).
[CrossRef] [PubMed]

M. G. Shim, B. C. Wilson, E. Marple, and M. Wach, “Study of fiber-optic probes for in vivo medical Raman spectroscopy,” Appl. Spectrosc. 53, 619-627 (1999).
[CrossRef]

Wach, M. L.

H. P. Buschman, E. T. Marple, M. L. Wach, B. Bennett, T. C. Bakker Schut, H. A. Bruining, A. V. Bruschke, A. van der Laarse, and G. J. Puppels, “In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy,” Anal. Chem. 72, 3771-3775 (2000).
[CrossRef] [PubMed]

Wang, Y.

Williams, K. P. J.

K. P. J. Williams, “Remote sampling using a fiber-optic probe in Fourier transform Raman spectroscopy,” J. Raman Spectrosc. 21, 147-151 (1990).
[CrossRef]

Wilson, B. C.

M. G. Shim, L.-M. W. K. Song, N. E. Marcon, and B. C. Wilson, “In vivo near-infrared Raman spectroscopy: demonstration of feasibility during clinical gastrointestinal endoscopy,” Photochem. Photobiol. 72, 146-150 (2000).
[PubMed]

M. G. Shim, B. C. Wilson, E. Marple, and M. Wach, “Study of fiber-optic probes for in vivo medical Raman spectroscopy,” Appl. Spectrosc. 53, 619-627 (1999).
[CrossRef]

M. G. Shim and B. C. Wilson, “Development of an in vivoRaman spectroscopic system for diagnostic applications,” J. Raman Spectrosc. 28, 131-142 (1997).
[CrossRef]

Wolthuis, R.

S. Koljenovic, T. C. Bakker Schut, R. Wolthuis, A. J. P. E. Vincent, G. Hendriks-Hagevi, L. Santos, J. M. Kros, and G. J. Puppels, “Raman spectroscopic characterization of porcine brain tissue using a single fiber-optic probe,” Anal. Chem. 79, 557-564 (2007).
[CrossRef] [PubMed]

Wulf, H. C.

S. Sigurdsson, P. A. Philipsen, L. K. Hansen, J. Larsen, M. Gniadecka, and H. C. Wulf, “Detection of skin cancer by classification of Raman spectra,” IEEE Trans. Biomed. Eng. 51, 1784-1793 (2004).
[CrossRef] [PubMed]

Yamazaki, H.

S. Kaminaka, T. Ito, H. Yamazaki, E. Kohda, and H. Hamaguchi, “Near-infrared multichannel Raman spectroscopy toward real-time in vivo cancer diagnosis,” J. Raman Spectrosc. 33, 498-502 (2002).
[CrossRef]

Yan, X.

X. Yan, R. Dong, L. Zhang, and Z. Zhang, “Raman spectra of single cell from gastrointestinal cancer patients,” World J. Gastroenterol. 11, 3290-3292 (2005).
[PubMed]

Yue, K. T.

Zângaro, R. A.

C. J. de Lima, S. Sathaiah, M. T. T. Pacheco, R. A. Zângaro, and R. Manoharan, “Side-viewing fiberoptic catheter for biospectroscopy application,” Lasers Med. Sci. 19, 15-20(2004).
[PubMed]

C. J. de Lima, S. Sathaiah, L. Silveira, Jr., R. A. Zângaro, and M. T. T. Pacheco, “Development of catheters with low fiber background signals for Raman spectroscopic diagnosis applications,” Artificial Organs 24, 231-234 (2000).
[CrossRef] [PubMed]

Zeng, H.

Zhang, L.

X. Yan, R. Dong, L. Zhang, and Z. Zhang, “Raman spectra of single cell from gastrointestinal cancer patients,” World J. Gastroenterol. 11, 3290-3292 (2005).
[PubMed]

Zhang, Z.

X. Yan, R. Dong, L. Zhang, and Z. Zhang, “Raman spectra of single cell from gastrointestinal cancer patients,” World J. Gastroenterol. 11, 3290-3292 (2005).
[PubMed]

Zhao, J.

Anal. Chem.

R. L. McCreery, M. Fleischmann, and P. Hendra, “Fiber optic probe for remote Raman spectrometry,” Anal. Chem. 55, 146-148 (1983).
[CrossRef]

E. N. Lewis, V. F. Kalasinsky, and I. W. Levin, “Near-infrared Fourier transform Raman spectroscopy using fiber-optic assemblies,” Anal. Chem. 60, 2658-2661 (1988).
[CrossRef] [PubMed]

H. P. Buschman, E. T. Marple, M. L. Wach, B. Bennett, T. C. Bakker Schut, H. A. Bruining, A. V. Bruschke, A. van der Laarse, and G. J. Puppels, “In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy,” Anal. Chem. 72, 3771-3775 (2000).
[CrossRef] [PubMed]

S. D. Schwab and R. L. McCreery, “Versatile, efficient Raman sampling with fiber optics,” Anal. Chem. 56, 2199-2204(1984).
[CrossRef]

M. Wach, B. Bennett, T. C. Bakker Schut, H. A. Bruining, A. V. Bruschke, A. van der Laarse, and G. J. Puppels, “In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy,” Anal. Chem. 72, 3771-3775 (2000).
[CrossRef] [PubMed]

S. Koljenovic, T. C. Bakker Schut, R. Wolthuis, A. J. P. E. Vincent, G. Hendriks-Hagevi, L. Santos, J. M. Kros, and G. J. Puppels, “Raman spectroscopic characterization of porcine brain tissue using a single fiber-optic probe,” Anal. Chem. 79, 557-564 (2007).
[CrossRef] [PubMed]

C. J. Frank, R. L. McCreery, and D. C. B. Reed, “Raman spectroscopy of normal and diseased human breast tissues,” Anal. Chem. 67, 777-783 (1995).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Spectrosc.

J. F. Brennan, Y. Wang, R. R. Dasari, and M. S. Feld, “Near-infrared Raman spectrometer systems for human tissue studies,” Appl. Spectrosc. 51, 201-208 (1997).
[CrossRef]

U. Utzinger, D. L. Heintzelman, A. Mahadevan-Jansen, A. Malpica, M. Follen, and R. Richards-Kortum, “Near-infrared Raman spectroscopy for in vivo detection of cervical precancers,” Appl. Spectrosc. 55, 955-959 (2001).
[CrossRef]

S. Christesen, B. Maciver, L. Procell, D. Sorrick, M. Carrabba, and J. Bello, “Nonintrusive analysis of chemical agent identification sets using a portable fiber-optic Raman spectrometer,” Appl. Spectrosc. 53, 850-855 (1999).
[CrossRef]

M. G. Shim, B. C. Wilson, E. Marple, and M. Wach, “Study of fiber-optic probes for in vivo medical Raman spectroscopy,” Appl. Spectrosc. 53, 619-627 (1999).
[CrossRef]

R. Lewis and P. R. Griffiths, “Raman spectrometry with fiber-optic sampling,” Appl. Spectrosc. 50, 12A-30A (1996).
[CrossRef]

T. F. Cooney, H. T. Skinner, and S. M. Angel, “Comparative study of some fiber-optic remote Raman probe designs. Part I: model for liquids and transparent solids,” Appl. Spectrosc. 50, 836-848 (1996).
[CrossRef]

M. Myrick and S. Angel, “Elimination of background in fiber-optic Raman measurements,” Appl. Spectrosc. 44, 565-570(1990).
[CrossRef]

D. C. B. Reed, Z. C. Feng, K. T. Yue, and T. S. Gansler, “Raman spectroscopic characterization of human breast tissues: implications for breast cancer diagnosis,” Appl. Spectrosc. 47, 787-791 (1993).
[CrossRef]

D. D. Archibald, L. T. Len, and D. E. Honigs, “Raman spectroscopy over optical fibers with the use of a near-IR FT spectrometer,” Appl. Spectrosc. 42, 1558-1563 (1988).
[CrossRef]

Y. Hattori, Y. Komachi, T. Asakura, T. Shimosegawa, G. Kanai, H. Tashiro, and H. Sato, “In vivo Raman study of the living rat esophagus and stomach using a micro-Raman probe under an endoscope,” Appl. Spectrosc. 61, 579-584(2007).
[CrossRef] [PubMed]

Artificial Organs

C. J. de Lima, S. Sathaiah, L. Silveira, Jr., R. A. Zângaro, and M. T. T. Pacheco, “Development of catheters with low fiber background signals for Raman spectroscopic diagnosis applications,” Artificial Organs 24, 231-234 (2000).
[CrossRef] [PubMed]

Biophys. J.

P. J. Caspers, G. W. Lucassen, and G. J. Puppels, “Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin,” Biophys. J. 85, 572-580 (2003).
[CrossRef] [PubMed]

Biopolymers

L.-P. Choo-Smith, H. G. M. Edwards, H. P. Endtz, J. M. Kros, F. Heule, H. Barr, J. S. Robinson, Jr., H. A. Bruining, and G. J. Puppels, “Medical applications of Raman spectroscopy: from proof of principle to clinical implementation,” Biopolymers 67, 1-9 (2002).
[CrossRef] [PubMed]

Circulation

S. Achenbach, F. Moselewski, D. Ropers, M. Ferencik, U. Hoffmannm, B. MacNeill, K. Pohle, U. Baum, K. Anders, I. K. Jang, W. G. Daniel, and T. J. Brady, “Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced submillimeter multidetector spiral computed tomography a segment-based comparison with intravascular ultrasound,” Circulation 109, 14-17 (2004).
[CrossRef]

IEEE Trans. Biomed. Eng.

S. Sigurdsson, P. A. Philipsen, L. K. Hansen, J. Larsen, M. Gniadecka, and H. C. Wulf, “Detection of skin cancer by classification of Raman spectra,” IEEE Trans. Biomed. Eng. 51, 1784-1793 (2004).
[CrossRef] [PubMed]

J Biomed. Opt.

J. T. Motz, S. J. Gandhi, O. R. Scepanovic, A. S. Haka, J. R. Kramer, R. R. Dasari, and M. S. Feld, “Real-time Raman system for in vivo disease diagnosis,” J Biomed. Opt. 10, 031113 (2005).
[CrossRef] [PubMed]

A. Mahadevan-Jansen and E. Richards-Kortum, “Raman spectroscopy for the detection of cancers and precancers,” J Biomed. Opt. 1, 31-70 (1996).
[CrossRef]

U. Utzinger and R. Richard-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J Biomed. Opt. 8, 121-147(2003).
[CrossRef] [PubMed]

J. Photochem. Photobiol. B

R. Manoharan, J. J. Baraga, M. S. Feld, and R. P. Rava, “Quantitative histochemical analysis of human artery using Raman spectroscopy,” J. Photochem. Photobiol. B 16, 211-233(1992).
[CrossRef] [PubMed]

J. Raman Spectrosc.

M. G. Shim and B. C. Wilson, “Development of an in vivoRaman spectroscopic system for diagnostic applications,” J. Raman Spectrosc. 28, 131-142 (1997).
[CrossRef]

C. J. Barbosa, F. H. Vaillancourt, L. D. Eltis, M. W. Blades, and R. F. B. Turner, “The power distribution advantage of fiber-optic coupled ultraviolet resonance Raman spectroscopy for bioanalytical and biomedical applications,” J. Raman Spectrosc. 33, 503-510 (2002).
[CrossRef]

S. Kaminaka, T. Ito, H. Yamazaki, E. Kohda, and H. Hamaguchi, “Near-infrared multichannel Raman spectroscopy toward real-time in vivo cancer diagnosis,” J. Raman Spectrosc. 33, 498-502 (2002).
[CrossRef]

K. P. J. Williams, “Remote sampling using a fiber-optic probe in Fourier transform Raman spectroscopy,” J. Raman Spectrosc. 21, 147-151 (1990).
[CrossRef]

Lasers Med. Sci.

C. J. de Lima, S. Sathaiah, M. T. T. Pacheco, R. A. Zângaro, and R. Manoharan, “Side-viewing fiberoptic catheter for biospectroscopy application,” Lasers Med. Sci. 19, 15-20(2004).
[PubMed]

Opt. Let.

S. O. Konorov, C. J. Addison, H. G. Schulze, R. F. B. Turner, and M. W. Blades, “Hollow-core photonic crystal fiber-optic probes for Raman spectroscopy,” Opt. Let. 31, 1911-1913 (2006).
[CrossRef]

Opt. Lett.

Photochem. Photobiol.

A. Mahadevan-Jansen, M. F. Mitchell, N. Ramanujam, U. Utzinger, and R. Richards-Kortum, “Development of a fiber optic probe to measure NIR Raman spectra of cervical tissue in vivo,” Photochem. Photobiol. 68, 427-431 (1998).
[CrossRef] [PubMed]

A. Mahadevan-Jansen, M. F. Mitchell, N. Ramanujam, A. Malpica, S. Thomsen, U. Utzinger, and R. Richards-Kortum, “Near-infrared Raman spectroscopy for in vitro detection of cervical precancers,” Photochem. Photobiol. 68, 123-132 (1998).
[CrossRef] [PubMed]

M. G. Shim, L.-M. W. K. Song, N. E. Marcon, and B. C. Wilson, “In vivo near-infrared Raman spectroscopy: demonstration of feasibility during clinical gastrointestinal endoscopy,” Photochem. Photobiol. 72, 146-150 (2000).
[PubMed]

Proc. Natl. Acad. Sci. U.S.A.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102, 12371-12376 (2005).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

S. Brown, F. P. Milanovich, and K. Kyle, “Design of a cone-penetrometer-compatible probe and housing: the LLNL Raman probe,” Rev. Sci. Instrum. 70, 3735-3743 (1999).
[CrossRef]

Spectrochim. Acta, Part A

A. J. Berger, I. Itzkan, and M. S. Feld, “Feasibility of measuring blood glucose concentration by near-infrared Raman spectroscopy,” Spectrochim. Acta, Part A 53, 287-292 (1997).
[CrossRef]

World J. Gastroenterol.

X. Yan, R. Dong, L. Zhang, and Z. Zhang, “Raman spectra of single cell from gastrointestinal cancer patients,” World J. Gastroenterol. 11, 3290-3292 (2005).
[PubMed]

Other

R. L. McCreery, Raman Spectroscopy for Chemical Analysis (Wiley, 2000), pp. 36-37.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

(a) Schematic diagram of optical fiber probe illustrat ing model. (b) Layout drawing of a fiber for calculating receiving intensity.

Fig. 2
Fig. 2

(a) Raman intensity distribution. The intensity distribution of Raman light from arterial tissue is shown on the left-hand side. The fitted curve for the intensity distribution of Raman light from arterial tissue calculated by propagating direction is shown on the right-hand side. (b) Intensity distribution I ( r ) at the fiber surface as a function of r.

Fig. 3
Fig. 3

Relation between the number of fibers and the received light intensity. The curves show the calculated resultant efficiency of each lens. (a) Normalized received intensity as a function of the number of fibers in the air, taking into account the divergence of the excitation light emitted from the fiber based on Eq. (10). The curve cut off midway means that the signal could not be measured since the fiber ring diameter was larger than the diameter of the lens. The lens diameter was determined by the focal length. In this case, the focal length is so short that the lens diameter is very small. (b) Normalized received intensity as a function of the number of fibers in the water.

Fig. 4
Fig. 4

(a) Structure of distal end of a MRP. (b) Longitudinal cross section of distal end of a MRP. (c) Transverse cross section at fiber–filter interface.

Fig. 5
Fig. 5

Experimental setup. FC, fixed connection.

Fig. 6
Fig. 6

3D graph showing the intensity profile along the lateral direction obtained with (a) the flat-tipped MRP, (b) the lensed MRP with f = 1 mm , and (c) the lensed MRP with f = 0.58 mm .

Fig. 7
Fig. 7

Signal intensity as a function of the sample diameter.

Fig. 8
Fig. 8

(a) Spectrum transmittance of the BP filter in the tip of the fiber. (b) Spectrum transmittance of the LP filter in the tip of the fiber.

Fig. 9
Fig. 9

Raman spectra of laser light emitted from excitation fiber (a) without a BP filter and (b) with a BP filter.

Fig. 10
Fig. 10

Raman spectra of Ca CO 3 powder measured with (a) the flat-tipped MRP separated from the sample by 0.5 mm , (b) the lensed MRP with f = 0.58 mm separated from the sample by 0.3 mm , (c) the lensed MRP with f = 1 mm separated from the sample by 0.5 mm , and (d) the lensed MRP with f = 1 mm separated from the sample by 1 mm .

Fig. 11
Fig. 11

Raman spectra of Ba 2 SO 4 measured with the lensed MRP with f = 1 mm and accumulation times of 1 s .

Fig. 12
Fig. 12

Raman spectra of PMMA measured with (a) direct excitation and two collection lens, (b) the lensed MRP with f = 1 mm , and (c) a flat-tipped MRP.

Fig. 13
Fig. 13

Spectra of a human lip measured with the lensed MRP with f = 1 mm in vivo. (a) Raw data. (b) Probe background. The MRP fiber background was recorded by placing an aluminum plate with a rough surface at the sample point. (c) Corrected signal by removing probe background from raw data.

Fig. 14
Fig. 14

Raman spectra obtained by in vivo measurement with the lensed MRP with f = 1 mm after the fluorescence background was fitted to a sixth-order polynomial and subtracted: (a) fingernail, (b) lip, (c) palm, and (d) finger. All spectra were not normalized.

Tables (1)

Tables Icon

Table 1 Detecting Ranges of the Micro Raman Probes in the x and z Directions

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I r = I 0 · [ 0.348 exp ( r 2 / 0.025 ) + 0.113 exp ( r 2 / 0.2 ) + 0.557 exp ( r 2 ) ] ,
I θ = I 0 · D ( θ ) , D ( θ ) = a 0 [ cos ( θ ) ] n + a 1 [ cos ( θ ) ] n 1 .
I ( Ω ) = I θ d Ω ,
I ( θ ) = 2 π · I 0 0 θ D ( θ ) · sin θ · d θ ,
I 1 ( r ) = 2 π I 0 r r D ( r ) · n f n 2 f 2 + r 2 · ( n 2 f 2 + r 2 ) · r d r ,
I 2 ( r ) = D ( r ) · n f n 2 f 2 + r 2 · ( n 2 f 2 + r 2 ) .
D ( θ ) = [ cos ( θ ) ] 62 + 2 · [ cos ( θ ) ] 0.85 .
I ( r ) = I 2 ( r ) 2 · π · ( n f ) 2 · ( 1 cos α ) ,
I c ( r ) = P R · I e · N r 1 d r 1 + d I ( r ) · 1 R ( r ) · I F ( r ) d r ,
I F ( r ) = 2 · r · θ r , θ r = cos 1 ( x / r ) ,
I F ( r ) = 2 · r · cos 1 [ ( r 2 d 2 + r 1 2 ) / 2 r 1 r ] .
I F ( r ) d r = 2 r 1 d r 1 + d r · cos 1 [ ( r 2 d 2 + r 1 ) / 2 r 1 2 r ] d r .

Metrics